當前位置:育文網(wǎng)>初中>初中數(shù)學> 初中數(shù)學概率知識點總結(jié)

初中數(shù)學概率知識點總結(jié)

時間:2024-10-21 08:01:48 初中數(shù)學

初中數(shù)學概率知識點總結(jié)

  總結(jié)就是把一個時間段取得的成績、存在的問題及得到的經(jīng)驗和教訓進行一次全面系統(tǒng)的總結(jié)的書面材料,它有助于我們尋找工作和事物發(fā)展的規(guī)律,從而掌握并運用這些規(guī)律,讓我們好好寫一份總結(jié)吧。我們該怎么寫總結(jié)呢?以下是小編幫大家整理的初中數(shù)學概率知識點總結(jié),歡迎大家分享。

初中數(shù)學概率知識點總結(jié)

初中數(shù)學概率知識點總結(jié)1

  第一部分 概率論基本知識

  隨機事件與樣本空間 ?事件的關(guān)系與運算(和,積,差,相等,對立,互斥和逆事件)

  事件的關(guān)系圖

  概率的概念和基本性質(zhì)

  古典型概率 幾何型概率

  條件概率 乘法公式 ?全概率公式和貝葉斯公式 事件的劃分

  事件的獨立性 ?相互獨立和兩兩獨立 ?獨立重復(fù)試驗

  第二部分 一維隨機變量

  離散型隨機變量的定義和概率分布 ?三種重要的離散型隨機變量

  隨機變量的分布函數(shù)的概念及其性質(zhì)

  連續(xù)型隨機變量的定義 ?概率密度函數(shù)的概念 均勻分布,指數(shù)分布和正態(tài)分布的'概念及密度函數(shù)

  隨機變量函數(shù)的分布

  第三部分 二維隨機變量

  二維隨機變量及其分布函數(shù)的概念 ?二維離散型、連續(xù)型隨機變量的概率分布

  邊緣分布函數(shù) 分布率 ?概率密度 二維正態(tài)分布

  二維離散型條件分布率,二維連續(xù)型條件概率密度 ?二維均勻分布

  相互獨立的隨機變量

  兩個隨機變量的函數(shù)的分布 和、積、商、最大、最小值分布

  第四部分 隨機變量數(shù)字特征

  隨機變量的數(shù)學期望的概念和性質(zhì) ?常見分布函數(shù)的數(shù)學期望的計算方法及結(jié)果 ?隨機變量函數(shù)的數(shù)學期望及求解方法

  隨機變量方差的概念和性質(zhì) ?常見分布函數(shù)的方差 ?切比雪夫不等式

  相關(guān)系數(shù) ?協(xié)方差的概念和性質(zhì) ?隨機變量的不相關(guān)性 ?不相關(guān)性與獨立性的關(guān)系

  第五部分 大數(shù)定律和中心極限定理

  切比雪夫大數(shù)定律 ?辛欽大數(shù)定律 ? 伯努利大數(shù)定律

  獨立同分布中心極限定理(列維—林德伯格中心極限定理)

  棣莫弗—拉普拉斯中心極限定理

  第六部分 統(tǒng)計基礎(chǔ)

  統(tǒng)計量 ?樣本均值 樣本方差和樣本矩 分布 分布 分布 分位數(shù) 正態(tài)總體的常用抽樣分布

  第七部分 估參數(shù)估計

  點估計的概念 估計量與估計值 矩估計法 ?矩估計量和估計值 最大似然估計法 ?似然函數(shù) ?對數(shù)似然方程 最大似然估計量和估計值

  估計量的評選標準(無偏性、有效性和相合性)及其相關(guān)概念(只數(shù)一要求)

初中數(shù)學概率知識點總結(jié)2

  一.算法,概率和統(tǒng)計

  1.算法初步(約12課時)

 。1)算法的含義、程序框圖

 、偻ㄟ^對解決具體問題過程與步驟的分析(如,二元一次方程組求解等問題),體會算法的思想,了解算法的含義。

 、谕ㄟ^模仿、操作、探索,經(jīng)歷通過設(shè)計程序框圖表達解決問題的過程。在具體問題的解決過程中(如,三元一次方程組求解等問題),理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán)。

