當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>說(shuō)課稿> 等腰三角形性質(zhì)說(shuō)課稿

等腰三角形性質(zhì)說(shuō)課稿

時(shí)間:2022-05-27 17:06:44 說(shuō)課稿 我要投稿

等腰三角形性質(zhì)說(shuō)課稿

  作為一名辛苦耕耘的教育工作者,時(shí)常會(huì)需要準(zhǔn)備好說(shuō)課稿,借助說(shuō)課稿我們可以快速提升自己的教學(xué)能力。那么大家知道正規(guī)的說(shuō)課稿是怎么寫(xiě)的嗎?下面是小編為大家整理的等腰三角形性質(zhì)說(shuō)課稿,希望對(duì)大家有所幫助。

等腰三角形性質(zhì)說(shuō)課稿

等腰三角形性質(zhì)說(shuō)課稿1

各位領(lǐng)導(dǎo)、老師:

  大家好!

  我說(shuō)課的課題是《等腰三角形》,源于義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)七年級(jí)數(shù)學(xué)第七章,下面我將來(lái)匯報(bào)我這節(jié)課的教學(xué)設(shè)計(jì)。

  一、說(shuō)教材分析

  1、本課內(nèi)容在初中數(shù)學(xué)教學(xué)中起著比較重要的作用,它是對(duì)三角形的性質(zhì)的呈現(xiàn)。通過(guò)等腰三角形的性質(zhì)反映在一個(gè)三角形中等邊對(duì)等角,等角對(duì)等邊的邊角關(guān)系,并且對(duì)軸對(duì)稱(chēng)圖形性質(zhì)的直觀反映(三線合一)。并且在以后直角三角形和相似三角形中等腰三角形的性質(zhì)也占有一席之地。

  2、教學(xué)目標(biāo):要求學(xué)生掌握等腰三角形的性質(zhì)和等邊三角形的每個(gè)角都相等,且每個(gè)角都為60度,使學(xué)生會(huì)用等腰三角形的性質(zhì)定理進(jìn)行證明或計(jì)算,逐步滲透幾何證題的基本方法:分析法和綜合法,培養(yǎng)學(xué)生的聯(lián)想能力

  3、教學(xué)重點(diǎn)、難點(diǎn):等腰三角形的性質(zhì)定理是本課的重點(diǎn)等腰三角形“三線合一”性質(zhì)的運(yùn)用是本課的難點(diǎn)

  4、為了使學(xué)生了解這堂課,本課要求學(xué)生自制一個(gè)等腰三角形模型,教學(xué)過(guò)程采用多媒體教學(xué)。

  二、說(shuō)教學(xué)方法:

  “教必有法而教無(wú)定法”,只有方法得當(dāng),才會(huì)有效。根據(jù)本課內(nèi)容特點(diǎn)和初二學(xué)生思維活動(dòng)的特點(diǎn),我采用了教具直觀教學(xué)法,聯(lián)想發(fā)現(xiàn)教學(xué)法,設(shè)疑思考法,逐步滲透法和師生交際相結(jié)合的方法。

  三、說(shuō)學(xué)生學(xué)法。

  “授人以魚(yú),不如授人以漁”,最有價(jià)值的知識(shí)是關(guān)于方法的知識(shí),首先教師應(yīng)創(chuàng)造一種環(huán)境,引導(dǎo)學(xué)生從已知的、熟悉的知識(shí)入手,讓學(xué)生自己在某一種環(huán)境下不知不覺(jué)中運(yùn)用舊知識(shí)的鑰匙去打開(kāi)新知識(shí)的大門(mén),進(jìn)入新知識(shí)的領(lǐng)域,從不同角度去分析、解決新問(wèn)題,發(fā)掘不同層次學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力和自學(xué)能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。

  四、說(shuō)教學(xué)程序

  1、等腰三角形的有關(guān)概念,軸對(duì)稱(chēng)圖形的有關(guān)概念。

  提問(wèn):等腰三角形是不是軸對(duì)稱(chēng)圖形?什么是它的對(duì)稱(chēng)軸?

  2、教師演示(模型)等腰三角形是軸對(duì)稱(chēng)圖形的實(shí)驗(yàn),并讓學(xué)生做同樣的實(shí)驗(yàn),引導(dǎo)學(xué)生觀察重合部分,發(fā)現(xiàn)等腰三角形的一些性質(zhì)。

  3、新課:讓學(xué)生由實(shí)驗(yàn)或演示指出各自的發(fā)現(xiàn),并加以引導(dǎo),用規(guī)范的數(shù)學(xué)語(yǔ)言進(jìn)行逐條歸納,最后得出等腰三角形的性質(zhì)定理1、2。

  性質(zhì)定理1:等腰三角形的兩個(gè)底角相等

  在△ ABC中,∵AB=AC()∴∠B= ∠C()

  性質(zhì)定理:等腰三角形的頂角平分線、底邊上的中線和高線互相重合

 、 ∵ AB=AC ∠1= ∠ 2()∴BD=DC AD⊥BC()

 、 ∵ AB=AC BD=DC()∴ ∠1= ∠ 2 AD⊥BC()

  ③ ∵ AB=AC AD⊥BC于D()∴ BD=DC ∠1= ∠ 2()

  4、對(duì)新知識(shí)的感知性應(yīng)用

  指導(dǎo)學(xué)生表述證明過(guò)程。

  思考題:等腰三角形兩腰上的中線(高線)是否相等?為什么?

  課堂練習(xí):

  p。227練習(xí)1,練習(xí)2(指出這是等邊三角形的性質(zhì)定理)。

  5、小結(jié):

 。1)等腰三角形的性質(zhì)定理。

 。2)等邊三角形的性質(zhì)

 。3)利用等腰三角形的'性質(zhì)定理可證明:兩角相等,兩線段相等,兩直線互相垂直。

 。4)聯(lián)想方法要經(jīng)常運(yùn)用,對(duì)解題大有裨益。

  五、布置作業(yè):

  見(jiàn)作業(yè)本

  六、對(duì)于本節(jié)的幾點(diǎn)思考

  1、本節(jié)的學(xué)習(xí)任務(wù)比較重要,有定理的證明、定理的計(jì)算和證題應(yīng)用,所以本人針對(duì)學(xué)生的特點(diǎn),在上節(jié)課例的掌握好的情況下,讓學(xué)生自己去發(fā)現(xiàn)、去聯(lián)想,能充分地發(fā)揮學(xué)生主觀能動(dòng)性。練習(xí)2其目的有二:(一)使學(xué)生在復(fù)習(xí)本節(jié)知識(shí)。(二)為下一節(jié)內(nèi)容鋪墊。

  2、通過(guò)學(xué)生自己動(dòng)手實(shí)驗(yàn)得到兩個(gè)定理的內(nèi)容,可以使他們比較好的掌握知識(shí)、提高學(xué)習(xí)數(shù)學(xué)的興趣,達(dá)到了事半功倍之效。

  3、在整個(gè)教學(xué)過(guò)程中,本人利用多種教學(xué)方法,使學(xué)生在實(shí)驗(yàn)中提出問(wèn)題,解決問(wèn)題的途徑,而不知不覺(jué)地進(jìn)入學(xué)習(xí)氛圍,把學(xué)生從被動(dòng)學(xué)習(xí)步入主動(dòng)想學(xué)的習(xí)慣。

  總之,在本節(jié)教學(xué)中,我始終堅(jiān)持以學(xué)生為主體,教師為主導(dǎo),致力啟用學(xué)生已掌握的知識(shí),充分調(diào)動(dòng)學(xué)生的興趣和積極性,使他們最大限度地參與到課堂的活動(dòng)中,在整個(gè)教學(xué)過(guò)程中我以啟發(fā)學(xué)生,挖掘?qū)W生潛力,讓他們展開(kāi)聯(lián)想的思維,培養(yǎng)其能力為主旨而發(fā)展的。

  9.12等腰三角形的性質(zhì)定理

  板書(shū)設(shè)計(jì)

  課題:

  等腰三角形的性質(zhì)定理

  例1、書(shū)寫(xiě)格式

  例2、書(shū)寫(xiě)過(guò)程

  性質(zhì)定理1

  性質(zhì)定理2

  學(xué)生板演

等腰三角形性質(zhì)說(shuō)課稿2

  一說(shuō)教材

  《等腰三角形的性質(zhì)》是人教版教科書(shū)八年級(jí)上冊(cè)第13章第三節(jié)第1課時(shí)的教學(xué)內(nèi)容。在此之前,學(xué)生們已經(jīng)學(xué)習(xí)了等腰三角形的定義以及軸對(duì)稱(chēng),學(xué)生已經(jīng)具備了一定的動(dòng)手操作能力。這些知識(shí)為本節(jié)課的學(xué)習(xí)等腰三角形的性質(zhì)起到了鋪墊的作用。而本節(jié)課的知識(shí)為以后將為以后學(xué)習(xí)的四邊形及多邊形的相關(guān)知識(shí)奠定了基礎(chǔ)。

