當前位置:育文網(wǎng)>初中>初中數(shù)學> 初中三年數(shù)學知識點

初中三年數(shù)學知識點

時間:2024-03-11 08:01:06 初中數(shù)學

初中三年數(shù)學知識點

  在日常的學習中,說起知識點,應(yīng)該沒有人不熟悉吧?知識點就是學習的重點。還在為沒有系統(tǒng)的知識點而發(fā)愁嗎?下面是小編收集整理的初中三年數(shù)學知識點,歡迎閱讀與收藏。

初中三年數(shù)學知識點

初中三年數(shù)學知識點1

  1、把答案蓋住看例題

  例題不能帶著答案去看,不然會認為自己就是這么,其實自己并沒有理解透徹。

  所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看。這時要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。

  經(jīng)過上面的訓練,自己的思維空間擴展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個批注,說明此題的“題眼”及巧妙之處,收獲會更大。

  2、研究每題都考什么

  數(shù)學能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),而是要通過一題聯(lián)想到很多題。

  3、錯一次反思一次

  每次業(yè)及考試或多或少會發(fā)生些錯誤,這并不可怕,要緊的是避免類似的錯誤再次重現(xiàn)。因此平時注意把錯題記下來。

  學生若能將每次考試或練習中出現(xiàn)的錯誤記錄下來分析,并盡力保證在下次考試時不發(fā)生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了.

  4、分析試卷總結(jié)經(jīng)驗

  每次考試結(jié)束試卷發(fā)下來,要認真分析得失,總結(jié)經(jīng)驗教訓。特別是將試卷中出現(xiàn)的錯誤進行分類。

  數(shù)學解題方法分別有哪些

  1、配方法

  所謂的公式是使用變換解析方程的同構(gòu)方法,并將其中的一些分配給一個或多個多項式正整數(shù)冪的和形式。通過配方解決數(shù)學問題的'公式。其中,用的最多的是配成完全平方式。匹配方法是數(shù)學中不斷變形的重要方法,其應(yīng)用非常廣泛,在分解,簡化根,它通常用于求解方程,證明方程和不等式,找到函數(shù)的極值和解析表達式。

  2、因式分解法

  因式分解是將多項式轉(zhuǎn)換為幾個積分產(chǎn)品的乘積。分解是恒定變形的基礎(chǔ)。除了引入中學教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進行因式分解。還有一些項目,如拆除物品的使用,根分解,替換,未確定的系數(shù)等等。

  3、換元法

  替代方法是數(shù)學中一個非常重要和廣泛使用的解決問題的方法。我們通常稱未知或變元。用新的參數(shù)替換原始公式的一部分或重新構(gòu)建原始公式可以更簡單,更容易解決。

  4、判別式法與韋達定理

  一元二次方程 ax2+ bx+ c=0( a、 b、 c屬于 R, a≠0)根的判別, = b2-4 ac,不僅用來確定根的性質(zhì),還作為一個問題解決方法,代數(shù)變形,求解方程(組),求解不等式,研究函數(shù),甚至幾何以及三角函數(shù)都有非常廣泛的應(yīng)用。

  韋達定理除了知道二次方程的根外,還找到另一根;考慮到兩個數(shù)的和和乘積的簡單應(yīng)用并尋找這兩個數(shù),也可以找到根的對稱函數(shù)并量化二次方程根的符號。求解對稱方程并解決一些與二次曲線有關(guān)的問題等,具有非常廣泛的應(yīng)用。

  5、待定系數(shù)法

  在解決數(shù)學問題時,如果我們首先判斷我們所尋找的結(jié)果具有一定的形式,其中包含某些未決的系數(shù),然后根據(jù)問題的條件列出未確定系數(shù)的方程,最后找到未確定系數(shù)的值或這些待定系數(shù)之間的關(guān)系。為了解決數(shù)學問題,這種問題解決方法被稱為待定系數(shù)法。它是中學數(shù)學中常用的方法之一。

