初中數(shù)學(xué)基礎(chǔ)知識點
在現(xiàn)實學(xué)習(xí)生活中,大家都沒少背知識點吧?知識點就是學(xué)習(xí)的重點。掌握知識點有助于大家更好的學(xué)習(xí)。下面是小編精心整理的初中數(shù)學(xué)基礎(chǔ)知識點,歡迎閱讀與收藏。
初中數(shù)學(xué)基礎(chǔ)知識點1
棱柱是多面體中最簡單的一種,我們常見的一些物體,例如三棱鏡、方磚以及螺桿的頭部,它們都呈棱柱的形狀。
棱柱:有兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個多邊形的公共邊都互相平行,由這些面所圍成的多面體叫做棱柱。棱柱用表示底面各頂點的字母來表示。
棱柱的底面:棱柱中兩個互相平行的面,叫做棱柱的底面。
棱柱的側(cè)面:棱柱中除兩個底面以外的其余各個面都叫做棱柱的側(cè)面。
棱柱的側(cè)棱:棱柱中兩個側(cè)面的公共邊叫做棱柱的側(cè)棱。
棱柱的形成方式:棱柱是由一個由直線構(gòu)成的平面沿著不平行于此平面的直線整體平移而形成的。
棱柱的頂點:在棱柱中,側(cè)面與底面的公共頂點叫做棱柱的頂點。
棱柱的對角線:棱柱中不在表面同一平面上的兩個頂點的連線叫做棱柱的對角線。
棱柱的.高:棱柱的兩個底面的距離叫做棱柱的高。
棱柱的對角面:棱柱中過不相鄰的兩條側(cè)棱的截面叫做棱柱的對角面。
棱柱有很多,三棱柱、四棱柱、五棱柱、還有直棱柱、斜棱柱。
初中數(shù)學(xué)基礎(chǔ)知識點2
一、數(shù)與代數(shù)
a、數(shù)與式:
1、有理數(shù):
、僬麛(shù)→正整數(shù)/0/負(fù)整數(shù)
②分?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù)
數(shù)軸:
、佼嬕粭l水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。
、谌魏我粋有理數(shù)都可以用數(shù)軸上的一個點來表示。
③如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。
、軘(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。
絕對值:
、僭跀(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值。
②正數(shù)的絕對值是他的本身、負(fù)數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負(fù)數(shù)比較大小,絕對值大的反而小。
有理數(shù)的運算:加法:
、偻栂嗉,取相同的符號,把絕對值相加。
、诋愄栂嗉,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。
、垡粋數(shù)與0相加不變。
減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
乘法:
、賰蓴(shù)相乘,同號得正,異號得負(fù),絕對值相乘。
、谌魏螖(shù)與0相乘得0。
、鄢朔e為1的兩個有理數(shù)互為倒數(shù)。
除法:
、俪砸粋數(shù)等于乘以一個數(shù)的倒數(shù)。
、0不能作除數(shù)。
乘方:求n個相同因數(shù)a的積的運算叫做乘方,乘方的結(jié)果叫冪,a叫底數(shù),n叫次數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。
2、實數(shù) 無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)
平方根:
、偃绻粋正數(shù)x的平方等于a,那么這個正數(shù)x就叫做a的算術(shù)平方根。
、谌绻粋數(shù)x的平方等于a,那么這個數(shù)x就叫做a的平方根。
③一個正數(shù)有2個平方根/0的平方根為0/負(fù)數(shù)沒有平方根。
、芮笠粋數(shù)a的平方根運算,叫做開平方,其中a叫做被開方數(shù)。
立方根:
、偃绻粋數(shù)x的立方等于a,那么這個數(shù)x就叫做a的立方根。
、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。
、矍笠粋數(shù)a的立方根的運算叫開立方,其中a叫做被開方數(shù)。
實數(shù):
、賹崝(shù)分有理數(shù)和無理數(shù)。
、谠趯崝(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。
、勖恳粋實數(shù)都可以在數(shù)軸上的一個點來表示。
3、代數(shù)式
代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。
合并同類項:
、偎帜赶嗤,并且相同字母的指數(shù)也相同的.項,叫做同類項。
、诎淹愴椇喜⒊梢豁椌徒凶龊喜⑼愴。
③在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。
4、整式與分式
整式:
、贁(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。
、谝粋單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。
、垡粋多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。
整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。
冪的運算:am+an=a(m+n)