  二說(shuō)教學(xué)目標(biāo)

  根據(jù)教學(xué)大綱和新課程標(biāo)準(zhǔn)的要求,我認(rèn)真鉆研教材,特制定以下三個(gè)教學(xué)目標(biāo):

  1掌握等腰三角形的性質(zhì)

  2知道等腰三角形的性質(zhì)的推理過(guò)程

  3會(huì)靈活運(yùn)用等腰三角形的性質(zhì)解決相關(guān)的數(shù)學(xué)問(wèn)題

  三 說(shuō)教學(xué)重、難點(diǎn)

  結(jié)合八年級(jí)學(xué)生的年齡特點(diǎn)、心理特征和現(xiàn)有的知識(shí)結(jié)構(gòu)。我認(rèn)為本節(jié)課的重點(diǎn)是等腰三角形的兩個(gè)性質(zhì)即“等邊對(duì)等角”;“三線合一”。

  由于八年級(jí)學(xué)生的邏輯推理能力和理解運(yùn)用能力還較弱,因此等腰三角形的性質(zhì)的推理過(guò)程及會(huì)靈活運(yùn)用等腰三角形的性質(zhì)解決相關(guān)的數(shù)學(xué)問(wèn)題是本節(jié)課的難點(diǎn)。

  四 說(shuō)教法和學(xué)法

  本節(jié)課我采用的教法是啟發(fā)式教學(xué)法、動(dòng)手操作法。

  學(xué)生的學(xué)法是:自主探究法、合作討論法。

  五說(shuō)教學(xué)過(guò)程

  本節(jié)課我主要是根據(jù)“四步五環(huán)節(jié)”教學(xué)法從以下五個(gè)環(huán)節(jié)進(jìn)行教學(xué)的。

  1 復(fù)習(xí)導(dǎo)入

  通過(guò)教師在黑板上畫(huà)一個(gè)三角形(任意取一個(gè)點(diǎn)為圓心,適當(dāng)?shù)拈L(zhǎng)為半徑畫(huà)弧,在所畫(huà)的.弧上任意取兩個(gè)點(diǎn)順次連接這三個(gè)點(diǎn)所得的三角形是什么三角形?)的方法能確定是所畫(huà)的三角形是等腰三角形。這樣導(dǎo)入可以讓學(xué)生知道如何用尺規(guī)作圖做一個(gè)等腰三角形,并引導(dǎo)他們回憶等腰三角形的概念及腰、底邊、頂角、底角的概念。

  2探究新知

  在同學(xué)們已經(jīng)學(xué)習(xí)了軸對(duì)稱(chēng)的基礎(chǔ)上通過(guò)對(duì)折剪紙觀察猜想得出等腰三角形的性質(zhì),這樣設(shè)計(jì)既能提高學(xué)生的動(dòng)手操作能了,又能更直觀的發(fā)現(xiàn)等腰三角形的三條性質(zhì)即:對(duì)稱(chēng)性、等邊對(duì)等角、三線合一。在此基礎(chǔ)上教師在引導(dǎo)學(xué)生寫(xiě)出推理過(guò)程,同時(shí)也提高了學(xué)生的邏輯思維能力.

  3理解與運(yùn)用

  為了讓學(xué)生熟練的掌握等腰三角形的三個(gè)性質(zhì),我設(shè)計(jì)了一道相關(guān)證明題,讓學(xué)生先自主探究不會(huì)的同學(xué)請(qǐng)教會(huì)做的給其講解進(jìn)行兵練兵,再找一名學(xué)生將解題過(guò)程板術(shù)黑板上,教師進(jìn)行點(diǎn)評(píng),以提高學(xué)生書(shū)寫(xiě)完整、簡(jiǎn)潔的解題過(guò)程的能力。

  4強(qiáng)化鞏固

  在這一教學(xué)環(huán)節(jié)中我設(shè)計(jì)了2道求角度的問(wèn)題,讓學(xué)生通過(guò)由易到難的探究過(guò)程將所學(xué)的知識(shí)進(jìn)一步升華,培養(yǎng)學(xué)生的探究精神。

  5小結(jié)

  設(shè)計(jì)三個(gè)問(wèn)題讓學(xué)生通過(guò)思考討論回答出來(lái),從而把本節(jié)課的知識(shí)系統(tǒng)化。以提高學(xué)生的總結(jié)概括能力。

  本節(jié)課我采用觀察法和動(dòng)手操作法導(dǎo)入新課充分的調(diào)動(dòng)了學(xué)生學(xué)習(xí)的主動(dòng)性和積極性順利完成的預(yù)定的教學(xué)任務(wù),取得了良好的教學(xué)效果。

等腰三角形性質(zhì)說(shuō)課稿3

  各位領(lǐng)導(dǎo)、老師們:

  大家好!

  今天我說(shuō)課的內(nèi)容是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)《數(shù)學(xué)》八年級(jí)上冊(cè)第十二章12.3.1等腰三角形性質(zhì)第一課時(shí)。下面,我從教材分析、教法分析、學(xué)法分析、教學(xué)過(guò)程、教學(xué)反思五個(gè)方面來(lái)匯報(bào)我對(duì)這節(jié)課的教學(xué)設(shè)想。

  一、教材分析

  1、教材的地位與作用:

  本節(jié)課內(nèi)容是在學(xué)生掌握了一般三角形和軸對(duì)稱(chēng)的知識(shí),具有初步的推理證明能力的基礎(chǔ)上進(jìn)行學(xué)習(xí)的。使學(xué)生學(xué)會(huì)分析、學(xué)會(huì)證明,在培養(yǎng)學(xué)生的思維能力和推理能力等方面有重要的作用。通過(guò)等腰三角形的性質(zhì)反映在一個(gè)三角形中“等邊對(duì)等角”的邊角關(guān)系,并且是對(duì)軸對(duì)稱(chēng)圖形性質(zhì)的直觀反映(三線合一)。它所倡導(dǎo)的“觀察---發(fā)現(xiàn)---猜想---論證”的數(shù)學(xué)思想方法是今后研究數(shù)學(xué)的基本思想方法。等腰三角形的性質(zhì)也是論證兩個(gè)角相等、兩條線段相等、兩條直線垂直的重要依據(jù),因此,本節(jié)內(nèi)容在教材中處于非常重要的地位,起著承前啟后的作用。

  2、教學(xué)目標(biāo):

  知識(shí)技能:理解掌握等腰三角形的性質(zhì);運(yùn)用等腰三角形的性質(zhì)進(jìn)行證明和計(jì)算。

  過(guò)程方法:通過(guò)實(shí)踐、觀察、證明等腰三角形的性質(zhì),發(fā)展學(xué)生合情推理能力和演繹推理能力。

  解決問(wèn)題:通過(guò)觀察等腰三角形的對(duì)稱(chēng)性,及運(yùn)用等腰三角形的性質(zhì)解決有關(guān)的問(wèn)題,提高學(xué)生觀察、分析、歸納、運(yùn)用知識(shí)解決問(wèn)題的能力,發(fā)展應(yīng)用意識(shí)。

  情感態(tài)度:通過(guò)引導(dǎo)學(xué)生對(duì)圖形的觀察、發(fā)現(xiàn),激發(fā)學(xué)生的好奇心和求知欲,并在運(yùn)用數(shù)學(xué)知識(shí)解答問(wèn)題的活動(dòng)中獲取成功的體驗(yàn),建立學(xué)習(xí)的自信心。

  (根據(jù)教材內(nèi)容的地位與作用及教學(xué)目標(biāo),因此我將把本節(jié)課的重點(diǎn)確定為:等腰三角形的性質(zhì)的探究和應(yīng)用。由于對(duì)文字語(yǔ)言敘述的幾何命題的證明要求嚴(yán)格且步驟繁瑣,此時(shí)八年級(jí)學(xué)生還沒(méi)有深刻的理解和熟練的掌握,因此我將把本節(jié)課的難點(diǎn)定為:等腰三角形性質(zhì)的推理證明。)

  3、教學(xué)重點(diǎn)與難點(diǎn):

  重點(diǎn):等腰三角形的性質(zhì)的探索和應(yīng)用。

  難點(diǎn):等腰三角形性質(zhì)的推理證明。

  二、教法設(shè)計(jì):