  6、構(gòu)造法

  在解決問題時,我們通常通過分析條件和結(jié)論來使用這些方法來構(gòu)建輔助元素。它可以是一個圖表,一個方程(組),一個方程,一個函數(shù),一個等價的命題等,架起連接條件和結(jié)論的橋梁。為了解決這個問題,這種解決問題的數(shù)學方法,我們稱之為構(gòu)造方法。運用結(jié)構(gòu)方法解決問題可以使代數(shù),三角形,幾何等數(shù)學知識相互滲透,有助于解決問題。

初中三年數(shù)學知識點2

  一、內(nèi)容提綱。老師講課大多有提綱,并且講課時老師會將一堂課的線索脈絡(luò)、重點難點等,簡明清晰地呈現(xiàn)在黑板上。同時,教師會使之富有條理性和直觀性。記下這些內(nèi)容提綱,便于課后復習回顧,整體把握知識框架,對所學知識做到胸有成竹、清晰完整。

  二、疑難問題。將課堂上未聽懂的問題及時記下來,便于課后請教同學或老師,把問題弄懂弄通。教師在組織課堂教學時,受到時空的限制,不可能做到顧及每一位同學。相應(yīng)的,一些問題對部分學生來說,是屬于疑難問題,由于課堂上來不及思考成熟,記下疑難問題,可在課后繼續(xù)加以思考和探究,加以理解和掌握,不致出現(xiàn)知識的斷層、方法的缺陷。

  三、思路方法。對老師在課堂上介紹的解題方法和分析思路也應(yīng)及時記下,課后加以消化,若有疑惑,先作獨立分析,因為有可能是自己理解錯誤造成的,也有可能是老師講課疏忽造成的,記下來后,便于課后及時與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對于啟迪思維,開闊視野,開發(fā)智力,培養(yǎng)能力,并對提高解題水平大有益處。在這基礎(chǔ)上,若能主動鉆研,另辟蹊徑,則更難能可貴。

  四、歸納總結(jié)。注意記下老師的'課后總結(jié),這對于濃縮一堂課的內(nèi)容,找出重點及各部分之間的聯(lián)系,掌握基本概念、公式、定理,尋找規(guī)律,融會貫通課堂內(nèi)容都很有作用。同時,很多有經(jīng)驗的老師在課后小結(jié)時,一方面是承上歸納所學內(nèi)容,另一方面又是啟下布置預習任務(wù)或點明后面所要學的內(nèi)容,做好筆記可以把握學習的主動權(quán),提前作準備,做到目標任務(wù)明確。

  五、錯誤反思。學習過程中不可避免地會犯這樣或那樣的錯誤,記下自己所犯的錯誤,并用紅筆醒目地加以標注,以警示自己,同時也應(yīng)注明錯誤成因,正確思路及方法,在反思中成熟,在反思中提高。

  數(shù)學常用解題技巧有哪些

  第一,應(yīng)堅持由易到難的做題順序。近年來高考數(shù)學試題的設(shè)置是8道選擇題、6道填空題、6到大題,通常稱為866結(jié)構(gòu)。在實體設(shè)置的結(jié)構(gòu)中有三個小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設(shè)置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設(shè)置也是這樣的。根據(jù)這樣的試題結(jié)構(gòu),應(yīng)先做前面容易的,基礎(chǔ)好一點的考生就先做前7個選擇,前5個填空、前5個大題,稱為是755結(jié)構(gòu);A(chǔ)差的就是644,先把自己能做的、會做的拿到手。這是第一點。

  第二,審題是關(guān)鍵。把題給看清楚了再動筆答題,看清楚題以后問什么、已知什么、讓你做什么,把這些問題搞清楚了,自己制訂了一個完整的解題策略,在開始寫的時候,這個時候是很快就可以完成的。