  (2)基本算法語句

  經(jīng)歷將具體問題的程序框圖轉(zhuǎn)化為程序語句的過程,理解幾種基本算法語句--輸入語句、輸出語句、賦值語句、條件語句、循環(huán)語句,進一步體會算法的基本思想。

  (3)通過閱讀中國古代數(shù)學中的算法案例,體會中國古代數(shù)學對世界數(shù)學發(fā)展的貢獻。

  3.概率(約8課時)

  (1)在具體情境中,了解隨機事件發(fā)生的不確定性和頻率的穩(wěn)定性,進一步了解概率的意義以及頻率與概率的區(qū)別。

 。2)通過實例,了解兩個互斥事件的概率加法公式。

  (3)通過實例,理解古典概型及其概率計算公式,會用列舉法計算一些隨機事件所含的基本事件數(shù)及事件發(fā)生的概率。

 。4)了解隨機數(shù)的意義,能運用模擬方法(包括計算器產(chǎn)生隨機數(shù)來進行模擬)估計概率,初步體會幾何概型的意義(參見例3)。

 。5)通過閱讀材料,了解人類認識隨機現(xiàn)象的過程。

  2.統(tǒng)計(約16課時)

 。1)隨機抽樣

 、倌軓默F(xiàn)實生活或其他學科中提出具有一定價值的統(tǒng)計問題。

  ②結(jié)合具體的實際問題情境,理解隨機抽樣的必要性和重要性。

  ③在參與解決統(tǒng)計問題的過程中,學會用簡單隨機抽樣方法從總體中抽取樣本;通過對實例的分析,了解分層抽樣和系統(tǒng)抽樣方法。

 、苣芡ㄟ^試驗、查閱資料、設(shè)計調(diào)查問卷等方法收集數(shù)據(jù)。

 。2)用樣本估計總體

 、偻ㄟ^實例體會分布的意義和作用,在表示樣本數(shù)據(jù)的過程中,學會列頻率分布表、畫頻率分布直方圖、頻率折線圖、莖葉圖(參見例1),體會他們各自的特點。

 、谕ㄟ^實例理解樣本數(shù)據(jù)標準差的意義和作用,學會計算數(shù)據(jù)標準差。

 、勰芨鶕(jù)實際問題的需求合理地選取樣本,從樣本數(shù)據(jù)中提取基本的數(shù)字特征(如平均數(shù)、標準差),并作出合理的解釋。

 、茉诮鉀Q統(tǒng)計問題的過程中,進一步體會用樣本估計總體的思想,會用樣本的頻率分布估計總體分布,會用樣本的基本數(shù)字特征估計總體的基本數(shù)字特征;初步體會樣本頻率分布和數(shù)字特征的隨機性。

 、輹秒S機抽樣的基本方法和樣本估計總體的思想,解決一些簡單的實際問題;能通過對數(shù)據(jù)的分析為合理的決策提供一些依據(jù),認識統(tǒng)計的作用,體會統(tǒng)計思維與確定性思維的差異。

 、扌纬蓪(shù)據(jù)處理過程進行初步評價的意識。

 。3)變量的相關(guān)性

 、偻ㄟ^收集現(xiàn)實問題中兩個有關(guān)聯(lián)變量的數(shù)據(jù)作出散點圖,并利用散點圖直觀認識變量間的相關(guān)關(guān)系。

 、诮(jīng)歷用不同估算方法描述兩個變量線性相關(guān)的過程。知道最小二乘法的思想,能根據(jù)給出的線性回歸方程系數(shù)公式建立線性回歸方程。

  二.常用邏輯用語

  1。命題及其關(guān)系

 、倭私饷}的逆命題、否命題與逆否命題。

  ②理解必要條件、充分條件與充要條件的意義,會分析四種命題的`相互關(guān)系。

 。2)簡單的邏輯聯(lián)結(jié)詞

  通過數(shù)學實例,了解“或”、“且”、“非”的含義。

 。3)全稱量詞與存在量詞

 、偻ㄟ^生活和數(shù)學中的豐富實例,理解全稱量詞與存在量詞的意義。

  ②能正確地對含有一個量詞的命題進行否定。

  3.導數(shù)及其應(yīng)用(約16課時)