  教法設(shè)想:我采用探索發(fā)現(xiàn)法和啟發(fā)式教學(xué)法完成本節(jié)的教學(xué),在教學(xué)中通過(guò)創(chuàng)設(shè)情景,設(shè)計(jì)問(wèn)題,引導(dǎo)學(xué)生自主探索,合作交流,組織學(xué)生動(dòng)手操作,觀察現(xiàn)象,提出猜想,推理論證等。有效地啟發(fā)學(xué)生的思考,使學(xué)生真正成為學(xué)習(xí)的主體。

  三、學(xué)法設(shè)計(jì):

  在學(xué)生學(xué)習(xí)的過(guò)程中,我將從兩個(gè)方面指導(dǎo)學(xué)生學(xué)習(xí),一方面老師大膽放手,讓學(xué)生去自主探究等腰三角形的性質(zhì),另一方面,在對(duì)等腰三角形性質(zhì)的證明過(guò)程中,老師要巧妙引導(dǎo),分散難點(diǎn)。這樣做既有利于活躍學(xué)生的思維,又能幫助他們探本求源,這樣也體現(xiàn)了以“教師為主導(dǎo),學(xué)生為主體”的新課改背景下的教學(xué)原則。

  四、教學(xué)過(guò)程:

  根據(jù)制定的教學(xué)目標(biāo),圍繞重點(diǎn),突破難點(diǎn),我將從以下七個(gè)方面設(shè)計(jì)我的教學(xué)過(guò)程:

  1、創(chuàng)設(shè)情景:

  首先向同學(xué)們出示精美的建筑物圖片,并提出問(wèn)題串:(1)什么是軸對(duì)稱(chēng)圖形?這些圖片中有軸對(duì)稱(chēng)圖形嗎? (2)里面有等腰三角形嗎?然后向?qū)W生介紹等腰三角形的定義以及邊角等相關(guān)的概念,由于學(xué)生小學(xué)就已經(jīng)接觸過(guò),所以學(xué)生很容易理解。再提出第三個(gè)問(wèn)題:(3)a.等腰三角形是軸對(duì)稱(chēng)圖形嗎?b.等腰三角形具備哪些性質(zhì)呢?引出本節(jié)課的課題-我們這節(jié)課來(lái)探究等腰三角形的性質(zhì)。--板書(shū)課題。

 。病(dòng)手操作,大膽猜想:

 、倌贸稣n下制作的等腰三角形的紙片,它是軸對(duì)稱(chēng)圖形嗎?對(duì)稱(chēng)軸是誰(shuí)?用你手中的紙片說(shuō)明你的看法?②等腰三角形沿對(duì)稱(chēng)軸折疊后,你能得到哪些結(jié)論?(看誰(shuí)得到的結(jié)論多)

  ③分組討論。(看哪一組氣氛最活躍,結(jié)論又對(duì)又多.)

  然后小組代表發(fā)言,交流討論結(jié)果。

 、軞w納:你能猜想得到等腰三角形具有什么性質(zhì)?你能用文字語(yǔ)言歸納一下嗎?

 。ń處熞龑(dǎo)學(xué)生進(jìn)行總結(jié)歸納得出性質(zhì)1,2)

  性質(zhì)1:等腰三角形的兩底角相等。(簡(jiǎn)寫(xiě)成“等邊對(duì)等角”)

  性質(zhì)2:等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。(簡(jiǎn)稱(chēng)“三線合一”)

 。ㄔO(shè)計(jì)意圖:由學(xué)生自己動(dòng)手折紙活動(dòng),根據(jù)等腰三角形軸對(duì)稱(chēng)性,大膽猜測(cè)等腰三角形的性質(zhì),培養(yǎng)學(xué)生的觀察分析、概括總結(jié)能力。也發(fā)展了學(xué)生的幾何直觀。教師在學(xué)生猜想的基礎(chǔ)上,引導(dǎo)學(xué)生觀察、完善、歸納出性質(zhì)1和性質(zhì)2。培養(yǎng)了學(xué)生進(jìn)行合情推理的能力。)

  3、證明猜想,形成定理:

  你能證明等腰三角形的性質(zhì)嗎?

  對(duì)于這種幾何命題的證明需要三大步驟:分析題設(shè)結(jié)論,畫(huà)出圖形寫(xiě)出已知和求證,最后進(jìn)行推理證明。這對(duì)于八年級(jí)學(xué)段的學(xué)生難度較大,為了突破難點(diǎn),我決定設(shè)計(jì)以下三個(gè)階梯問(wèn)題:

 。1)找出“性質(zhì)1”的題設(shè)和結(jié)論,畫(huà)出的圖形,寫(xiě)出已知和求證。

  (2)證明角和角相等有哪些方法?(學(xué)生可能會(huì)想到平行線的性質(zhì),全等三角形的性質(zhì))

  (3)通過(guò)折疊等腰三角形紙片,你認(rèn)為本題用什么方法證明∠B=∠C,寫(xiě)出證明過(guò)程。

  問(wèn)題1的設(shè)計(jì)使得學(xué)生順利地將文字語(yǔ)言轉(zhuǎn)化為符號(hào)語(yǔ)言,幫助學(xué)生順利地寫(xiě)出已知和求證;

  問(wèn)題2提供給學(xué)生了解題思路,引導(dǎo)學(xué)生用舊的知識(shí)解決新的問(wèn)題,體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想。找到新知識(shí)的生長(zhǎng)點(diǎn),就是三角形的全等。

  問(wèn)題3的設(shè)計(jì)目的:因?yàn)檩o助線的添加是本題中的又一難點(diǎn),因此讓學(xué)生對(duì)折等腰三角形紙片,使兩腰重合,使學(xué)生在形成感性認(rèn)識(shí)的同時(shí),意識(shí)到要證明∠B=∠C,關(guān)鍵是將∠B和∠C放在兩三角形中去,構(gòu)造全等三角形,老師再及時(shí)設(shè)問(wèn):你認(rèn)為可以通過(guò)什么方法可以將∠B和∠C放在兩個(gè)三角形中去呢?再次讓學(xué)生思考,由于對(duì)知識(shí)的發(fā)生,發(fā)展有了充分的了解,學(xué)生探討以后可能會(huì)得出以下三種方法:

 。1)作頂角∠BAC的平分線,

 。2)作底邊BC的中線,

  (3)作底邊BC的高。以作頂角平分線為例,讓一生板演,其他學(xué)生在練習(xí)本上寫(xiě)出完整的證明過(guò)程。以達(dá)到規(guī)范學(xué)生的解題步驟的目的。其他兩種證法,讓學(xué)生課下證明。這樣,學(xué)生就證明了性質(zhì)1,同時(shí)由于△BAD≌△CAD,也很容易得出等腰三角形的頂角平分線平分底邊,并垂直于底邊。用類(lèi)似的方法還可以證明等腰三角形底邊的中線平分頂角且垂直于底邊,等腰三角形底邊上的高平分頂角且平分底邊,這也就證明了性質(zhì)2。

 。ㄔO(shè)計(jì)意圖:教師精心設(shè)計(jì)問(wèn)題串引導(dǎo)學(xué)生通過(guò)動(dòng)手,觀察,猜想,歸納,猜測(cè)出等腰三角形的性質(zhì),發(fā)展了學(xué)生的合情推理能力,同時(shí)也讓學(xué)生明確,結(jié)論的正確性需要通過(guò)演繹推理加以證明。這樣把對(duì)性質(zhì)的`證明作為探索活動(dòng)的自然延續(xù)和必要發(fā)展,使學(xué)生感受到合情推理與演繹推理是相輔相成的兩種形式,同時(shí)感受到探索證明同一個(gè)問(wèn)題的不同思路和方法,發(fā)展了學(xué)生思維的廣闊性和靈活性。)

 。4)你能用符號(hào)語(yǔ)言表示性質(zhì)1和性質(zhì)2嗎?

 。ㄔO(shè)計(jì)意圖:把文字語(yǔ)言轉(zhuǎn)換為符號(hào)語(yǔ)言,讓學(xué)生建立符號(hào)意識(shí),這有助于學(xué)生理解符號(hào)的使用是數(shù)學(xué)表達(dá)和進(jìn)行數(shù)學(xué)思考的重要形式!