  第三,屬于非智力因素導致想不起來。本來是很簡單的題比如說是做到第三題、第四題的時候不是難題,但想不起來了,卡住了,這時候怎么辦?雖然是簡單題卻不會做怎么辦?應(yīng)先跳過去,不是這道題不會做嗎?后面還有很多的簡單題呢,把后面的題做一做,不要在考場上愣神,先跳過去做其他的題,等穩(wěn)定下來以后再回過頭來看會頓悟,豁然開朗。

  第四,做選擇題的時候應(yīng)運用最好的解題方法。因為選擇題和填空題都是看結(jié)果不看過程,因此在這個過程中都應(yīng)不擇手段,只要是能把正確的結(jié)論找到就行?忌S玫姆椒ㄊ侵苯臃ǎ瑥囊阎拈_始也不看它的四個選項,從頭到尾寫完了之后一看答案就寫上去了。另外就是特質(zhì)法(音),一些出現(xiàn)字母、特別是不等式,這時候給它賦一個值,代進去這時候速度會比較快,正確地找出結(jié)果來。再就是數(shù)形結(jié)合法。最后實在不行了,就將四個選項代入驗證,看看哪個符合就是哪個了。填空題用上述的直接法、特質(zhì)法、數(shù)形結(jié)合法三種方法都適合。做大題的時候要特別注意解題步驟,規(guī)范答題可以減少失分。簡單地說,規(guī)范答題就是從上一步的原因到下一步的結(jié)論,這是一個必然的過程,讓誰寫、誰看都是這樣的。因為什么所以什么是一個必然的過程,這是規(guī)范答題。

初中三年數(shù)學知識點3

  考點1

  相似三角形的概念、相似比的意義、畫圖形的放大和縮小。

  考核要求:

  (1)理解相似形的概念;

  (2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小。

  考點2

  平行線分線段成比例定理、三角形一邊的平行線的有關(guān)定理

  考核要求:理解并利用平行線分線段成比例定理解決一些幾何證明和幾何計算。

  注意:被判定平行的一邊不可以作為條件中的對應(yīng)線段成比例使用。

  考點3

  相似三角形的概念

  考核要求:以相似三角形的概念為基礎(chǔ),抓住相似三角形的特征,理解相似三角形的定義。

  考點4

  相似三角形的判定和性質(zhì)及其應(yīng)用

  考核要求:熟練掌握相似三角形的判定定理(包括預備定理、三個判定定理、直角三角形相似的判定定理)和性質(zhì),并能較好地應(yīng)用。

  考點5

  三角形的重心

  考核要求:知道重心的定義并初步應(yīng)用。

  考點6

  向量的有關(guān)概念

  考點7

  向量的加法、減法、實數(shù)與向量相乘、向量的線性運算

  考核要求:掌握實數(shù)與向量相乘、向量的線性運算

  考點8

  銳角三角比(銳角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。

  考點9

  解直角三角形及其應(yīng)用

  考核要求:

  (1)理解解直角三角形的意義;

  (2)會用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡單的實際問題,尤其應(yīng)當熟練運用特殊銳角的三角比的值解直角三角形。

  考點10

  函數(shù)以及函數(shù)的定義域、函數(shù)值等有關(guān)概念,函數(shù)的表示法,常值函數(shù)

  考核要求:

  (1)通過實例認識變量、自變量、因變量,知道函數(shù)以及函數(shù)的定義域、函數(shù)值等概念;

  (2)知道常值函數(shù);

  (3)知道函數(shù)的表示方法,知道符號的意義。

  考點11

  用待定系數(shù)法求二次函數(shù)的解析式

  考核要求:

  (1)掌握求函數(shù)解析式的方法;

  (2)在求函數(shù)解析式中熟練運用待定系數(shù)法。

  注意求函數(shù)解析式的步驟:一設(shè)、二代、三列、四還原。

  考點12

  畫二次函數(shù)的圖像

  考核要求:

  (1)知道函數(shù)圖像的意義,會在平面直角坐標系中用描點法畫函數(shù)圖像

  (2)理解二次函數(shù)的圖像,體會數(shù)形結(jié)合思想;