 。1)導數(shù)概念及其幾何意義

 、偻ㄟ^對大量實例的分析,經(jīng)歷由平均變化率過渡到瞬時變化率的過程,了解導數(shù)概念的實際背景,知道瞬時變化率就是導數(shù),體會導數(shù)的思想及其內(nèi)涵(參見例2、例3)。

 、谕ㄟ^函數(shù)圖像直觀地理解導數(shù)的幾何意義。

 。2)導數(shù)的運算

  ①能根據(jù)導數(shù)定義,求函數(shù)y=c,y=x,y=x2,y=1/x的導數(shù)。

  ②能利用給出的基本初等函數(shù)的導數(shù)公式和導數(shù)的四則運算法則求簡單函數(shù)的導數(shù)。

  ③會使用導數(shù)公式表。

 。3)導數(shù)在研究函數(shù)中的應(yīng)用

  ①結(jié)合實例,借助幾何直觀探索并了解函數(shù)的單調(diào)性與導數(shù)的關(guān)系(參見例4);能利用導數(shù)研究函數(shù)的單調(diào)性,會求不超過三次的多項式函數(shù)的單調(diào)區(qū)間。

 、诮Y(jié)合函數(shù)的圖像,了解函數(shù)在某點取得極值的必要條件和充分條件;會用導數(shù)求不超過三次的多項式函數(shù)的極大值、極小值,以及在給定區(qū)間上不超過三次的多項式函數(shù)的最大值、最小值。2.圓錐曲線與方程(約12課時)

 。1)了解圓錐曲線的實際背景,感受圓錐曲線在刻畫現(xiàn)實世界和解決實際問題中的作用。

  (2)經(jīng)歷從具體情境中抽象出橢圓模型的過程(參見例1),掌握橢圓的定義、標準方程及簡單幾何性質(zhì)。

 。3)了解拋物線、雙曲線的定義、幾何圖形和標準方程,知道它們的簡單幾何性質(zhì)。

  (4)通過圓錐曲線與方程的學習,進一步體會數(shù)形結(jié)合的思想。

 。5)了解圓錐曲線的簡單應(yīng)用。

  三.統(tǒng)計案例(約14課時)

  通過典型案例,學習下列一些常見的統(tǒng)計方法,并能初步應(yīng)用這些方法解決一些實際問題。

 、偻ㄟ^對典型案例(如“肺癌與吸煙有關(guān)嗎”等)的探究,了解獨立性檢驗(只要求2×2列聯(lián)表)的基本思想、方法及初步應(yīng)用。

 、谕ㄟ^對典型案例(如“質(zhì)量控制”、“新藥是否有效”等)的探究,了解實際推斷原理和假設(shè)檢驗的基本思想、方法及初步應(yīng)用(參見例1)。

  ③通過對典型案例(如“昆蟲分類”等)的探究,了解聚類分析的基本思想、方法及初步應(yīng)用。

 、芡ㄟ^對典型案例(如“人的體重與身高的關(guān)系”等)的探究,進一步了解回歸的基本思想、方法及初步應(yīng)用。

  2.推理與證明(約10課時)

 。1)合情推理與演繹推理

 、俳Y(jié)合已學過的數(shù)學實例和生活中的實例,了解合情推理的含義,能利用歸納和類比等進行簡單的推理,體會并認識合情推理在數(shù)學發(fā)現(xiàn)中的作用(參見例2、例3)。

 、诮Y(jié)合已學過的數(shù)學實例和生活中的實例,體會演繹推理的重要性,掌握演繹推理的基本方法,并能運用它們進行一些簡單推理。

 、弁ㄟ^具體實例,了解合情推理和演繹推理之間的聯(lián)系和差異。

 。2)直接證明與間接證明

  ①結(jié)合已經(jīng)學過的數(shù)學實例,了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過程、特點。