  4、性質(zhì)的應(yīng)用:

  例一:在等腰△ABC中,AB=AC,∠A=50°,則∠B=_____,∠C=______

  變式練習(xí):

  1、在等腰中,∠A=50°,則 ∠B=___,∠C=___

  2、在等腰中,∠A=100°,則∠B=___,∠C=___

  設(shè)計(jì)意圖:此例題的重點(diǎn)是運(yùn)用等腰三角形“等邊對(duì)等角”這一性質(zhì)和三角形的內(nèi)角和,突出頂角和底角的關(guān)系,如

  例一,學(xué)生就比較容易得出正確結(jié)果,對(duì)變式練習(xí)(1)、(2)學(xué)生得出正確的結(jié)果就有困難,容易漏解,讓學(xué)生把變式題與例一進(jìn)行比較兩題的條件,讓學(xué)生認(rèn)識(shí)等腰三角形在沒(méi)有明確頂角和底角時(shí),應(yīng)分類(lèi)討論:變式1(如圖)①當(dāng)∠A=50°為頂角時(shí),則∠B=65°,∠C=65°。②當(dāng)∠A=50°為底角時(shí),則∠B=50°,∠C=80°;或∠B=80°,∠C=50°。變式2①當(dāng)∠A=100°為頂角時(shí),則∠B=40°,∠C=40°。②當(dāng)∠A=100°為底角時(shí),則△ABC不存在。由此得出,等腰三角形中已知一個(gè)角可以求出另兩個(gè)角(頂角和底角的取值范圍:0°<頂角<180°,0°<底角<90°)。

  例二:在等腰△ABC中,AB=5,AC=6,則△ABC的周長(zhǎng)=_______

  變式練習(xí):在等腰△ABC中,AB=5,AC=12,則 △ABC的周長(zhǎng)=______

 。ㄔO(shè)計(jì)意圖:此例題的重點(diǎn)是運(yùn)用等腰三角形的定義,以及等腰三角形腰和底邊的關(guān)系,并強(qiáng)調(diào)在沒(méi)有明確腰和底邊時(shí),應(yīng)該分兩種情況討論。如例二,①當(dāng)AB=5為腰時(shí),則三邊為5,5,6;②當(dāng)AB=5為底時(shí),則三邊為6,6,5。變式練習(xí)①:當(dāng)AB=5為腰時(shí),三邊為5,5,12;②當(dāng)AB=5為底時(shí),三邊為12,12,5。此時(shí)同學(xué)們就會(huì)毫不猶豫地得出三角形的周長(zhǎng),這時(shí)老師就可以提出質(zhì)疑,讓同學(xué)們之間討論(學(xué)生容易忽視三角形三邊關(guān)系,看能否構(gòu)成一個(gè)三角形)。

  例三、如圖,在△ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)。

 。ɡ3是課本例題,有一定難度,讓學(xué)生展開(kāi)討論,老師參與討論,認(rèn)真聽(tīng)取學(xué)生分析,引導(dǎo)學(xué)生找出角之間的關(guān)系,利用方程的思想解決問(wèn)題,并書(shū)寫(xiě)出解答過(guò)程。本題運(yùn)用了等腰三角形性質(zhì)1,并體現(xiàn)了利用方程解決幾何問(wèn)題的思想。)

  例四:

  在△ABC中,點(diǎn)D在BC上,給出4個(gè)條件:①AB=AC②∠BAD=∠DAC③AD⊥BC④BD=CD,以其中2個(gè)條件作題設(shè),另外2個(gè)條件作結(jié)論,你能寫(xiě)出一個(gè)正確的命題嗎?看誰(shuí)寫(xiě)得多。(分組討論搶答)

  5、鞏固提高

 。1)等腰三角形一腰上的高與另一腰的夾角為30°,則這個(gè)等腰三角形頂角為度。

 。2)如圖,在△ABC中,AB=AC,D是BC邊上的中點(diǎn),∠B=30。求∠1和∠ADC的度數(shù)。

 。3)課本本章數(shù)學(xué)活動(dòng)三“等腰三角形中相等的線段”

  設(shè)計(jì)意圖:

  (1)題運(yùn)用等腰三角形的性質(zhì)1及等腰三角形一腰上的高的畫(huà)法,由于題目沒(méi)有圖,要用到分類(lèi)討論的數(shù)學(xué)思想,學(xué)生能正確畫(huà)出銳角和鈍角三角形兩種圖形就容易得出結(jié)果,也滲透了一題多解。

  (2)題同時(shí)運(yùn)用了等腰三角形的性質(zhì)1,性質(zhì)2,還有三角形的內(nèi)角和這三個(gè)知識(shí)點(diǎn),培養(yǎng)學(xué)生對(duì)于知識(shí)的靈活運(yùn)用,“討論”是本章的數(shù)學(xué)活動(dòng)3“等腰三角形中相等的線段”。與等腰性質(zhì)的證明思路類(lèi)似,先通過(guò)等腰三角形的對(duì)稱(chēng)性猜想距離是相等的,然后通過(guò)做輔助線構(gòu)造全等三角形來(lái)進(jìn)行嚴(yán)密的推理。更加說(shuō)明了合情推理和演繹推理是相輔相成的。

  6、課堂小結(jié):不僅僅說(shuō)你收獲了什么,而是讓學(xué)生從知識(shí)上,思想方法上,以及輔助線的做法上等方面具體總結(jié)一下。然后教師結(jié)合學(xué)生的回答完善本節(jié)知識(shí)結(jié)構(gòu)。學(xué)生對(duì)于自己的疑惑提出小組內(nèi)交流,還沒(méi)解決則全班交流。

  7、布置作業(yè):

  P55練習(xí)1、2、3題

  P56習(xí)題1、4、6,(選做7,8題)

等腰三角形性質(zhì)說(shuō)課稿4

  一、教材分析

  1、教材的地位和作用

  《等腰三角形的性質(zhì)》是“華東師大版八年級(jí)數(shù)學(xué)(上)”第十三章第三節(jié)第一課時(shí)的內(nèi)容。本節(jié)先課利用軸對(duì)稱(chēng)的知識(shí)來(lái)探索發(fā)現(xiàn)等腰三角形的有關(guān)性質(zhì),然后利用全等三角形的知識(shí)證明這些性質(zhì)。學(xué)習(xí)過(guò)程中運(yùn)用的“操作——觀察——發(fā)現(xiàn)——猜想——論證——應(yīng)用”的方法是探究數(shù)學(xué)知識(shí)的常用方法。同時(shí)“等邊對(duì)等角”和“三線合一”的性質(zhì)是又是接下來(lái)學(xué)習(xí)等邊三角形知識(shí)以及等腰三角形的判定的基礎(chǔ)知識(shí),更是今后論證兩個(gè)角相等、兩條線段相等、兩條線垂直的重要依據(jù)。起著承前啟后的作用。

  2、教材的教學(xué)目標(biāo):

 、僦R(shí)與技能目標(biāo):

  掌握等腰三角形的有關(guān)概念和相關(guān)性質(zhì),能運(yùn)用它們解決等腰三角形的邊、角計(jì)算問(wèn)題。

 、谶^(guò)程與方法目標(biāo):

  通過(guò)實(shí)踐、觀察、同組間學(xué)生以及小組與小組間的合作與交流,培養(yǎng)學(xué)生多角度思考問(wèn)題和分析問(wèn)題、解決問(wèn)題的能力。③情感與態(tài)度目標(biāo):

  通過(guò)合作交流培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作、樂(lè)于助人的品質(zhì)。

  3、教學(xué)重點(diǎn)與難點(diǎn):

  重點(diǎn):等腰三角形“等邊對(duì)等角”和“三線合一”性質(zhì)的探究和應(yīng)用。難點(diǎn):等腰三角形性質(zhì)的推理證明。

  二、學(xué)情分析

  八年級(jí)上期學(xué)生學(xué)習(xí)幾何知識(shí)有了初步的抽象思維感知,有一定的形象直觀思維能力,能進(jìn)行簡(jiǎn)單的推理論證。但其運(yùn)用數(shù)學(xué)思維的廣闊性、緊密性、靈活性比較欠缺,在學(xué)習(xí)過(guò)程中要加強(qiáng)引導(dǎo)和培養(yǎng)。

  三、教法與手段

  根據(jù)本課內(nèi)容特點(diǎn)和初二學(xué)生思維活動(dòng)的特點(diǎn),在教學(xué)中我將采用“操作——觀察——發(fā)現(xiàn)——猜想——論證——應(yīng)用”的教學(xué)法,利用分組活動(dòng),組間合作與交流從而達(dá)到對(duì)“等邊對(duì)等角”和“三線合一”的.性質(zhì)的探究的層層深入。另外,我還將采用多媒體輔助教學(xué),呈現(xiàn)更直觀的形象,激發(fā)學(xué)生的積極性、主動(dòng)性,增大課堂容量,提高教學(xué)效率。