  (3)會畫二次函數(shù)的大致圖像。

  考點13

  二次函數(shù)的圖像及其基本性質(zhì)

  考核要求:

  (1)借助圖像的直觀、認識和掌握一次函數(shù)的性質(zhì),建立一次函數(shù)、二元一次方程、直線之間的聯(lián)系;

  (2)會用配方法求二次函數(shù)的頂點坐標,并說出二次函數(shù)的有關(guān)性質(zhì)。

  注意:

  (1)解題時要數(shù)形結(jié)合;

  (2)二次函數(shù)的.平移要化成頂點式。

  考點14

  圓心角、弦、弦心距的概念

  考核要求:清楚地認識圓心角、弦、弦心距的概念,并會用這些概念作出正確的判斷。

  考點15

  圓心角、弧、弦、弦心距之間的關(guān)系

  考核要求:認清圓心角、弧、弦、弦心距之間的關(guān)系,在理解有關(guān)圓心角、弧、弦、弦心距之間的關(guān)系的定理及其推論的基礎(chǔ)上,運用定理進行初步的幾何計算和幾何證明。

  考點16

  垂徑定理及其推論

  垂徑定理及其推論是圓這一板塊中最重要的知識點之一。

  考點17

  直線與圓、圓與圓的位置關(guān)系及其相應(yīng)的數(shù)量關(guān)系

  直線與圓的位置關(guān)系可從與之間的關(guān)系和交點的個數(shù)這兩個側(cè)面來反映。在圓與圓的位置關(guān)系中,常需要分類討論求解。

  考點18

  正多邊形的有關(guān)概念和基本性質(zhì)

  考核要求:熟悉正多邊形的有關(guān)概念(如半徑、邊心距、中心角、外角和),并能熟練地運用正多邊形的基本性質(zhì)進行推理和計算,在正多邊形的計算中,常常利用正多邊形的半徑、邊心距和邊長的一半構(gòu)成的直角三角形,將正多邊形的計算問題轉(zhuǎn)化為直角三角形的計算問題。

  考點19

  畫正三、四、六邊形。

  考核要求:能用基本作圖工具,正確作出正三、四、六邊形。

  考點20

  確定事件和隨機事件

  考核要求:

  (1)理解必然事件、不可能事件、隨機事件的概念,知道確定事件與必然事件、不可能事件的關(guān)系;

  (2)能區(qū)分簡單生活事件中的必然事件、不可能事件、隨機事件。

  考點21

  事件發(fā)生的可能性大小,事件的概率

  考核要求:

  (1)知道各種事件發(fā)生的可能性大小不同,能判斷一些隨機事件發(fā)生的可能事件的大小并排出大小順序;

  (2)知道概率的含義和表示符號,了解必然事件、不可能事件的概率和隨機事件概率的取值范圍;

  (3)理解隨機事件發(fā)生的頻率之間的區(qū)別和聯(lián)系,會根據(jù)大數(shù)次試驗所得頻率估計事件的概率。

  注意:

  (1)在給可能性的大小排序前可先用“一定發(fā)生”、“很有可能發(fā)生”、“可能發(fā)生”、“不太可能發(fā)生”、“一定不會發(fā)生”等詞語來表述事件發(fā)生的可能性的大小;

  (2)事件的概率是確定的常數(shù),而概率是不確定的,可是近似值,與試驗的次數(shù)的多少有關(guān),只有當試驗次數(shù)足夠大時才能更精確。

  考點22

  等可能試驗中事件的概率問題及概率計算

  考核要求:

  (1)理解等可能試驗的概念,會用等可能試驗中事件概率計算公式來計算簡單事件的概率;

  (2)會用枚舉法或畫“樹形圖”方法求等可能事件的概率,會用區(qū)域面積之比解決簡單的概率問題;

  (3)形成對概率的初步認識,了解機會與風險、規(guī)則公平性與決策合理性等簡單概率問題。

  注意:

  (1)計算前要先確定是否為可能事件;