(am)n=amn
(a/b)n=an/bn 除法一樣。
整式的乘法:
、賳雾検脚c單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。
②單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。
③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:
、賳雾検较喑严禂(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。
②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:
、僬絘除以整式b,如果除式b中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。
②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。
初中數(shù)學(xué)知識點:直線的位置與常數(shù)的關(guān)系
、賙>0則直線的傾斜角為銳角
、趉<0則直線的傾斜角為鈍角
、蹐D像越陡,|k|越大
、躡>0直線與y軸的交點在x軸的上方
、輇<0直線與y軸的交點在x軸的下方
初中數(shù)學(xué)基礎(chǔ)知識點3
初中數(shù)學(xué)基礎(chǔ)知識點梳理
平方根:
①如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。
、谌绻粋數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。
、垡粋正數(shù)有2個平方根/0的平方根為0/負(fù)數(shù)沒有平方根。
、芮笠粋數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。
立方根:
、偃绻粋數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。
、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。
、矍笠粋數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。
實數(shù):
①實數(shù)分有理數(shù)和無理數(shù)。
、谠趯崝(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。
③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。
數(shù)軸
1、數(shù)軸的概念
規(guī)定了原點,正方向,單位長度的直線叫做數(shù)軸。
注意:
、艛(shù)軸是一條向兩端無限延伸的直線;
、圃c、正方向、單位長度是數(shù)軸的三要素,三者缺一不可;
⑶同一數(shù)軸上的單位長度要統(tǒng)一;
、葦(shù)軸的三要素都是根據(jù)實際需要規(guī)定的。
2、數(shù)軸上的點與有理數(shù)的關(guān)系
、潘械挠欣頂(shù)都可以用數(shù)軸上的點來表示,正有理數(shù)可用原點右邊的點表示,負(fù)有理數(shù)可用原點左邊的點表示,0用原點表示。
、扑械挠欣頂(shù)都可以用數(shù)軸上的點表示出來,但數(shù)軸上的點不都表示有理數(shù),也就是說,有理數(shù)與數(shù)軸上的'點不是一一對應(yīng)關(guān)系。(如,數(shù)軸上的點π不是有理數(shù))
3、利用數(shù)軸表示兩數(shù)大小
⑴在數(shù)軸上數(shù)的大小比較,右邊的數(shù)總比左邊的數(shù)大;
⑵正數(shù)都大于0,負(fù)數(shù)都小于0,正數(shù)大于負(fù)數(shù);
⑶兩個負(fù)數(shù)比較,距離原點遠(yuǎn)的數(shù)比距離原點近的數(shù)小。
4、數(shù)軸上特殊的(小)數(shù)
、抛钚〉淖匀粩(shù)是0,無的自然數(shù);
、谱钚〉恼麛(shù)是1,無的正整數(shù);
、堑呢(fù)整數(shù)是—1,無最小的負(fù)整數(shù)
5、a可以表示什么數(shù)
、臿>0表示a是正數(shù);反之,a是正數(shù),則a>0;
、芶<0表示a是負(fù)數(shù);反之,a是負(fù)數(shù),則a<0
⑶a=0表示a是0;反之,a是0,則a=0
相反數(shù)
1、相反數(shù)
只有符號不同的兩個數(shù)叫做互為相反數(shù),其中一個是另一個的相反數(shù),0的相反數(shù)是0。
注意:
⑴相反數(shù)是成對出現(xiàn)的;
、葡喾磾(shù)只有符號不同,若一個為正,則另一個為負(fù);
、0的相反數(shù)是它本身;相反數(shù)為本身的數(shù)是0。
2、相反數(shù)的性質(zhì)與判定
、湃魏螖(shù)都有相反數(shù),且只有一個;
、0的相反數(shù)是0;
、腔橄喾磾(shù)的兩數(shù)和為0,和為0的兩數(shù)互為相反數(shù),即a,b互為相反數(shù),則a+b=0
3、相反數(shù)的幾何意義
在數(shù)軸上與原點距離相等的兩點表示的.兩個數(shù),是互為相反數(shù);互為相反數(shù)的兩個數(shù),在數(shù)軸上的對應(yīng)點(0除外)在原點兩旁,并且與原點的距離相等。0的相反數(shù)對應(yīng)原點;原點表示0的相反數(shù)。說明:在數(shù)軸上,表示互為相反數(shù)的兩個點關(guān)于原點對稱。
4、相反數(shù)的求法
、徘笠粋數(shù)的相反數(shù),只要在它的'前面添上負(fù)號“—”即可求得(如:5的相反數(shù)是—5);