 、诮Y(jié)合已經(jīng)學過的數(shù)學實例,了解間接證明的一種基本方法--反證法;了解反證法的思考過程、特點。

初中數(shù)學概率知識點總結(jié)3

  統(tǒng)計

  科學記數(shù)法:一個大于10的數(shù)可以表示成A_10N的形式,其中1小于等于A小于10,N是正整數(shù)。

  扇形統(tǒng)計圖:①用圓表示總體,圓中的各個扇形分別代表總體中的不同部分,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計圖叫做扇形統(tǒng)計圖。②扇形統(tǒng)計圖中,每部分占總體的百分比等于該部分所對應(yīng)的扇形圓心角的度數(shù)與360度的比。

  各類統(tǒng)計圖的優(yōu)劣:條形統(tǒng)計圖:能清楚表示出每個項目的具體數(shù)目;折線統(tǒng)計圖:能清楚反映事物的變化情況;扇形統(tǒng)計圖:能清楚地表示出各部分在總體中所占的百分比。

  近似數(shù)字和有效數(shù)字:①測量的結(jié)果都是近似的。②利用四舍五入法取一個數(shù)的近似數(shù)時,四舍五入到哪一位,就說這個近似數(shù)精確到哪一位。③對于一個近似數(shù),從左邊第一個不是0的數(shù)字起,到精確到的數(shù)位止,所有的數(shù)字都叫做這個數(shù)的有效數(shù)字。

  平均數(shù):對于N個數(shù)X1,X2…XN,我們把(X1+X2+…+XN)/N叫做這個N個數(shù)的算術(shù)平均數(shù),記為X(上邊一橫)。

  加權(quán)平均數(shù):一組數(shù)據(jù)里各個數(shù)據(jù)的重要程度未必相同,因而,在計算這組數(shù)據(jù)的平均數(shù)時往往給每個數(shù)據(jù)加一個權(quán),這就是加權(quán)平均數(shù)。

  中位數(shù)與眾數(shù):①N個數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。②一組數(shù)據(jù)中出現(xiàn)次數(shù)最大的那個數(shù)據(jù)叫做這個組數(shù)據(jù)的眾數(shù)。③優(yōu)劣:平均數(shù):所有數(shù)據(jù)參加運算,能充分利用數(shù)據(jù)所提供的信息,因此在現(xiàn)實生活中常用,但容易受極端值影響;中位數(shù):計算簡單,受極端值影響少,但不能充分利用所有數(shù)據(jù)的信息;眾數(shù):各個數(shù)據(jù)如果重復(fù)次數(shù)大致相等時,眾數(shù)往往沒有特別的意義。

  調(diào)查:①為了一定的目的而對考察對象進行的全面調(diào)查,稱為普查,其中所要考察對象的全體稱為總體,而組成總體的每一個考察對象稱為個體。②從總體中抽取部分個體進行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體中抽取的一部分個體叫做總體的一個樣本。③抽樣調(diào)查只考察總體中的一小部分個體,因此他的優(yōu)點是調(diào)查范圍小,節(jié)省時間,人力,物力和財力,但其調(diào)查結(jié)果往往不如普查得到的結(jié)果準確。為了獲得較為準確的調(diào)查結(jié)果,抽樣時要主要樣本的代表性和廣泛性。

  頻數(shù)與頻率:①每個對象出現(xiàn)的次數(shù)為頻數(shù),而每個對象出現(xiàn)的次數(shù)與總次數(shù)的比值為頻率。②當收集的數(shù)據(jù)連續(xù)取值時,我們通常先將數(shù)據(jù)適當分組,然后再繪制頻數(shù)分布直方圖。

  概率

  可能性:①有些事情我們能確定他一定會發(fā)生,這些事情稱為必然事件;有些事情我們能肯定他一定不會發(fā)生,這些事情稱為不可能事件;必然事件和不可能事件都是確定的。②有很多事情我們無法肯定他會不會發(fā)生,這些事情稱為不確定事件。③一般來說,不確定事件發(fā)生的可能性是有大小的。