  (2)用枚舉法或畫“樹形圖”方法求等可能事件的概率過程中要將所有等可能情況考慮完整。

  考點23

  數(shù)據(jù)整理與統(tǒng)計圖表

  考核要求:

  (1)知道數(shù)據(jù)整理分析的意義,知道普查和抽樣調(diào)查這兩種收集數(shù)據(jù)的方法及其區(qū)別;

  (2)結(jié)合有關(guān)代數(shù)、幾何的內(nèi)容,掌握用折線圖、扇形圖、條形圖等整理數(shù)據(jù)的方法,并能通過圖表獲取有關(guān)信息。

  考點24

  統(tǒng)計的含義

  考核要求:

  (1)知道統(tǒng)計的意義和一般研究過程;

  (2)認識個體、總體和樣本的區(qū)別,了解樣本估計總體的思想方法。

  考點25

  平均數(shù)、加權(quán)平均數(shù)的概念和計算

  考核要求:

  (1)理解平均數(shù)、加權(quán)平均數(shù)的概念;

  (2)掌握平均數(shù)、加權(quán)平均數(shù)的計算公式。注意:在計算平均數(shù)、加權(quán)平均數(shù)時要防止數(shù)據(jù)漏抄、重抄、錯抄等錯誤現(xiàn)象,提高運算準確率。

  考點26

  中位數(shù)、眾數(shù)、方差、標準差的概念和計算

  考核要求:

  (1)知道中位數(shù)、眾數(shù)、方差、標準差的概念;

  (2)會求一組數(shù)據(jù)的中位數(shù)、眾數(shù)、方差、標準差,并能用于解決簡單的統(tǒng)計問題。

  注意:

  (1)當一組數(shù)據(jù)中出現(xiàn)極值時,中位數(shù)比平均數(shù)更能反映這組數(shù)據(jù)的平均水平;

  (2)求中位數(shù)之前必須先將數(shù)據(jù)排序。

  考點27

  頻數(shù)、頻率的意義,畫頻數(shù)分布直方圖和頻率分布直方圖

  考核要求:

  (1)理解頻數(shù)、頻率的概念,掌握頻數(shù)、頻率和總量三者之間的關(guān)系式;

  (2)會畫頻數(shù)分布直方圖和頻率分布直方圖,并能用于解決有關(guān)的實際問題。解題時要注意:頻數(shù)、頻率能反映每個對象出現(xiàn)的頻繁程度,但也存在差別:在同一個問題中,頻數(shù)反映的是對象出現(xiàn)頻繁程度的絕對數(shù)據(jù),所有頻數(shù)之和是試驗的總次數(shù);頻率反映的是對象頻繁出現(xiàn)的相對數(shù)據(jù),所有的頻率之和是1。

  考點28

  中位數(shù)、眾數(shù)、方差、標準差、頻數(shù)、頻率的應(yīng)用

  考核要求:

  (1)了解基本統(tǒng)計量(平均數(shù)、眾數(shù)、中位數(shù)、方差、標準差、頻數(shù)、頻率)的意計算及其應(yīng)用,并掌握其概念和計算方法;

  (2)正確理解樣本數(shù)據(jù)的特征和數(shù)據(jù)的代表,能根據(jù)計算結(jié)果作出判斷和預測;

  (3)能將多個圖表結(jié)合起來,綜合處理圖表提供的數(shù)據(jù),會利用各種統(tǒng)計量來進行推理和分析,研究解決有關(guān)的實際生活中問題,然后作出合理的解決。

【初中三年數(shù)學知識點】相關(guān)文章:

初中數(shù)學的知識點03-25

初中數(shù)學角的知識點03-24

初中數(shù)學菱形知識點03-25

初中數(shù)學矩形知識點03-25

初中數(shù)學圓的知識點03-25

初中數(shù)學扇形知識點03-25

初中數(shù)學復習知識點03-26

初中數(shù)學整式知識點03-24

初中數(shù)學垂直知識點12-07

初中數(shù)學數(shù)據(jù)知識點03-30