、魄蠖鄠數(shù)的和或差的相反數(shù)時,要用括號括起來再添“—”,然后化簡(如;5a+b的相反數(shù)是—(5a+b);喌谩5a—b);
、乔笄懊鎺А啊钡膯蝹數(shù),也應(yīng)先用括號括起來再添“—”,然后化簡(如:—5的相反數(shù)是—(—5),化簡得5)
5、相反數(shù)的表示方法
一般地,數(shù)a的相反數(shù)是—a,其中a是任意有理數(shù),可以是正數(shù)、負(fù)數(shù)或0。
當(dāng)a>0時,—a<0(正數(shù)的相反數(shù)是負(fù)數(shù))
當(dāng)a<0時,—a>0(負(fù)數(shù)的相反數(shù)是正數(shù))
當(dāng)a=0時,—a=0,(0的相反數(shù)是0)
該怎么提高數(shù)學(xué)課堂學(xué)習(xí)效率
課堂學(xué)習(xí)是學(xué)習(xí)過程中最基本,最重要的環(huán)節(jié),要堅持做到“五到”即耳到、眼到、口到、心到、手到;
手到:就是以簡單扼要的方法記下聽課的要點,思維方法,以備復(fù)習(xí)、消化、再思考,但要以聽課為主,記錄為輔;
耳到:專心聽講,聽老師如何講課,如何分析、如何歸納總結(jié)、另外,還要聽同學(xué)們的解答,看是否對自己有所啟發(fā),特別要注意聽自己預(yù)習(xí)未看懂的問題;
口到:主動與老師、同學(xué)們進(jìn)行合作、探究,敢于提出問題,并發(fā)表自己的看法,不要人云亦云;
眼到:就是一看老師講課的表情,手勢所表達(dá)的意思,看老師的演示實驗、板書內(nèi)容,二看老師要求看的課本內(nèi)容,把書上知識與老師課堂講的知識聯(lián)系起來;
心到:就是課堂上要認(rèn)真思考,注意理解課堂的新知識,課堂上的思考要主動積極、關(guān)鍵是理解并能融匯貫通,靈活使用、對于老師講的新概念,應(yīng)抓住關(guān)鍵字眼,變換角度去理解、
數(shù)學(xué)復(fù)習(xí)方法學(xué)霸分享
1、重點練習(xí)幾種類型的題目
不要鉆偏題、怪題、過難題的牛角尖,根據(jù)平時做套卷時的感受,多練習(xí)以下幾個類型的題目。
。1)初看沒有思路,但分析后能順利做出的。通過對這類問題的練習(xí),能夠使我們對題目的考點和重點更熟悉,提高建立思路的速度和切入點的準(zhǔn)確度,讓我們能在考試中留出更多時間來處理后面難度高、閱讀量大的綜合題。
。2)自己經(jīng)常出錯的中檔題。中檔題在中考中每年的考查內(nèi)容都差不多,題目位置也相對固定,屬于解決了一個板塊就能得到相應(yīng)版塊分?jǐn)?shù)的類型。在中檔題的某個題型經(jīng)常出錯說明對這部分內(nèi)容的基本概念和常用方法理解不到位。通過練習(xí),多總結(jié)這類題目的解題思路和技巧,把不穩(wěn)定的得分變成到手的分?jǐn)?shù)。中檔題難度一般不會太高,所以對于自己薄弱的中檔題進(jìn)行突擊練習(xí)一般都會有很好的效果。
。3)基礎(chǔ)相對薄弱的同學(xué)也應(yīng)該做一些常考的題目類型。比如圓的切線的判定以及與圓相關(guān)的線段計算、一次函數(shù)和反比例函數(shù)的綜合、二元一次方程整數(shù)根問題等,通過練習(xí),進(jìn)一步提高我們解決這些問題的熟練度
2、學(xué)會看錯題的正確方式
大部分學(xué)生都有錯題本,在復(fù)習(xí)時看錯題本,鞏固自己的錯誤是不錯的復(fù)習(xí)方式,但在看錯題時一定要杜絕連題目帶答案一起順著看下來的方式。盡量能夠?qū)⒋鸢笓踝。约涸賴L試做一遍,如果做的過程中遇到問題再去看答案,并做好標(biāo)注,過兩天再試做一遍,爭取能在期末考試前將之前的錯題整體過兩到三遍、加深印象。
3、認(rèn)真研究每道題目的考點
做題時,我們心中要對相應(yīng)題目所對應(yīng)的考點有所了解,比如填空題中如果出現(xiàn)幾何問題,主要是對圖形基本性質(zhì)和面積的考察,而很少考到全等三角形的證明(尺規(guī)作圖寫依據(jù)除外),所以我們在填空題中看到幾何問題,就不用從全等方面找突破口,而是更多地注重圖形的基本性質(zhì)。比如平行四邊形對角線互相平分、等腰三角形三線合一等。
4、盡量避免只看不算
很多同學(xué)在復(fù)習(xí)時不喜歡動筆,覺得自己看明白了就行,但俗話說“眼過千遍不如手過一遍”,不去實際操作只是看一遍題目,對題目解法和思路的印象其實是很低的。而且在計算過程中還能鍛煉我們的計算能力,提高解題速度和準(zhǔn)確性。許多同學(xué)在寫證明題時很不熟練,邏輯不順暢,也是由于平時對書寫的不重視,應(yīng)該趁著期末考試前的時間,多練練書寫。
學(xué)好數(shù)學(xué)要重視“四個依據(jù)”是什么
讀好一本教科書——它是教學(xué)、考試的主要依據(jù);
記好一本筆記 ——它是教師多年經(jīng)驗的結(jié)晶;
做好一本習(xí)題集——它是知識的拓寬;
記好一本心得筆記——它是你自己的知識。
提高數(shù)學(xué)學(xué)習(xí)的七大能力是什么
1、運算能力,否則每次考試大題第一題你就開始錯!
2、空間想象能力,否則幾何題會讓你痛不欲生!
3、邏輯思維能力,否則以后的證明題和推導(dǎo)題會讓你生不如死!
4、將實際問題抽象為數(shù)學(xué)問題的能力,不然應(yīng)用題會讓你雖死猶生!
5、形數(shù)結(jié)合互相轉(zhuǎn)化的能力。這考試每次考試的壓軸題哦!
6、觀察、實驗、比較、猜想、歸納問題的能力。不然每次選擇或者填空題的最后一題找規(guī)律會讓你內(nèi)流滿面!
7、研究、探討問題的能力和創(chuàng)新能力。不然每次的附加題咱們就不用看了!