  概率:①人們通常用1(或100%)來表示必然事件發(fā)生的可能性,用0來表示不可能事件發(fā)生的可能性。②游戲?qū)﹄p方公平是指雙方獲勝的可能性相同。③必然事件發(fā)生的概率為1,記作P(必然事件)=1;不可能事件發(fā)生的概率為0,記作P(不可能事件)=0;如果A為不確定事件,那么0〈P(A)〈1。

  對于概率類問題特別要注意以下幾點

  01 注意概率、機會、頻率的共同點和不同點。

  02 注意題目中隱含求概率的問題。

  03 畫樹狀圖及其它方法求概率。

  04 摸球模型題注意放回和不放回。

  05 注意在求概率的問題中尋找替代物,常見的替代物有:球,撲克牌,骰子等。

  統(tǒng)計與概率會在中考中以客觀題的形式進行考查,選擇題、填空題較多,同時考查多個考點的綜合性題目一般以解答題的形式進行考查。

  解決統(tǒng)計與概率問題常用的數(shù)學思想是方程思想和分類討論思想;常用的數(shù)學方法有分類討論法,整體代入法等。

  學好數(shù)學的方法有哪些

  1學好初中數(shù)學課前預(yù)習是重點

  數(shù)學解題思路和能力的培養(yǎng)主要在于課堂上,所以想要學好初中數(shù)學一定要重視數(shù)學的學習效率和提前預(yù)習。只有提前預(yù)習才知道自己哪里不會,這樣在課堂上才會注意力集中不走神。同時在初中數(shù)學的課上,學生也要緊跟老師的解題思路,注意自己的解題思路和老師的有什么不同。尤其是基礎(chǔ)知識和最基本的技能學習,課上數(shù)學老師講完后,初中生要在課后及時復(fù)習,爭取老師講完每一節(jié)的知識后,學生都不要留下疑問。

  2獨立完成初中數(shù)學作業(yè)

  在完成老師布置的作業(yè)時,初中生要學會自己能夠獨立完成,想要學好初中數(shù)學就要勤于思考,千萬不能偷懶。平時對于自己弄不懂的題目和解題思路,不要放棄,靜下心來認真分析和研究,盡量做到自己能夠解決,實在是想不出來在問同學或者老師。對于初中數(shù)學的每一個學習階段,都要學會進行整理和歸納。

  3多做題是學好初中數(shù)學的關(guān)鍵

  想要學好初中數(shù)學,就要多做數(shù)學題。只有學生掌握了各種各樣的.題型,那么你對于初中數(shù)學的解題思路才能夠了解,這樣通過積累就會使自己的解題思路和思維豐富。在剛開始的時候,可以從最簡單的基礎(chǔ)題入手,學生最好是以課本上的習題為主,一定要將課本上的習題弄懂,這樣打好基礎(chǔ),才會為接下來的做其他類型的題最好準備。然后在開始做一些課外的有難度的習題,目的是為了幫助學生開拓自己的思路,提高自己分析能力。

  4正確的對待初中數(shù)學考試

  初中學生數(shù)學想要打高分,就要把大部分的精力放在基礎(chǔ)知識和解題的基本技能上面,因為在初中數(shù)學的考試中,基礎(chǔ)題占了試卷的大部分,所以基礎(chǔ)知識一定要記牢固。另外還要擺正自己的心態(tài),這樣在答初中數(shù)學題的時候思路才能清晰。

  N是指什么數(shù)學

  數(shù)學中的N表示的是集合中的自然數(shù)集,這是數(shù)學集合中的相關(guān)概念,需要掌握的還有:N+表示的是正整數(shù)集,Z表示的是集合中的整數(shù)集,Q表示的是有理數(shù)集,R表示的是實數(shù)集。

初中數(shù)學概率知識點總結(jié)4

  一.算法,概率和統(tǒng)計

  1.算法初步(約12課時)

 。1)算法的含義、程序框圖

 、偻ㄟ^對解決具體問題過程與步驟的分析(如,二元一次方程組求解等問題),體會算法的思想,了解算法的含義。

 、谕ㄟ^模仿、操作、探索,經(jīng)歷通過設(shè)計程序框圖表達解決問題的過程。在具體問題的解決過程中(如,三元一次方程組求解等問題),理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán)。