  四、學(xué)法設(shè)計(jì)

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:數(shù)學(xué)的抽象結(jié)論,應(yīng)以觀察、實(shí)驗(yàn)為前提,幾何教學(xué)應(yīng)該把實(shí)驗(yàn)方法與邏輯分析結(jié)合起來(lái)。結(jié)合這一理念在探究等腰三角形的性質(zhì)時(shí)我將采用學(xué)生實(shí)驗(yàn)操作、小組合作、觀察發(fā)現(xiàn)、師生互動(dòng)、學(xué)生互動(dòng)的學(xué)習(xí)方式。

  五、教學(xué)過(guò)程設(shè)計(jì)

  (一)創(chuàng)設(shè)情景、導(dǎo)入新課

 、?gòu)?fù)習(xí)提問(wèn):向同學(xué)們出示幾張精美的建筑物圖片,引入等腰三角形。

 。ㄔO(shè)計(jì)意圖:感知數(shù)學(xué)知識(shí)和實(shí)際生活聯(lián)系緊密,培養(yǎng)觀察力,感受身邊處處有數(shù)學(xué)。)

 、诘妊切蔚南嚓P(guān)概念:

  1定義:兩條邊相等的三角形叫做等腰三角形。

  邊:等腰三角形中,相等的兩條邊叫做腰,另一條邊叫做底邊。

  角:等腰三角形中,兩腰的夾角叫做頂角,腰和底邊的夾角叫做底角。

 、墼O(shè)問(wèn):等腰三角形具有哪些特殊的性質(zhì)呢?(引入新課)

 。ǘ⿲(shí)驗(yàn)探索、得出猜想:

 、賱(dòng)動(dòng)手:讓同學(xué)們用剪刀在長(zhǎng)方形紙片上剪下等腰三角形,每個(gè)人的等腰三角形的大小

  和形狀可以不一樣,把紙片對(duì)折,讓兩腰重合在一起,你能發(fā)現(xiàn)什么現(xiàn)象?“比一比”看誰(shuí)思考的結(jié)論最多。

  (設(shè)計(jì)意圖:以六人小組為單位學(xué)生親自操作實(shí)驗(yàn),填寫(xiě)導(dǎo)學(xué)案。通過(guò)組內(nèi)合作與交流,集

  思廣益讓學(xué)生用自己的語(yǔ)言在小組內(nèi)表達(dá)自己的發(fā)現(xiàn)。)

 、诘贸霾孪耄嚎勺寣W(xué)生有充分的時(shí)間觀察、思考、交流、可能得到的結(jié)論:

  (1)等腰三角形是軸對(duì)稱(chēng)圖形

  (2)∠B=∠C

  (3)BD=CD,AD為底邊上的中線

  (4)∠ADB=∠ADC=90°,AD為底邊上的高線(5)∠BAD=∠CAD,AD為頂角平分線

 。ㄔO(shè)計(jì)意圖:以小組為單位派代表發(fā)言即組間交流補(bǔ)充,引導(dǎo)歸納提煉,使不同層次的學(xué)生都能感受新知,建立新的知識(shí)體系,為進(jìn)一步探索做準(zhǔn)備。)

 。ㄈ┳C明猜想、形成定理:

  1、結(jié)論(2)∠B=∠C你能用一個(gè)命題表達(dá)這一結(jié)論并論證它的正確性嗎?

 。1)語(yǔ)言總結(jié):等腰三角形的兩底角相等。(簡(jiǎn)寫(xiě)成“等邊對(duì)等角”)

 。2)怎樣論證這個(gè)一命題的正確性呢?

 、贋樽C∠B=∠C,需要添加輔助線構(gòu)造以∠B、∠C為元素的兩個(gè)全等三角形。

 、谔接懱砑虞o助線的方法,讓學(xué)生選擇一種輔助線并完成證明過(guò)程。

  設(shè)計(jì)說(shuō)明:以上過(guò)程分小組討論,在探索過(guò)程中鼓勵(lì)學(xué)生尋求不同(作高、中線、角平分線)的方法來(lái)解決問(wèn)題。

  利用展臺(tái)展示各小組不同的證明方法,讓學(xué)生的個(gè)性得到充分的展示。

 。3)得出等腰三角形的性質(zhì)1:等腰三角形的兩底角相等。(簡(jiǎn)寫(xiě)成“等邊對(duì)等角”)

  2、結(jié)論(3)(4)(5)你也能用一個(gè)命題表達(dá)這一結(jié)論并論證它的正確性嗎?

  (1)結(jié)合性質(zhì)一的證明鼓勵(lì)學(xué)生證明總結(jié)的命題

 。2)得出等腰三角形的性質(zhì)2:等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。

 。3)“三線合一”的幾何表達(dá):

  如圖,在△ABC中,AB=AC,點(diǎn)D在BC上

  ①(1)如果∠BAD=∠CAD,那么AD⊥BC,BD=CD

 、冢2)如果BD=CD,那么∠BAD=∠CAD,AD⊥BC(為了方便記憶可以說(shuō)成“知一求二!”)

 、郏3)如果AD⊥BC,那么∠BAD=∠CAD,BD=CD

  2設(shè)計(jì)意圖:充分調(diào)動(dòng)各組學(xué)生的積極性、主動(dòng)性,采用各小組競(jìng)爭(zhēng)的方式,參照性質(zhì)1的探索完成本性質(zhì)的探索與證明。通過(guò)本性質(zhì)的探索讓不同的學(xué)生有不同的收獲,讓每個(gè)學(xué)生的能力都得到提升。

  (四)實(shí)例剖析、鞏固新知:

  1、例1:已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度數(shù)

  2、例2:在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),∠B=30

 。1)求∠ADC的度數(shù)(2)求∠BAD的度數(shù)

  此題的目的在于等腰三角形“等邊對(duì)等角”和“三線合一”性質(zhì)的綜合運(yùn)用,以及怎么書(shū)寫(xiě)解答題,強(qiáng)調(diào)“三線合一”的表達(dá)過(guò)程。

  解:(1)∵AB=AC,D是BC邊上的中點(diǎn)(已知)

  ∴AD⊥BC,∠BAD=∠CAD(等腰三角形的“三線合一”)∴∠ADC=∠ADB=90°(垂直的定義)

  (2)∵∠BAD+∠B+∠ADB=180°(三角形內(nèi)角和等于180°)∴∠BAD=180°-∠B-∠ADB

  =180°-30°-90°=60°

 。ㄔO(shè)計(jì)意圖:設(shè)計(jì)例題1鞏固等腰三角形“等邊對(duì)等角的性質(zhì)”的理解,讓學(xué)生學(xué)以致用,獲得成就感,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的自信心。而例題2主要是體會(huì)等腰三角形“三線合一”性質(zhì)的運(yùn)用。這兩個(gè)例題作為課本上的例題是基礎(chǔ)新知的鞏固,要求能正確的寫(xiě)出解題過(guò)程。)(五)、課堂練習(xí)、總結(jié)所得:

  1、先完成課后81頁(yè)練習(xí)1、2、3、4題

 。ㄔO(shè)計(jì)意圖:作為課本上的練習(xí)題的完成達(dá)到檢測(cè)學(xué)生對(duì)本節(jié)課知識(shí)的掌握情況,從而幫助學(xué)生查漏補(bǔ)缺,鞏固基礎(chǔ)知識(shí)。)

  2、學(xué)以致用:

 。ㄔO(shè)計(jì)意圖:讓書(shū)生體會(huì)數(shù)學(xué)知識(shí)和實(shí)際生活的緊密聯(lián)系)

  如圖,是西安半坡博物館屋頂?shù)慕孛鎴D,已經(jīng)知道它的兩邊AB和AC是相等的.建筑工人師傅對(duì)這個(gè)建筑物做出了兩個(gè)判斷:

 、俟と藥煾翟跍y(cè)量了∠B為37°以后,并沒(méi)有測(cè)量∠C,就說(shuō)∠C的度數(shù)也是37°。②工人師傅要加固屋頂,他們通過(guò)測(cè)量找到了橫梁BC的中點(diǎn)D,然后在AD兩點(diǎn)之間釘上一根木樁,他們認(rèn)為木樁是垂直橫梁的。

  請(qǐng)同學(xué)們想想,工人師傅的說(shuō)法對(duì)嗎?請(qǐng)說(shuō)明理由。

  設(shè)計(jì)意圖:運(yùn)用所學(xué)知識(shí)解決實(shí)際問(wèn)題,引導(dǎo)學(xué)生將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,進(jìn)一步加深學(xué)生對(duì)等腰三角形性質(zhì)的理解和運(yùn)用;從數(shù)學(xué)回到實(shí)際生活,自然地滲透數(shù)學(xué)作用于實(shí)際問(wèn)題的思想。

