初一初二初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
總結(jié)是事后對(duì)某一階段的學(xué)習(xí)、工作或其完成情況加以回顧和分析的一種書面材料,它可使零星的、膚淺的、表面的感性認(rèn)知上升到全面的、系統(tǒng)的、本質(zhì)的理性認(rèn)識(shí)上來,不妨坐下來好好寫寫總結(jié)吧?偨Y(jié)怎么寫才能發(fā)揮它的作用呢?下面是小編收集整理的初一初二初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),僅供參考,大家一起來看看吧。
初一初二初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1
一、函數(shù)及其相關(guān)概念
1、變量與常量
在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有確定的值與它對(duì)應(yīng),那么就說x是自變量,y是x的函數(shù)。
2、函數(shù)解析式
用來表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。
3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)
(1)解析法
兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做解析法。
(2)列表法
把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數(shù)關(guān)系的方法叫做圖像法。
4、由函數(shù)解析式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值
(2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)
(3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來。
二、相交線與平行線
1、知識(shí)網(wǎng)絡(luò)結(jié)構(gòu)
2、知識(shí)要點(diǎn)
(1)在同一平面內(nèi),兩條直線的位置關(guān)系有兩種:相交和平行,垂直是相交的一種特殊情況。
。2)在同一平面內(nèi),不相交的兩條直線叫平行線。如果兩條直線只有一個(gè)公共點(diǎn),稱這兩條直線相交;如果兩條直線沒有公共點(diǎn),稱這兩條直線平行。
。3)兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是
鄰補(bǔ)角。鄰補(bǔ)角的性質(zhì):鄰補(bǔ)角互補(bǔ)。如圖1所示,與互為鄰補(bǔ)角,與互為鄰補(bǔ)角。+=180°;+=180°;+=180°;+=180°。
3、兩條直線相交所構(gòu)成的四個(gè)角中,一個(gè)角的兩邊分別是另一個(gè)角的兩邊的反向延長(zhǎng)線,這樣的兩個(gè)角互為對(duì)頂角。對(duì)頂角的性質(zhì):對(duì)頂角相等。如圖1所示,與互為對(duì)頂角。
4、兩條直線相交所成的角中,如果有一個(gè)是直角或90°時(shí),稱這兩條直線互相垂直,其中一條叫做另一條的垂線。如圖2所示,當(dāng)=90°時(shí),⊥。
垂線的性質(zhì):
性質(zhì)1:過一點(diǎn)有且只有一條直線與已知直線垂直。
性質(zhì)2:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。
性質(zhì)3:如圖2所示,當(dāng)a⊥b時(shí),====90°。
點(diǎn)到直線的`距離:直線外一點(diǎn)到這條直線的垂線段的長(zhǎng)度叫點(diǎn)到直線的距離。
5、同位角、內(nèi)錯(cuò)角、同旁內(nèi)角基本特征:
在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側(cè),這樣的兩個(gè)角叫同位角。圖3中,共有對(duì)同位角:與是同位角;與是同位角;與是同位角;與是同位角。
在兩條直線(被截線)之間,并且在第三條直線(截線)的兩側(cè),這樣的兩個(gè)角叫內(nèi)錯(cuò)角。圖3中,共有對(duì)內(nèi)錯(cuò)角:與是內(nèi)錯(cuò)角;與是內(nèi)錯(cuò)角。
在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個(gè)角叫同旁內(nèi)角。圖3中,共有對(duì)同旁內(nèi)角:與是同旁內(nèi)角;與是同旁內(nèi)角。
三、實(shí)數(shù)
1、實(shí)數(shù)的分類
(1)按定義分類:
。2)按性質(zhì)符號(hào)分類:
注:0既不是正數(shù)也不是負(fù)數(shù)。
2、實(shí)數(shù)的相關(guān)概念
。1)相反數(shù)
①代數(shù)意義:只有符號(hào)不同的兩個(gè)數(shù),我們說其中一個(gè)是另一個(gè)的相反數(shù)。0的相反數(shù)是0.
、趲缀我饬x:在數(shù)軸上原點(diǎn)的兩側(cè),與原點(diǎn)距離相等的兩個(gè)點(diǎn)表示的兩個(gè)數(shù)互為相反數(shù),或數(shù)軸上,互為相反數(shù)的兩個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱。
、刍橄喾磾(shù)的兩個(gè)數(shù)之和等于0.a、b互為相反數(shù)a+b=0.
。2)絕對(duì)值|a|≥0.
