當(dāng)前位置:育文網(wǎng)>初中>初中數(shù)學(xué)> 初一初二初三數(shù)學(xué)知識點總結(jié) 初中數(shù)學(xué)知識點總結(jié)

初一初二初三數(shù)學(xué)知識點總結(jié) 初中數(shù)學(xué)知識點總結(jié)

時間:2024-11-02 08:01:35 初中數(shù)學(xué) 我要投稿
  • 相關(guān)推薦

初一初二初三數(shù)學(xué)知識點總結(jié) 初中數(shù)學(xué)知識點總結(jié)

  總結(jié)是事后對某一階段的學(xué)習(xí)、工作或其完成情況加以回顧和分析的一種書面材料,它可使零星的、膚淺的、表面的感性認知上升到全面的、系統(tǒng)的、本質(zhì)的理性認識上來,不妨坐下來好好寫寫總結(jié)吧?偨Y(jié)怎么寫才能發(fā)揮它的作用呢?下面是小編收集整理的初一初二初三數(shù)學(xué)知識點總結(jié) 初中數(shù)學(xué)知識點總結(jié),僅供參考,大家一起來看看吧。

初一初二初三數(shù)學(xué)知識點總結(jié) 初中數(shù)學(xué)知識點總結(jié)

初一初二初三數(shù)學(xué)知識點總結(jié) 初中數(shù)學(xué)知識點總結(jié)1

  一、函數(shù)及其相關(guān)概念

  1、變量與常量

  在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。

  一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有確定的值與它對應(yīng),那么就說x是自變量,y是x的函數(shù)。

  2、函數(shù)解析式

  用來表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。

  使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。

  3、函數(shù)的三種表示法及其優(yōu)缺點

  (1)解析法

  兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做解析法。

  (2)列表法

  把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。

  (3)圖像法

  用圖像表示函數(shù)關(guān)系的方法叫做圖像法。

  4、由函數(shù)解析式畫其圖像的一般步驟

  (1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值

  (2)描點:以表中每對對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點

  (3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。

  二、相交線與平行線

  1、知識網(wǎng)絡(luò)結(jié)構(gòu)

  2、知識要點

 。1)在同一平面內(nèi),兩條直線的位置關(guān)系有兩種:相交和平行,垂直是相交的一種特殊情況。

 。2)在同一平面內(nèi),不相交的兩條直線叫平行線。如果兩條直線只有一個公共點,稱這兩條直線相交;如果兩條直線沒有公共點,稱這兩條直線平行。

  (3)兩條直線相交所構(gòu)成的四個角中,有公共頂點且有一條公共邊的兩個角是

  鄰補角。鄰補角的性質(zhì):鄰補角互補。如圖1所示,與互為鄰補角,與互為鄰補角。+=180°;+=180°;+=180°;+=180°。

  3、兩條直線相交所構(gòu)成的四個角中,一個角的兩邊分別是另一個角的兩邊的反向延長線,這樣的兩個角互為對頂角。對頂角的性質(zhì):對頂角相等。如圖1所示,與互為對頂角。

  4、兩條直線相交所成的角中,如果有一個是直角或90°時,稱這兩條直線互相垂直,其中一條叫做另一條的垂線。如圖2所示,當(dāng)=90°時,⊥。

  垂線的性質(zhì):

  性質(zhì)1:過一點有且只有一條直線與已知直線垂直。

  性質(zhì)2:連接直線外一點與直線上各點的所有線段中,垂線段最短。

  性質(zhì)3:如圖2所示,當(dāng)a⊥b時,====90°。

  點到直線的`距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。

  5、同位角、內(nèi)錯角、同旁內(nèi)角基本特征:

  在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側(cè),這樣的兩個角叫同位角。圖3中,共有對同位角:與是同位角;與是同位角;與是同位角;與是同位角。

  在兩條直線(被截線)之間,并且在第三條直線(截線)的兩側(cè),這樣的兩個角叫內(nèi)錯角。圖3中,共有對內(nèi)錯角:與是內(nèi)錯角;與是內(nèi)錯角。

  在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個角叫同旁內(nèi)角。圖3中,共有對同旁內(nèi)角:與是同旁內(nèi)角;與是同旁內(nèi)角。

  三、實數(shù)

  1、實數(shù)的分類

  (1)按定義分類:

 。2)按性質(zhì)符號分類:

  注:0既不是正數(shù)也不是負數(shù)。

  2、實數(shù)的相關(guān)概念

 。1)相反數(shù)

  ①代數(shù)意義:只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù)。0的相反數(shù)是0.