  3、課堂小結(jié)

  今天我們學(xué)習(xí)了什么?你覺(jué)得在等腰三角形的學(xué)習(xí)中要注意哪些問(wèn)題?設(shè)計(jì)意圖:幫助學(xué)生回顧,歸納,鞏固所學(xué)知識(shí)。A(六)作業(yè)布置、深化提高:

  1、課本P84:習(xí)題13.31、2、3;(必做題)

  2、(思維發(fā)散)選做題

  已知:如圖△ABC中,AB=AC,CE⊥AEE1于E,CE=BCB2

  求證:∠ACE=∠BC

  六、板書(shū)設(shè)計(jì)

等腰三角形性質(zhì)說(shuō)課稿5

  一、教材分析

  本節(jié)課是在學(xué)習(xí)了軸對(duì)稱(chēng)圖形以及全等三角形的判定的基礎(chǔ)上進(jìn)行的,主要學(xué)習(xí)等腰三角形的“等邊對(duì)等角”和“等腰三角形的三線合一”兩個(gè)性質(zhì)。本節(jié)內(nèi)容是對(duì)前面知識(shí)的深化和應(yīng)用,它的性質(zhì)定理不僅是證明角相等、線段相等及兩直線互相垂直的依據(jù),而且也是后繼學(xué)習(xí)線段垂直平分線、等腰梯形的預(yù)備知識(shí)。因此,本節(jié)內(nèi)容在教材中處于非常重要的地位,起著承前啟后的作用。

  二、教學(xué)目的

 。ㄒ唬┲R(shí)目標(biāo):知道等腰三角形的定義及相關(guān)概念,理解等腰三角形的性質(zhì),會(huì)利用等腰三角形的性質(zhì)進(jìn)行簡(jiǎn)單的推理、判斷和計(jì)算。

 。ǘ┠芰δ繕(biāo):通過(guò)實(shí)踐,觀察,證明等腰三角形性質(zhì),發(fā)展學(xué)生合情推理和演繹推理能力,通過(guò)運(yùn)用等腰三角形的性質(zhì)解決有關(guān)問(wèn)題,提高分析問(wèn)題、解決問(wèn)題能力。

 。ㄈ┣楦心繕(biāo):在實(shí)際操作動(dòng)手中激發(fā)學(xué)生的學(xué)習(xí)興趣,體驗(yàn)幾何發(fā)現(xiàn)的樂(lè)趣,從而增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的`意識(shí)。

  三、教學(xué)重、難點(diǎn)

  (一)重點(diǎn):等腰三角形的性質(zhì)的探究及應(yīng)用

 。ǘ╇y點(diǎn):等腰三角形“三線合一”性質(zhì)的運(yùn)用

  四、教學(xué)方法

  (一)教法:本節(jié)課采用了教具直觀教學(xué)法,聯(lián)想發(fā)現(xiàn)教學(xué)法,設(shè)疑思考法,逐步滲透法和師生交際相結(jié)合的方法。

 。ǘ⿲W(xué)法:本節(jié)課主要引導(dǎo)學(xué)生從已知的、熟悉的知識(shí)入手,讓學(xué)生自己在某一種環(huán)境下不知不覺(jué)中運(yùn)用舊知識(shí)的鑰匙去打開(kāi)新知識(shí)的大門(mén),進(jìn)入新知識(shí)的領(lǐng)域,從不同角度去分析、解決新問(wèn)題,發(fā)掘不同層次學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力和自學(xué)能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。

  五、教學(xué)過(guò)程

 。ㄒ唬﹦(chuàng)設(shè)情景,引入新知

  我們學(xué)過(guò)三角形,你都知道哪些特殊的三角形?今天我們來(lái)學(xué)習(xí)其中的一種特殊的三角形——等腰三角形。

  等腰三角形的有關(guān)概念,軸對(duì)稱(chēng)圖形的有關(guān)概念。

  提問(wèn):等腰三角形是不是軸對(duì)稱(chēng)圖形?什么是它的對(duì)稱(chēng)軸?

 。ǘ⿲(shí)驗(yàn)探索,大膽猜想

  教師演示(模型)等腰三角形是軸對(duì)稱(chēng)圖形的實(shí)驗(yàn),并讓學(xué)生做同樣的實(shí)驗(yàn),引導(dǎo)學(xué)生觀察重合部分,發(fā)現(xiàn)等腰三角形的一些性質(zhì)。

 。ㄈ┳C明猜想,形成定理

  讓學(xué)生由實(shí)驗(yàn)或演示指出各自的發(fā)現(xiàn),并加以引導(dǎo),用規(guī)范的數(shù)學(xué)語(yǔ)言進(jìn)行逐條歸納,最后得出等腰三角形的性質(zhì)定理1、2。

  1、性質(zhì)定理1:

  等腰三角形的兩個(gè)底角相等

  在△ABC中,∵AB=AC()∴∠B=∠C()

  2、性質(zhì)定理2:

  等腰三角形的頂角平分線、底邊上的中線和高線互相重合

  (1)∵AB=AC∠1=∠2()∴BD=DCAD⊥BC()

 。2)∵AB=ACBD=DC() ∴∠1=∠2AD⊥BC()

 。3)∵AB=ACAD⊥BC于D()∴BD=DC∠1=∠2()

  (四)應(yīng)用舉例,強(qiáng)化訓(xùn)練

  指導(dǎo)學(xué)生表述證明過(guò)程。

  思考題:等腰三角形兩腰上的中線(高線)是否相等?為什么?

 。ㄎ澹w納小結(jié),布置作業(yè)

  1、歸納:

  (1)等腰三角形的性質(zhì)定理。

  (2)等邊三角形的性質(zhì)

 。3)利用等腰三角形的性質(zhì)定理可證明:兩角相等,兩線段相等,兩直線互相垂直。

  (4)聯(lián)想方法要經(jīng)常運(yùn)用,對(duì)解題大有裨益。

  2、作業(yè)布置:

 。1)必做題:

  書(shū)本課后作業(yè)

  (2)選做題:搜集日常生活中應(yīng)用等腰三角形的實(shí)例,并思考這些實(shí)例運(yùn)用了等腰三角形的哪些性質(zhì)?

等腰三角形性質(zhì)說(shuō)課稿6

  一、教材分析

  1.教材的地位與作用:

  等腰三角形的性質(zhì)是新人教版八年級(jí)數(shù)學(xué)第十三章第三節(jié)的內(nèi)容,它是在認(rèn)識(shí)了軸對(duì)稱(chēng)性質(zhì)以及了解了全等三角形的判定的基礎(chǔ)上進(jìn)行的。主要學(xué)習(xí)等腰三角形的"等邊對(duì)等角"和"等腰三角形的三線合一"本節(jié)內(nèi)容既是前面知識(shí)的深化和應(yīng)用,又是今后學(xué)習(xí)等邊三角形的預(yù)備知識(shí),還是今后證明角相等、線段相等及兩直線互相垂直的依據(jù),因此本節(jié)課具有承上啟下的重要作用。

  2.教學(xué)目標(biāo):

  知識(shí)目標(biāo):了解等腰三角形的性質(zhì),會(huì)利用等腰三角形的性質(zhì),進(jìn)行簡(jiǎn)單的推理、判斷、計(jì)算作用。

  能力目標(biāo):從設(shè)置問(wèn)題?模型演示?自己動(dòng)手探究發(fā)現(xiàn)等腰三角形的性質(zhì),培養(yǎng)學(xué)生的觀察力、實(shí)驗(yàn)推理能力。

  情感目標(biāo):要求學(xué)生在學(xué)習(xí)中運(yùn)用發(fā)現(xiàn)法,體驗(yàn)幾何發(fā)現(xiàn)的樂(lè)趣,在實(shí)際操作動(dòng)手中感受幾何應(yīng)用美。

  3.教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn):等腰三角形兩底角相等,等腰三角形三線合一。因?yàn)榈妊切蔚男再|(zhì)是今后學(xué)習(xí)線段垂直平分線的基礎(chǔ),也是今后論證角、邊相等的重要依據(jù),所以是本節(jié)教學(xué)的重點(diǎn)。