初中數(shù)學(xué)基礎(chǔ)知識點4
三角和的公式
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
倍角公式
tan2A = 2tanA/(1-tan2 A)
Sin2A=2SinA?CosA
Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A
三倍角公式
sin3A = 3sinA-4(sinA)3;
cos3A = 4(cosA)3 -3cosA
tan3a = tan a ? tan(π/3+a)? tan(π/3-a)
三角函數(shù)特殊值
α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2
α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)
a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2
α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2
α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3
α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)
α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2
α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1
α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞
α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1
α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
三角函數(shù)記憶順口溜
1三角函數(shù)記憶口訣
“奇、偶”指的是π/2的倍數(shù)的奇偶,“變與不變”指的是三角函數(shù)的名稱的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負(fù)號。
以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區(qū)間(π/2,π)上小于零,所以右邊符號為負(fù),所以右邊為-sinα。
2符號判斷口訣
全,S,T,C,正。這五個字口訣的'意思就是說:第一象限內(nèi)任何一個角的四種三角函數(shù)值都是“+”;第二象限內(nèi)只有正弦是“+”,其余全部是“-”;第三象限內(nèi)只有正切是“+”,其余全部是“-”;第四象限內(nèi)只有余弦是“+”,其余全部是“-”。
也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是對應(yīng)象限三角函數(shù)為正值的名稱?谠E中未提及的都是負(fù)值。
“ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過來寫所占的象限對應(yīng)的三角函數(shù)為正值。
3三角函數(shù)順口溜
三角函數(shù)是函數(shù),象限符號坐標(biāo)注。函數(shù)圖像單位圓,周期奇偶增減現(xiàn)。
同角關(guān)系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;
中心記上數(shù)字一,連結(jié)頂點三角形。向下三角平方和,倒數(shù)關(guān)系是對角,
頂點任意一函數(shù),等于后面兩根除。誘導(dǎo)公式就是好,負(fù)化正后大化小,
變成銳角好查表,化簡證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,
將其后者視銳角,符號原來函數(shù)判。兩角和的余弦值,化為單角好求值,
余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。
計算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡易變。
逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。
萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;
一加余弦想余弦,一減余弦想正弦,冪升一次角減半,升冪降次它為范;
三角函數(shù)反函數(shù),實質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;
利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。
初中數(shù)學(xué)基礎(chǔ)知識點5
1.二次根式概念:式子a(a≥0)叫做二次根式。
2.最簡二次根式:必須同時滿足下列條件:
3.同類二次根式:
二次根式化成最簡二次根式后,若被開方數(shù)相同,則這幾個二次根式就是同類二次根式。4.二次根式的_質(zhì):
a(a0)22(1)(a)=a(a≥0);(2)aa
0(a=0);
5.二次根式的運算:
a(a0)
(1)因式的外移和內(nèi)移:如果被開方數(shù)中有的因式能夠開得盡方,那么,就可以用它的算術(shù)根代替而移到根號外面;如果被開方數(shù)是代數(shù)和的形式,那么先解因式,變形為積的形式,再移因式到根號外面,反之也可以將根號外面的正因式平方后移到根號里面.