  ②幾何意義:在數(shù)軸上原點的兩側(cè),與原點距離相等的兩個點表示的兩個數(shù)互為相反數(shù),或數(shù)軸上,互為相反數(shù)的兩個數(shù)所對應(yīng)的點關(guān)于原點對稱。

 、刍橄喾磾(shù)的兩個數(shù)之和等于0.a、b互為相反數(shù)a+b=0.

 。2)絕對值|a|≥0.

  (3)倒數(shù)(1)0沒有倒數(shù)(2)乘積是1的兩個數(shù)互為倒數(shù)。a、b互為倒數(shù)。

 。4)平方根

 、偃绻粋數(shù)的平方等于a,這個數(shù)就叫做a的平方根。一個正數(shù)有兩個平方根,它們互為相反數(shù);0有一個平方根,它是0本身;負數(shù)沒有平方根。a(a≥0)的平方根記作。

 、谝粋正數(shù)a的正的平方根,叫做a的算術(shù)平方根。a(a≥0)的算術(shù)平方根記作。

 。5)立方根

  如果x3=a,那么x叫做a的立方根。一個正數(shù)有一個正的立方根;一個負數(shù)有一個負的立方根;零的立方根是零。

  3、實數(shù)與數(shù)軸

  數(shù)軸定義:規(guī)定了原點,正方向和單位長度的直線叫做數(shù)軸,數(shù)軸的三要素缺一不可。

  4、實數(shù)大小的比較

 。1)對于數(shù)軸上的任意兩個點,靠右邊的點所表示的數(shù)較大。

 。2)正數(shù)都大于0,負數(shù)都小于0,兩個正數(shù),絕對值較大的那個正數(shù)大;兩個負數(shù);絕對值大的反而小。

 。3)無理數(shù)的比較大小:

初一初二初三數(shù)學(xué)知識點總結(jié) 初中數(shù)學(xué)知識點總結(jié)2

  冪函數(shù)的性質(zhì):

  對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負整數(shù)時,設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:

  排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

  排除了為0這種可能,即對于x<0x="">0的所有實數(shù),q不能是偶數(shù);

  排除了為負數(shù)這種可能,即

  總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);

  如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。

  在x大于0時,函數(shù)的值域總是大于0的實數(shù)。

  在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。

  而只有a為正數(shù),0才進入函數(shù)的.值域。

  由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況。

  可以看到:

  (1)所有的圖形都通過(1,1)這點。

  (2)當(dāng)a大于0時,冪函數(shù)為單調(diào)遞增的,而a小于0時,冪函數(shù)為單調(diào)遞減函數(shù)。

  (3)當(dāng)a大于1時,冪函數(shù)圖形下凹;當(dāng)a小于1大于0時,冪函數(shù)圖形上凸。

  (4)當(dāng)a小于0時,a越小,圖形傾斜程度越大。

  (5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點。

  解題方法:換元法

  解數(shù)學(xué)題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這種方法叫換元法。換元的實質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標(biāo)準(zhǔn)型問題標(biāo)準(zhǔn)化、復(fù)雜問題簡單化,變得容易處理。

  換元法又稱輔助元素法、變量代換法。通過引進新的變量,可以把分散的條件聯(lián)系起來,隱含的條件顯露出來,或者把條件與結(jié)論聯(lián)系起來;蛘咦?yōu)槭煜さ男问剑褟?fù)雜的計算和推證簡化。

  它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問題中有廣泛的應(yīng)用。

  練習(xí)題:

  1、若f(x)=x2-x+b,且f(log2a)=b,log2[f(a)]=2(a≠1)。

  (1)求f(log2x)的最小值及對應(yīng)的x值;

  (2)x取何值時,f(log2x)>f(1)且log2[f(x)]

  2、已知函數(shù)f(x)=3x+k(k為常數(shù)),A(-2k,2)是函數(shù)y=f-1(x)圖象上的點。

  (1)求實數(shù)k的值及函數(shù)f-1(x)的解析式;

  (2)將y=f-1(x)的圖象按向量a=(3,0)平移,得到函數(shù)y=g(x)的圖象,若2f-1(x+-3)-g(x)≥1恒成立,試求實數(shù)m的取值范圍。

初一初二初三數(shù)學(xué)知識點總結(jié) 初中數(shù)學(xué)知識點總結(jié)3

  動點與函數(shù)圖象問題常見的四種類型:

  1、三角形中的動點問題:動點沿三角形的邊運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象。

  2、四邊形中的動點問題:動點沿四邊形的邊運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象。

  3、圓中的動點問題:動點沿圓周運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象。

  4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,根據(jù)問題中的'常量與變量之間的關(guān)系,判斷函數(shù)圖象。

  圖形運動與函數(shù)圖象問題常見的三種類型:

  1、線段與多邊形的運動圖形問題:把一條線段沿一定方向運動經(jīng)過三角形或四邊形,根據(jù)問題中的常量與變量之間的關(guān)系,進行分段,判斷函數(shù)圖象。

  2、多邊形與多邊形的運動圖形問題:把一個三角形或四邊形沿一定方向運動經(jīng)過另一個多邊形,根據(jù)問題中的常量與變量之間的關(guān)系,進行分段,判斷函數(shù)圖象。

  3、多邊形與圓的運動圖形問題:把一個圓沿一定方向運動經(jīng)過一個三角形或四邊形,或把一個三角形或四邊形沿一定方向運動經(jīng)過一個圓,根據(jù)問題中的常量與變量之間的關(guān)系,進行分段,判斷函數(shù)圖象。

  動點問題常見的四種類型:

  1、三角形中的動點問題:動點沿三角形的邊運動,通過全等或相似,探究構(gòu)成的新圖形與原圖形的邊或角的關(guān)系。

  2、四邊形中的動點問題:動點沿四邊形的邊運動,通過探究構(gòu)成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系。

  3、圓中的動點問題:動點沿圓周運動,探究構(gòu)成的新圖形的邊角等關(guān)系。

  4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,探究是否存在動點構(gòu)成的三角形是等腰三角形或與已知圖形相似等問題。

  總結(jié)反思:

  本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線的性質(zhì)等,數(shù)形結(jié)合思想的應(yīng)用是解題的關(guān)鍵。

  解答動態(tài)性問題通常是對幾何圖形運動過程有一個完整、清晰的認識,發(fā)掘“動”與“靜”的內(nèi)在聯(lián)系,尋求變化規(guī)律,從變中求不變,從而達到解題目的。

  解答函數(shù)的圖象問題一般遵循的步驟:

  1、根據(jù)自變量的取值范圍對函數(shù)進行分段。

  2、求出每段的解析式。

  3、由每段的解析式確定每段圖象的形狀。

  對于用圖象描述分段函數(shù)的實際問題,要抓住以下幾點:

  1、自變量變化而函數(shù)值不變化的圖象用水平線段表示。

  2、自變量變化函數(shù)值也變化的增減變化情況。

  3、函數(shù)圖象的最低點和最高點。

初一初二初三數(shù)學(xué)知識點總結(jié) 初中數(shù)學(xué)知識點總結(jié)4

  一、數(shù)與代數(shù)

  a、數(shù)與式:

  1、有理數(shù):

  ①整數(shù)→正整數(shù)/0/負整數(shù)

 、诜謹(shù)→正分數(shù)/負分數(shù)

  數(shù)軸:

 、佼嬕粭l水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的

 、谌魏我粋有理數(shù)都可以用數(shù)軸上的一個點來表示。

  ③如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。

  ④數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。

  絕對值:

 、僭跀(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值。

 、谡龜(shù)的絕對值是他的本身、負數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負數(shù)比較大小,絕對值大的反而小。

  有理數(shù)的運算:加法:

  ①同號相加,取相同的符號,把絕對值相加。

  ②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。

  ③一個數(shù)與0相加不變。

  減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  乘法:

 、賰蓴(shù)相乘,同號得正,異號得負,絕對值相乘。

  ②任何數(shù)與0相乘得0。

 、鄢朔e為1的兩個有理數(shù)互為倒數(shù)。

  除法:

 、俪砸粋數(shù)等于乘以一個數(shù)的倒數(shù)。

 、0不能作除數(shù)。

  乘方:求n個相同因數(shù)a的積的運算叫做乘方,乘方的結(jié)果叫冪,a叫底數(shù),n叫次數(shù)。

  混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

  2、實數(shù)無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)

  平方根:

 、偃绻粋正數(shù)x的平方等于a,那么這個正數(shù)x就叫做a的算術(shù)平方根。

  ②如果一個數(shù)x的平方等于a,那么這個數(shù)x就叫做a的平方根。

  ③一個正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。

 、芮笠粋數(shù)a的平方根運算,叫做開平方,其中a叫做被開方數(shù)。

  立方根:

 、偃绻粋數(shù)x的立方等于a,那么這個數(shù)x就叫做a的立方根。

  ②正數(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。

 、矍笠粋數(shù)a的立方根的運算叫開立方,其中a叫做被開方數(shù)。

  實數(shù):

 、賹崝(shù)分有理數(shù)和無理數(shù)。

 、谠趯崝(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。

 、勖恳粋實數(shù)都可以在數(shù)軸上的一個點來表示。

  3、代數(shù)式

  代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。

  合并同類項:

 、偎帜赶嗤,并且相同字母的指數(shù)也相同的項,叫做同類項。

 、诎淹愴椇喜⒊梢豁椌徒凶龊喜⑼愴。

 、墼诤喜⑼愴棔r,我們把同類項的'系數(shù)相加,字母和字母的指數(shù)不變。

  4、整式與分式

  整式:

 、贁(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。

  ②一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。

 、垡粋多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。

  整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。

  冪的運算:am+an=a(m+n)

  (am)n=amn

  (a/b)n=an/bn除法一樣。

  整式的乘法:

 、賳雾検脚c單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。

 、趩雾検脚c多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。

  ③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

  公式兩條:平方差公式/完全平方公式

  整式的除法:

 、賳雾検较喑,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。

 、诙囗検匠詥雾検剑劝堰@個多項式的每一項分別除以單項式,再把所得的商相加。

  分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

  方法:提公因式法、運用公式法、分組分解法、十字相乘法。

  分式:

 、僬絘除以整式b,如果除式b中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。

 、诜质降姆肿优c分母同乘以或除以同一個不等于0的整式,分式的值不變。

  初中數(shù)學(xué)知識點:直線的位置與常數(shù)的關(guān)系

  ①k>0則直線的傾斜角為銳角

 、趉<0則直線的傾斜角為鈍角

  ③圖像越陡|k|越大

 、躡>0直線與y軸的交點在x軸的上方

 、輇<0直線與y軸的交點在x軸的下方

【初一初二初三數(shù)學(xué)知識點總結(jié) 初中數(shù)學(xué)知識點總結(jié)】相關(guān)文章:

初中數(shù)學(xué)初一初二知識點總結(jié)07-06

初中數(shù)學(xué)總結(jié)知識點08-26

初中數(shù)學(xué)必備知識點總結(jié)03-01

【經(jīng)典】數(shù)學(xué)初中知識點總結(jié)07-16

初中數(shù)學(xué)概率知識點總結(jié)10-21

初中數(shù)學(xué)知識點總結(jié)(精選)06-16

初中數(shù)學(xué)函數(shù)知識點總結(jié)06-14

初中數(shù)學(xué)知識點總結(jié)07-22

初中數(shù)學(xué)知識點總結(jié)08-26