  難點(diǎn):等腰三角形三線合一的推理應(yīng)用

  二、教法與學(xué)法

  教法:我采用探索發(fā)現(xiàn)法完成本節(jié)的教學(xué),在教學(xué)中以學(xué)生參與為主,便于激發(fā)學(xué)生學(xué)習(xí)熱情,體驗(yàn)成功的喜悅,通過(guò)直觀的演示和學(xué)生自己動(dòng)手使學(xué)生在獲得感性知識(shí)的同時(shí),為掌握理性知識(shí)創(chuàng)造條件,這樣更有利于調(diào)動(dòng)學(xué)生積極性,激發(fā)學(xué)生興趣,使學(xué)生變被動(dòng)學(xué)習(xí)為積極主動(dòng)愉快學(xué)習(xí),也符合數(shù)學(xué)教學(xué)的直觀性和可接受性。

  學(xué)法:在教學(xué)中,把重點(diǎn)放在學(xué)生如何學(xué)這一方面,我認(rèn)為通過(guò)直觀演示,得到感性認(rèn)識(shí),學(xué)生在學(xué)習(xí)中運(yùn)用發(fā)現(xiàn)法,開(kāi)拓自己的創(chuàng)造性思維,實(shí)現(xiàn)由學(xué)生自己發(fā)現(xiàn)感受"等腰三角形的性質(zhì)"通過(guò)學(xué)生自己看、想、議、練等活動(dòng),讓學(xué)生自己主動(dòng)"發(fā)現(xiàn)"幾何圖形的性質(zhì),而不是老師灌輸幾何圖形的'性質(zhì),這樣做有利于活躍學(xué)生的思維,幫助他們探本求源,讓每位學(xué)生都學(xué)有價(jià)值的數(shù)學(xué)。

  三、教學(xué)過(guò)程:

  (一)出示教學(xué)目標(biāo)

  知識(shí)目標(biāo):了解等腰三角形的性質(zhì),會(huì)利用等腰三角形的性質(zhì),進(jìn)行簡(jiǎn)單的推理、判斷、計(jì)算作用。

  能力目標(biāo):從設(shè)置問(wèn)題?模型演示?自己動(dòng)手探究發(fā)現(xiàn)等腰三角形的性質(zhì),培養(yǎng)學(xué)生的觀察力、實(shí)驗(yàn)推理能力。

  情感目標(biāo):要求學(xué)生在學(xué)習(xí)中運(yùn)用發(fā)現(xiàn)法,體驗(yàn)幾何發(fā)現(xiàn)的樂(lè)趣,在實(shí)際操作動(dòng)手中感受幾何應(yīng)用美。

  讓學(xué)生明白本節(jié)課的重要知識(shí)點(diǎn)和自己需要掌握的主要知識(shí),做到有的放矢。

  (二)直觀演示,大膽猜想

  觀察含有等腰三角形圖片,讓學(xué)生從感性上認(rèn)識(shí)等腰三角形,激發(fā)學(xué)生的興趣。

  由學(xué)生自己動(dòng)手折紙游戲,演示等腰三角形軸對(duì)稱(chēng)變換,大膽猜測(cè)等腰三角形的性質(zhì),這種直觀的低起點(diǎn)的方式引入新課更能提高學(xué)生興趣,激發(fā)他們的求知欲,讓每位學(xué)生都涌躍參與,領(lǐng)悟數(shù)學(xué)學(xué)習(xí)的價(jià)值。

  (二)證明猜想,形成定理。

  1△ABC中,AB=AC,求證:∠B=∠C

  思考:1如何證明你的猜想?〔講述一種證明方法:作頂角的平分線〕

  2有其它的方法嗎?試試看,用不同的方法證明這個(gè)結(jié)論。

  讓學(xué)生4人一組分組合作,在組與組之間合作,通過(guò)作輔助線,共同尋找全等三角形,相等的角,相等的邊,體現(xiàn)學(xué)生組內(nèi)合作,組與組之間的合作,讓學(xué)生自己主動(dòng)證明猜想,同時(shí)有也有利于學(xué)生對(duì)全等三角形的判定的鞏固,既運(yùn)用以舊引新的推理方式,又體現(xiàn)由特殊到一般的思維認(rèn)識(shí)規(guī)律。采用這種探索發(fā)現(xiàn)的方式,讓學(xué)生通過(guò)對(duì)直觀圖形的觀察猜想,實(shí)驗(yàn)證明去揭示定理。同時(shí)也展示了猜想--證明這一數(shù)學(xué)認(rèn)知基本方法。

  2交流反饋,共同完成本節(jié)重要知識(shí)點(diǎn)的證明。

  通過(guò)看幻燈片,讓學(xué)生感性上認(rèn)識(shí)等腰三角形性質(zhì)〔等腰三角形三線合一〕,既鍛煉學(xué)生的發(fā)散思維能力,又可提高學(xué)生的表述水平。

  3小結(jié):根據(jù)等腰三角形的性質(zhì)填空。

  (1)如果AB=ACAD是角的平分線那么......

  (2)如果AB=ACAD⊥BC那么......

  (3)如果AB=ACBD=CD那么......

  總結(jié),積累知識(shí)點(diǎn),從理性上認(rèn)識(shí)等腰三角形的性質(zhì),形成知識(shí)體系。

  (三)應(yīng)用舉例,強(qiáng)化訓(xùn)練

  為進(jìn)一步深化鞏固對(duì)新知識(shí)的理解,使新知識(shí)轉(zhuǎn)化成技能,在教學(xué)中我遵循由線入深,循序漸進(jìn)的原則安排以下練習(xí),以求完成教學(xué)目標(biāo)。

  通過(guò)這一環(huán)節(jié)的題目訓(xùn)練,有利于激發(fā)學(xué)生探索精神,養(yǎng)成靈活運(yùn)用新知識(shí),敢干運(yùn)用新知的跳躍精神。

  四、歸納小結(jié)

  為了使學(xué)生對(duì)所學(xué)知識(shí)有一個(gè)完整而深刻系統(tǒng)的認(rèn)識(shí),我讓學(xué)生暢所欲言,談體會(huì)、談收獲,讓學(xué)生自己結(jié)合本節(jié)教學(xué)目標(biāo),發(fā)現(xiàn)在學(xué)習(xí)中學(xué)會(huì)了什么及還存在哪些問(wèn)題。這樣有利于學(xué)生學(xué)習(xí)后養(yǎng)成及時(shí)反思的習(xí)慣。

  等腰三角形的性質(zhì)教學(xué)反思

  安排一課時(shí)學(xué)習(xí)等腰三角形的性質(zhì),內(nèi)容很多,課堂容量很大,本課教學(xué)后,有很多方面需要總結(jié)。

  在證明性質(zhì)時(shí),不再有同學(xué)直接用性質(zhì)證明性質(zhì)了,這是一個(gè)很大的進(jìn)步,用三種方法研究性質(zhì)的證明,要用到小組交流,比較發(fā)現(xiàn)有三種方法:取中點(diǎn),用“SSS”證明全等;作垂線,用“HL”證明全等;作角平分線,用“SAS”證明全等。通過(guò)這樣的教學(xué)設(shè)計(jì),一方面,體會(huì)了輔助線不同的作法,就有不同的證法;另一方面,為性質(zhì)2“三線合一”的教學(xué)提供了方便。不足的是,課堂交流的面可以更寬些。

  性質(zhì)2的應(yīng)用比較多,初學(xué)者往往不能靈活應(yīng)用這條性質(zhì)優(yōu)化證題途徑,因此要解讀這條性質(zhì),由圖形訓(xùn)練和規(guī)范符號(hào)語(yǔ)言,把性質(zhì)一句話改寫(xiě)成三句話或者六句話,一句話是“等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合”,三句話是“1等腰三角形的頂角平分線平分底邊、垂直于底邊,2等腰三角形的底邊上的中線平分頂角、垂直于底邊,3等腰三角形的底邊上的高平分頂角、平分底邊”,六句話是“1等腰三角形的頂角平分線平分底邊,2等腰三角形的頂角平分線垂直于底邊,3等腰三角形的底邊上的中線平分頂角,4等腰三角形的底邊上的中線垂直于底邊,5等腰三角形的底邊上的高平分頂角,6等腰三角形的底邊上的高平分底邊”,結(jié)合圖形概括起來(lái)就是:在△ABC中,AB=AC,下列論斷①∠BAD=∠CAD,②BD=CD,③AD⊥BC中,有一條成立,另外兩條就成立,分六句話,寫(xiě)出推理語(yǔ)言。這里設(shè)計(jì)了一組填空題,有利于性質(zhì)2的應(yīng)用。學(xué)生能夠整齊地?cái)⑹,但還需進(jìn)一步鞏固。