 。2)基本算法語句

  經(jīng)歷將具體問題的程序框圖轉(zhuǎn)化為程序語句的過程,理解幾種基本算法語句--輸入語句、輸出語句、賦值語句、條件語句、循環(huán)語句,進一步體會算法的基本思想。

 。3)通過閱讀中國古代數(shù)學中的算法案例,體會中國古代數(shù)學對世界數(shù)學發(fā)展的貢獻。

  3.概率(約8課時)

  (1)在具體情境中,了解隨機事件發(fā)生的不確定性和頻率的穩(wěn)定性,進一步了解概率的意義以及頻率與概率的區(qū)別。

 。2)通過實例,了解兩個互斥事件的概率加法公式。

 。3)通過實例,理解古典概型及其概率計算公式,會用列舉法計算一些隨機事件所含的基本事件數(shù)及事件發(fā)生的概率。

 。4)了解隨機數(shù)的意義,能運用模擬方法(包括計算器產(chǎn)生隨機數(shù)來進行模擬)估計概率,初步體會幾何概型的意義(參見例3)。

 。5)通過閱讀材料,了解人類認識隨機現(xiàn)象的過程。

  2.統(tǒng)計(約16課時)

 。1)隨機抽樣

 、倌軓默F(xiàn)實生活或其他學科中提出具有一定價值的統(tǒng)計問題。

 、诮Y(jié)合具體的實際問題情境,理解隨機抽樣的必要性和重要性。

 、墼趨⑴c解決統(tǒng)計問題的過程中,學會用簡單隨機抽樣方法從總體中抽取樣本;通過對實例的分析,了解分層抽樣和系統(tǒng)抽樣方法。

 、苣芡ㄟ^試驗、查閱資料、設(shè)計調(diào)查問卷等方法收集數(shù)據(jù)。

 。2)用樣本估計總體

 、偻ㄟ^實例體會分布的意義和作用,在表示樣本數(shù)據(jù)的過程中,學會列頻率分布表、畫頻率分布直方圖、頻率折線圖、莖葉圖(參見例1),體會他們各自的特點。

  ②通過實例理解樣本數(shù)據(jù)標準差的意義和作用,學會計算數(shù)據(jù)標準差。

  ③能根據(jù)實際問題的需求合理地選取樣本,從樣本數(shù)據(jù)中提取基本的數(shù)字特征(如平均數(shù)、標準差),并作出合理的解釋。

 、茉诮鉀Q統(tǒng)計問題的過程中,進一步體會用樣本估計總體的思想,會用樣本的頻率分布估計總體分布,會用樣本的基本數(shù)字特征估計總體的基本數(shù)字特征;初步體會樣本頻率分布和數(shù)字特征的隨機性。

 、輹秒S機抽樣的基本方法和樣本估計總體的思想,解決一些簡單的實際問題;能通過對數(shù)據(jù)的分析為合理的決策提供一些依據(jù),認識統(tǒng)計的作用,體會統(tǒng)計思維與確定性思維的差異。

 、扌纬蓪(shù)據(jù)處理過程進行初步評價的意識。

 。3)變量的相關(guān)性

 、偻ㄟ^收集現(xiàn)實問題中兩個有關(guān)聯(lián)變量的數(shù)據(jù)作出散點圖,并利用散點圖直觀認識變量間的相關(guān)關(guān)系。

 、诮(jīng)歷用不同估算方法描述兩個變量線性相關(guān)的過程。知道最小二乘法的思想,能根據(jù)給出的線性回歸方程系數(shù)公式建立線性回歸方程。