(2)二次根式的加減法:先把二次根式化成最簡二次根式再合并同類二次根式.
(3)二次根式的乘除法:二次根式相乘(除),將被開方數(shù)相乘(除),所得的積(商)仍作積(商)的被開方數(shù)并將運算結(jié)果化為最簡二次根式
單項式和多項式統(tǒng)稱為整式。
1.單項式:
1)數(shù)與字母的乘積這樣的代數(shù)式叫做單項式。
單獨的一個數(shù)或字母(可以是兩個數(shù)字或字母相乘)也是單項式。
2)單項式的系數(shù):單項式中的數(shù)字因數(shù)及_質(zhì)符號叫做單項式的系數(shù)。
3)單項式的次數(shù):一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。
2.多項式:
1)幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項,其中不含字母的項叫做常數(shù)項。一個多項式有幾項就叫做幾項式。
2)多項式的次數(shù):多項式中,次數(shù)最高的項的次數(shù),就是這個多項式的次數(shù)。
3.多項式的排列:
1).把一個多項式按某一個字母的指數(shù)從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。
2).把一個多項式按某一個字母的指數(shù)從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。
由于單項式的項,包括它前面的_質(zhì)符號,因此在排列時,仍需把每一項的_質(zhì)符號看作是這一項的一部分,一起移動
初中數(shù)學(xué)一元二次方程常見考法
1.考查一元二次方程的根與系數(shù)的關(guān)系(韋達(dá)定理):這類題目有著解題規(guī)律性強的特點,題目設(shè)置會很靈活,所以一直很吸引命題者。主要考查①根與系數(shù)的推導(dǎo),有關(guān)規(guī)律的探究②已知兩根或一根構(gòu)造一元二次方程,這類題目一般比較開放;
2.在一元二次方程和幾何問題、函數(shù)問題的交匯處出題。(幾何問題:主要是將數(shù)字及數(shù)字間的關(guān)系隱藏在圖形中,用圖形表示出來,這樣的圖形主要有三角形、四邊形、圓等涉及到三角形三邊關(guān)系、三角形全等、面積計算、體積計算、勾股定理等);
3.列一元二次方程解決實際問題,以實際生活為背景,命題廣泛。(常見的題型是增長率問題,注:平均增長率公式。
初中數(shù)學(xué)整式的加減知識點
2.1整式
、賳雾検剑罕硎緮(shù)或字母積的式子
、趩雾検降南禂(shù):單項式中的數(shù)字因數(shù)
③單項式的次數(shù):一個單項式中,所有字母的指數(shù)和
、軒讉單項式的和叫做多項式。每個單項式叫做多項式的項,不含字母的項叫做常數(shù)項。
、荻囗検嚼锎螖(shù)最高項的`次數(shù),叫做這個多項式的次數(shù)。
、迒雾検脚c多項式統(tǒng)稱整式。
2.2 整式的'加減
①同類項:所含字母相同,而且相同字母的次數(shù)相同的單項式。
、诎讯囗検街械耐愴椇喜⒊梢豁棧凶龊喜⑼愴棥
、酆喜⑼愴椇螅庙椀南禂(shù)是合并前各同類項的系數(shù)的和,且字母部分不變。
④如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相同。
、萑绻ㄌ柾獾囊驍(shù)是負(fù)數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反。
⑥一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項。
初中數(shù)學(xué)基礎(chǔ)知識點6
與正切函數(shù)不一樣的是,余切的應(yīng)用相對較窄,不太常出現(xiàn)在考試中。
余切
概述
表示時用“cot+角度”,如:30°的余切表示為cot30°;角A的余切表示為cotA
舊用ctgA來表示余切,至今仍在使用,和cosA是一樣的。(注:現(xiàn)在已經(jīng)不常用了)
任意角終邊上除頂點外的任一點的橫坐標(biāo)除以該點的非零縱坐標(biāo),角的頂點與平面直角坐標(biāo)系的原點重合,而該角的始邊則與正x軸重合
簡單點理解:直角三角形任意一銳角的鄰邊和對邊的比,叫做該銳角的余切。
假設(shè)∠A的對邊為a、鄰邊為b,那么:
cot A= b/a(即鄰邊比對邊)
余切的性質(zhì)
1.與正切互為倒數(shù)
2.單調(diào)遞減
3.奇函數(shù)
4.值域R
相關(guān)公式和的關(guān)系
1+cot^2α=csc^2α
積的關(guān)系
cotα=cosα×cscα
tanα ·cotα=1
商的關(guān)系
cosα/sinα=cotα=cscα/secα
由泰勒級數(shù)得出