(3)倒數(shù)(1)0沒有倒數(shù)(2)乘積是1的兩個(gè)數(shù)互為倒數(shù)。a、b互為倒數(shù)。
(4)平方根
、偃绻粋(gè)數(shù)的平方等于a,這個(gè)數(shù)就叫做a的平方根。一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù);0有一個(gè)平方根,它是0本身;負(fù)數(shù)沒有平方根。a(a≥0)的平方根記作。
②一個(gè)正數(shù)a的正的平方根,叫做a的算術(shù)平方根。a(a≥0)的算術(shù)平方根記作。
。5)立方根
如果x3=a,那么x叫做a的立方根。一個(gè)正數(shù)有一個(gè)正的立方根;一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根;零的立方根是零。
3、實(shí)數(shù)與數(shù)軸
數(shù)軸定義:規(guī)定了原點(diǎn),正方向和單位長(zhǎng)度的直線叫做數(shù)軸,數(shù)軸的三要素缺一不可。
4、實(shí)數(shù)大小的比較
(1)對(duì)于數(shù)軸上的任意兩個(gè)點(diǎn),靠右邊的點(diǎn)所表示的數(shù)較大。
。2)正數(shù)都大于0,負(fù)數(shù)都小于0,兩個(gè)正數(shù),絕對(duì)值較大的那個(gè)正數(shù)大;兩個(gè)負(fù)數(shù);絕對(duì)值大的反而小。
(3)無理數(shù)的比較大。
初一初二初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2
冪函數(shù)的性質(zhì):
對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:
排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);
排除了為0這種可能,即對(duì)于x<0x="">0的所有實(shí)數(shù),q不能是偶數(shù);
排除了為負(fù)數(shù)這種可能,即
總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);
如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。
在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。
在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。
而只有a為正數(shù),0才進(jìn)入函數(shù)的.值域。
由于x大于0是對(duì)a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況。
可以看到:
(1)所有的圖形都通過(1,1)這點(diǎn)。
(2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。
(3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。
(4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。
(5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點(diǎn)。
解題方法:換元法
解數(shù)學(xué)題時(shí),把某個(gè)式子看成一個(gè)整體,用一個(gè)變量去代替它,從而使問題得到簡(jiǎn)化,這種方法叫換元法。換元的實(shí)質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對(duì)象,將問題移至新對(duì)象的知識(shí)背景中去研究,從而使非標(biāo)準(zhǔn)型問題標(biāo)準(zhǔn)化、復(fù)雜問題簡(jiǎn)單化,變得容易處理。
換元法又稱輔助元素法、變量代換法。通過引進(jìn)新的變量,可以把分散的條件聯(lián)系起來,隱含的條件顯露出來,或者把條件與結(jié)論聯(lián)系起來;蛘咦?yōu)槭煜さ男问,把?fù)雜的計(jì)算和推證簡(jiǎn)化。
它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問題中有廣泛的應(yīng)用。
練習(xí)題:
1、若f(x)=x2-x+b,且f(log2a)=b,log2[f(a)]=2(a≠1)。
(1)求f(log2x)的最小值及對(duì)應(yīng)的x值;
(2)x取何值時(shí),f(log2x)>f(1)且log2[f(x)]
2、已知函數(shù)f(x)=3x+k(k為常數(shù)),A(-2k,2)是函數(shù)y=f-1(x)圖象上的點(diǎn)。
(1)求實(shí)數(shù)k的值及函數(shù)f-1(x)的解析式;
(2)將y=f-1(x)的圖象按向量a=(3,0)平移,得到函數(shù)y=g(x)的圖象,若2f-1(x+-3)-g(x)≥1恒成立,試求實(shí)數(shù)m的取值范圍。
初一初二初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3
動(dòng)點(diǎn)與函數(shù)圖象問題常見的四種類型:
1、三角形中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿三角形的邊運(yùn)動(dòng),根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象。
2、四邊形中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿四邊形的邊運(yùn)動(dòng),根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象。
3、圓中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿圓周運(yùn)動(dòng),根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象。
4、直線、雙曲線、拋物線中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿直線、雙曲線、拋物線運(yùn)動(dòng),根據(jù)問題中的'常量與變量之間的關(guān)系,判斷函數(shù)圖象。
圖形運(yùn)動(dòng)與函數(shù)圖象問題常見的三種類型:
1、線段與多邊形的運(yùn)動(dòng)圖形問題:把一條線段沿一定方向運(yùn)動(dòng)經(jīng)過三角形或四邊形,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象。
2、多邊形與多邊形的運(yùn)動(dòng)圖形問題:把一個(gè)三角形或四邊形沿一定方向運(yùn)動(dòng)經(jīng)過另一個(gè)多邊形,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象。
3、多邊形與圓的運(yùn)動(dòng)圖形問題:把一個(gè)圓沿一定方向運(yùn)動(dòng)經(jīng)過一個(gè)三角形或四邊形,或把一個(gè)三角形或四邊形沿一定方向運(yùn)動(dòng)經(jīng)過一個(gè)圓,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象。
動(dòng)點(diǎn)問題常見的四種類型:
1、三角形中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿三角形的邊運(yùn)動(dòng),通過全等或相似,探究構(gòu)成的新圖形與原圖形的邊或角的關(guān)系。
2、四邊形中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿四邊形的邊運(yùn)動(dòng),通過探究構(gòu)成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系。
3、圓中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿圓周運(yùn)動(dòng),探究構(gòu)成的新圖形的邊角等關(guān)系。
4、直線、雙曲線、拋物線中的動(dòng)點(diǎn)問題:動(dòng)點(diǎn)沿直線、雙曲線、拋物線運(yùn)動(dòng),探究是否存在動(dòng)點(diǎn)構(gòu)成的三角形是等腰三角形或與已知圖形相似等問題。