  性質(zhì)在計(jì)算中的應(yīng)用,涉及到方程思想和分類(lèi)討論思想,課堂上的訓(xùn)練不是太充分的,沒(méi)有安排同學(xué)在黑板上板演,主要培養(yǎng)了學(xué)生討論和自覺(jué)糾錯(cuò)的學(xué)習(xí)習(xí)慣。

  本節(jié)課的兩個(gè)性質(zhì)全部是由學(xué)生折紙,自主猜想出來(lái),老師幾乎沒(méi)有提示,學(xué)生自主探究能力得到很大的提升。此外。本節(jié)課的PPT制作效果好,能準(zhǔn)確引導(dǎo)學(xué)生的探究方向,在展示性質(zhì)證明的過(guò)程中,起到了很好的作用。學(xué)生學(xué)習(xí)熱情高,課堂氛圍好。

等腰三角形性質(zhì)說(shuō)課稿7

  一、教材分析

  1、教材分析之地位和作用

  《等腰三角形的性質(zhì)》是“華東師大版七年級(jí)數(shù)學(xué)(下)”第九章第三節(jié)的內(nèi)容。本課安排在《軸對(duì)稱(chēng)的認(rèn)識(shí)》后,明確了《等腰三角形的性質(zhì)》與《軸對(duì)稱(chēng)的認(rèn)識(shí)》的聯(lián)系,起到知識(shí)的鏈接與開(kāi)拓的作用。本課內(nèi)容在初中數(shù)學(xué)教學(xué)中起著比較重要的作用,它是對(duì)三角形的性質(zhì)的呈現(xiàn)。通過(guò)等腰三角形的性質(zhì)反映在一個(gè)三角形中“等邊對(duì)等角”的邊角關(guān)系,并且是對(duì)軸對(duì)稱(chēng)圖形性質(zhì)的直觀反映(三線合一)。它所倡導(dǎo)的“觀察---發(fā)現(xiàn)---猜想---論證”的數(shù)學(xué)思想方法是今后研究數(shù)學(xué)的基本思想方法。因此,本節(jié)內(nèi)容在教材中處于非常重要的地位,起著承前啟后的作用。

  2、教材分析之教學(xué)目標(biāo)

 、僦R(shí)與技能目標(biāo):

  掌握等腰三角形的有關(guān)概念和相關(guān)性質(zhì)。熟練運(yùn)用等腰三角形的性質(zhì)解決等腰三角形內(nèi)角以及邊的`計(jì)算問(wèn)題。

 、谶^(guò)程與方法目標(biāo):

  通過(guò)對(duì)性質(zhì)的探究活動(dòng)和例題的分析,培養(yǎng)學(xué)生多角度思考問(wèn)題的習(xí)慣,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。

 、矍楦信c態(tài)度目標(biāo):

  通過(guò)對(duì)等腰三角形的觀察、試驗(yàn)、歸納,體驗(yàn)數(shù)學(xué)活動(dòng)充滿(mǎn)著探索性和創(chuàng)造性,突出數(shù)學(xué)就在我們身邊。在操作活動(dòng)中,培養(yǎng)學(xué)生之間的合作精神,在獨(dú)立思考的同時(shí)能夠認(rèn)同他人。

  3、教材分析之教學(xué)重難點(diǎn)

  重點(diǎn):探索等腰三角形“等邊對(duì)等角”和“三線合一”的性質(zhì)。

  (這兩個(gè)性質(zhì)對(duì)于平面幾何中的計(jì)算,以及今后的證明尤為重要,故確定為重點(diǎn))

  難點(diǎn):等腰三角形中關(guān)于底和腰,底角和頂角的計(jì)算問(wèn)題。

  (由于等腰三角形底和腰,底角和頂角性質(zhì)特點(diǎn)很容易混淆,而且它們?cè)谟梅ê陀懻撋虾苡锌季,只能練?xí)實(shí)踐中獲取經(jīng)驗(yàn),故確定為難點(diǎn)。)

  4、教材分析之教法

  數(shù)學(xué)是一門(mén)培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”,“教必有法而教無(wú)定法”,只有方法得當(dāng),才會(huì)有效。根據(jù)本課內(nèi)容特點(diǎn)和初一學(xué)生思維活動(dòng)的特點(diǎn),我采用了教具直觀教學(xué)法,聯(lián)想發(fā)現(xiàn)教學(xué)法,設(shè)疑思考法,逐步滲透法和師生交際相結(jié)合的方法。

  5、教材分析之學(xué)法

  最有價(jià)值的知識(shí)是關(guān)于方法的知識(shí),首先對(duì)于我們教師應(yīng)該創(chuàng)造一種環(huán)境,引導(dǎo)學(xué)生從已知的、熟悉的知識(shí)入手,讓學(xué)生自己不知不覺(jué)中運(yùn)用舊知識(shí)的鑰匙去打開(kāi)新知識(shí)的大門(mén),進(jìn)入新知識(shí)的領(lǐng)域。本節(jié)課我將采用學(xué)生小組合作,實(shí)驗(yàn)操作,觀察發(fā)現(xiàn),師生互動(dòng),學(xué)生互動(dòng)的學(xué)習(xí)方式。學(xué)生通過(guò)小組合作學(xué)會(huì)“主動(dòng)探究----主動(dòng)總結(jié)---主動(dòng)提高”。突出學(xué)生是學(xué)習(xí)的主體,他們?cè)诟惺苤R(shí)的過(guò)程中,提高他們“探究---發(fā)現(xiàn)---聯(lián)想---概括”的能力!

  二、教學(xué)過(guò)程:

  1、創(chuàng)設(shè)情景

 、?gòu)?fù)習(xí)提問(wèn):向同學(xué)們出示幾張精美的建筑物圖片;

  問(wèn)題:軸對(duì)稱(chēng)圖形的概念?這些圖片中有軸對(duì)稱(chēng)圖形嗎?

 、谝胄抡n:再次通過(guò)精美的建筑物圖片,找出里面的等腰三角形。

  問(wèn)題:等腰三角形是軸對(duì)稱(chēng)圖形嗎?

 、巯嚓P(guān)概念:定義:兩條邊相等的三角形叫做等腰三角形。

  邊:等腰三角形中,相等的兩條邊叫做腰,另一條邊叫做底邊.

  角:等腰三角形中,兩腰的夾角叫做頂角,腰和底邊的夾角叫做底角.

  2、探究問(wèn)題

 、賱(dòng)動(dòng)手:讓同學(xué)們做出一張等腰三角形的半透明的紙片,每個(gè)人的等腰三角形的大小和形狀可以不一樣,把紙片對(duì)折,讓兩腰重合在一起,你能發(fā)現(xiàn)什么現(xiàn)象?請(qǐng)你盡可能多的寫(xiě)出結(jié)論。

 、诘贸鼋Y(jié)論:可讓學(xué)生有充分的時(shí)間觀察、思考、交流、可能得到的結(jié)論:

  (1)等腰三角形是軸對(duì)稱(chēng)圖形

  (2)∠B=∠C

  (3)BD=CD,AD為底邊上的中線

  (4)∠ADB=∠ADC=90°,AD為底邊上的高線

  (5)∠BAD=∠CAD,AD為頂角平分線

  3、重要性質(zhì)

  性質(zhì)1:等腰三角形的兩底角相等。(簡(jiǎn)寫(xiě)成“等邊對(duì)等角”)

  性質(zhì)2:等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。

  (簡(jiǎn)稱(chēng)“三線合一”)

  如圖,在△ABC中,AB=AC,點(diǎn)D在BC上

  (1)如果∠BAD=∠CAD,那么AD⊥BC,BD=CD

  (2)如果BD=CD,那么∠BAD=∠CAD,AD⊥BC

  (3)如果AD⊥BC,那么∠BAD=∠CAD,BD=CD

  (為了方便記憶可以說(shuō)成“知一求二!”)

【等腰三角形性質(zhì)說(shuō)課稿】相關(guān)文章:

等腰三角形的性質(zhì)說(shuō)課稿11-28

等腰三角形性質(zhì)說(shuō)課稿12-07

《等腰三角形性質(zhì)》說(shuō)課稿12-29

等腰三角形的性質(zhì)說(shuō)課稿11-05

等腰三角形性質(zhì)說(shuō)課稿9篇12-07

等腰三角形的性質(zhì)說(shuō)課稿9篇12-04

等腰三角形的性質(zhì)說(shuō)課稿(9篇)12-04

等腰三角形的性質(zhì)說(shuō)課稿集錦9篇12-15

等腰三角形性質(zhì)說(shuō)課稿(通用10篇)06-21