cotx=1/tanx=[ie^(ix)+ie^(-ix)]/[e^(ix)-e^(-ix)]
和角公式
cot(α+β)=(cotαcotβ-1)/(cotα+cotβ)
cot(α-β)=(cotαcotβ+1)/(cotβ-cotα)
即使余切的知識不是那么重要,但是它所延伸的余切函數(shù)卻是考試的要領(lǐng)。
初中數(shù)學(xué)知識點總結(jié):平面直角坐標(biāo)系
下面是對平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識點:平面直角坐標(biāo)系的構(gòu)成
對于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點O稱為直角坐標(biāo)系的原點。
通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。
初中數(shù)學(xué)知識點:點的坐標(biāo)的性質(zhì)
下面是對數(shù)學(xué)中點的坐標(biāo)的性質(zhì)知識學(xué)習(xí),同學(xué)們認(rèn)真看看哦。
點的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點,我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點C的坐標(biāo)。
一個點在不同的象限或坐標(biāo)軸上,點的坐標(biāo)不一樣。
希望上面對點的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。
初中數(shù)學(xué)知識點:因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的.多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。
初中數(shù)學(xué)知識點:因式分解
下面是對數(shù)學(xué)中因式分解內(nèi)容的知識講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
、俅_定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
、俨粶(zhǔn)丟字母
、诓粶(zhǔn)丟常數(shù)項注意查項數(shù)
③雙重括號化成單括號
、芙Y(jié)果按數(shù)單字母單項式多項式順序排列
、菹嗤蚴綄懗蓛绲男问
⑥首項負(fù)號放括號外
、呃ㄌ杻(nèi)同類項合并。
通過上面對因式分解內(nèi)容知識的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。
初中數(shù)學(xué)基礎(chǔ)知識點7
倒數(shù)
1.求一個分?jǐn)?shù)的倒數(shù),例如3/4,我們只須把3/4這個分?jǐn)?shù)的分子和分母交換位置,即得3/4的倒數(shù)為4/3。
2.求一個整數(shù)的倒數(shù),只須把這個整數(shù)看成是分母為1的分?jǐn)?shù),然后再按求分?jǐn)?shù)倒數(shù)的方法即可得到。
如12,即12/1,再把12/1這個分?jǐn)?shù)的分子和分母交換位置,把分子做分母,分母做分子,則有1/12。 即12倒數(shù)是1/12。
說明:倒數(shù)是本身的`數(shù)是1和-1。(0沒有倒數(shù))
把0.25化成分?jǐn)?shù),即1/4
再把1/4這個分?jǐn)?shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子.則是4/1
再把4/1化成整數(shù),即4
所以0.25是4的倒數(shù)。也可以說4是0.25的倒數(shù)
也可以用1去除以這個數(shù),例如0.25
1/0.25等于4
所以0.25的倒數(shù)4.
其實在分?jǐn)?shù)、整數(shù)中也可以利用乘積是1的兩個數(shù),我們就稱它們互為倒數(shù)這句話。
【初中數(shù)學(xué)基礎(chǔ)知識點】相關(guān)文章:
初中數(shù)學(xué)矩形的基礎(chǔ)知識點03-30
初中數(shù)學(xué)二次根式基礎(chǔ)知識點06-02
初中數(shù)學(xué)分式與分式方程基礎(chǔ)知識點04-04
初中化學(xué)基礎(chǔ)知識點03-13
初中數(shù)學(xué)三棱錐的基礎(chǔ)知識點有哪些03-31
初中數(shù)學(xué)的知識點03-25
關(guān)于初中數(shù)學(xué)四邊形的基礎(chǔ)知識點03-29
初中數(shù)學(xué)知識點06-07
初中數(shù)學(xué)的知識點大全06-06