總結(jié)反思:
本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線的性質(zhì)等,數(shù)形結(jié)合思想的應(yīng)用是解題的關(guān)鍵。
解答動(dòng)態(tài)性問題通常是對(duì)幾何圖形運(yùn)動(dòng)過程有一個(gè)完整、清晰的認(rèn)識(shí),發(fā)掘“動(dòng)”與“靜”的內(nèi)在聯(lián)系,尋求變化規(guī)律,從變中求不變,從而達(dá)到解題目的。
解答函數(shù)的圖象問題一般遵循的步驟:
1、根據(jù)自變量的取值范圍對(duì)函數(shù)進(jìn)行分段。
2、求出每段的解析式。
3、由每段的解析式確定每段圖象的形狀。
對(duì)于用圖象描述分段函數(shù)的實(shí)際問題,要抓住以下幾點(diǎn):
1、自變量變化而函數(shù)值不變化的圖象用水平線段表示。
2、自變量變化函數(shù)值也變化的增減變化情況。
3、函數(shù)圖象的最低點(diǎn)和最高點(diǎn)。
初一初二初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4
一、數(shù)與代數(shù)
a、數(shù)與式:
1、有理數(shù):
①整數(shù)→正整數(shù)/0/負(fù)整數(shù)
、诜?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù)
數(shù)軸:
、佼嬕粭l水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的
、谌魏我粋(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示。
③如果兩個(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。
、軘(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。
絕對(duì)值:
①在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。
②正數(shù)的絕對(duì)值是他的本身、負(fù)數(shù)的絕對(duì)值是他的相反數(shù)、0的絕對(duì)值是0。兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小。
有理數(shù)的運(yùn)算:加法:
、偻(hào)相加,取相同的符號(hào),把絕對(duì)值相加。
、诋愄(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。
、垡粋(gè)數(shù)與0相加不變。
減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
乘法:
、賰蓴(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。
、谌魏螖(shù)與0相乘得0。
、鄢朔e為1的兩個(gè)有理數(shù)互為倒數(shù)。
除法:
①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。
、0不能作除數(shù)。
乘方:求n個(gè)相同因數(shù)a的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,a叫底數(shù),n叫次數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的。
2、實(shí)數(shù)無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)
平方根:
、偃绻粋(gè)正數(shù)x的平方等于a,那么這個(gè)正數(shù)x就叫做a的算術(shù)平方根。
、谌绻粋(gè)數(shù)x的平方等于a,那么這個(gè)數(shù)x就叫做a的平方根。
、垡粋(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒有平方根。
、芮笠粋(gè)數(shù)a的平方根運(yùn)算,叫做開平方,其中a叫做被開方數(shù)。
立方根:
、偃绻粋(gè)數(shù)x的立方等于a,那么這個(gè)數(shù)x就叫做a的立方根。
、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。
、矍笠粋(gè)數(shù)a的立方根的運(yùn)算叫開立方,其中a叫做被開方數(shù)。
實(shí)數(shù):
、賹(shí)數(shù)分有理數(shù)和無理數(shù)。
、谠趯(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣。
、勖恳粋(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來表示。
3、代數(shù)式
代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。
合并同類項(xiàng):
、偎帜赶嗤⑶蚁嗤帜傅闹笖(shù)也相同的項(xiàng),叫做同類項(xiàng)。
②把同類項(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。
③在合并同類項(xiàng)時(shí),我們把同類項(xiàng)的'系數(shù)相加,字母和字母的指數(shù)不變。
4、整式與分式
整式:
、贁(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。
、谝粋(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。
、垡粋(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。
整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類項(xiàng)。
冪的運(yùn)算:am+an=a(m+n)
(am)n=amn
(a/b)n=an/bn除法一樣。
整式的乘法:
、賳雾(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。
、趩雾(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
③多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:
、賳雾(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。
、诙囗(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。
分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。
方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。
分式:
①整式a除以整式b,如果除式b中含有分母,那么這個(gè)就是分式,對(duì)于任何一個(gè)分式,分母不為0。
、诜质降姆肿优c分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。
初中數(shù)學(xué)知識(shí)點(diǎn):直線的位置與常數(shù)的關(guān)系
、賙>0則直線的傾斜角為銳角
、趉<0則直線的傾斜角為鈍角
③圖像越陡|k|越大
、躡>0直線與y軸的交點(diǎn)在x軸的上方
⑤b<0直線與y軸的交點(diǎn)在x軸的下方
【初一初二初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
初中數(shù)學(xué)初一初二知識(shí)點(diǎn)總結(jié)07-06
初中數(shù)學(xué)總結(jié)知識(shí)點(diǎn)08-26
初中數(shù)學(xué)必備知識(shí)點(diǎn)總結(jié)03-01
【經(jīng)典】數(shù)學(xué)初中知識(shí)點(diǎn)總結(jié)07-16
初中數(shù)學(xué)概率知識(shí)點(diǎn)總結(jié)10-21
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(精選)06-16
初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)06-14