  二.常用邏輯用語

  1。命題及其關(guān)系

  ①了解命題的逆命題、否命題與逆否命題。

 、诶斫獗匾獥l件、充分條件與充要條件的意義,會分析四種命題的相互關(guān)系。

  (2)簡單的邏輯聯(lián)結(jié)詞

  通過數(shù)學實例,了解“或”、“且”、“非”的含義。

 。3)全稱量詞與存在量詞

 、偻ㄟ^生活和數(shù)學中的豐富實例,理解全稱量詞與存在量詞的意義。

 、谀苷_地對含有一個量詞的命題進行否定。

  3.導數(shù)及其應(yīng)用(約16課時)

 。1)導數(shù)概念及其幾何意義

 、偻ㄟ^對大量實例的分析,經(jīng)歷由平均變化率過渡到瞬時變化率的過程,了解導數(shù)概念的實際背景,知道瞬時變化率就是導數(shù),體會導數(shù)的思想及其內(nèi)涵(參見例2、例3)。

 、谕ㄟ^函數(shù)圖像直觀地理解導數(shù)的幾何意義。

 。2)導數(shù)的運算

 、倌芨鶕(jù)導數(shù)定義,求函數(shù)y=c,y=x,y=x2,y=1/x的導數(shù)。

 、谀芾媒o出的基本初等函數(shù)的導數(shù)公式和導數(shù)的四則運算法則求簡單函數(shù)的導數(shù)。

 、蹠褂脤(shù)公式表。

 。3)導數(shù)在研究函數(shù)中的應(yīng)用

 、俳Y(jié)合實例,借助幾何直觀探索并了解函數(shù)的單調(diào)性與導數(shù)的關(guān)系(參見例4);能利用導數(shù)研究函數(shù)的單調(diào)性,會求不超過三次的多項式函數(shù)的單調(diào)區(qū)間。

 、诮Y(jié)合函數(shù)的圖像,了解函數(shù)在某點取得極值的必要條件和充分條件;會用導數(shù)求不超過三次的多項式函數(shù)的極大值、極小值,以及在給定區(qū)間上不超過三次的多項式函數(shù)的最大值、最小值。2.圓錐曲線與方程(約12課時)

 。1)了解圓錐曲線的實際背景,感受圓錐曲線在刻畫現(xiàn)實世界和解決實際問題中的作用。

 。2)經(jīng)歷從具體情境中抽象出橢圓模型的過程(參見例1),掌握橢圓的.定義、標準方程及簡單幾何性質(zhì)。

 。3)了解拋物線、雙曲線的定義、幾何圖形和標準方程,知道它們的簡單幾何性質(zhì)。

 。4)通過圓錐曲線與方程的學習,進一步體會數(shù)形結(jié)合的思想。

  (5)了解圓錐曲線的簡單應(yīng)用。

  三.統(tǒng)計案例(約14課時)

  通過典型案例,學習下列一些常見的統(tǒng)計方法,并能初步應(yīng)用這些方法解決一些實際問題。

 、偻ㄟ^對典型案例(如“肺癌與吸煙有關(guān)嗎”等)的探究,了解獨立性檢驗(只要求2×2列聯(lián)表)的基本思想、方法及初步應(yīng)用。

  ②通過對典型案例(如“質(zhì)量控制”、“新藥是否有效”等)的探究,了解實際推斷原理和假設(shè)檢驗的基本思想、方法及初步應(yīng)用(參見例1)。

  ③通過對典型案例(如“昆蟲分類”等)的探究,了解聚類分析的基本思想、方法及初步應(yīng)用。

  ④通過對典型案例(如“人的體重與身高的關(guān)系”等)的探究,進一步了解回歸的基本思想、方法及初步應(yīng)用。

  2.推理與證明(約10課時)

 。1)合情推理與演繹推理

 、俳Y(jié)合已學過的數(shù)學實例和生活中的實例,了解合情推理的含義,能利用歸納和類比等進行簡單的。推理,體會并認識合情推理在數(shù)學發(fā)現(xiàn)中的作用(參見例2、例3)。

  ②結(jié)合已學過的數(shù)學實例和生活中的實例,體會演繹推理的重要性,掌握演繹推理的基本方法,并能運用它們進行一些簡單推理。

 、弁ㄟ^具體實例,了解合情推理和演繹推理之間的聯(lián)系和差異。

 。2)直接證明與間接證明

 、俳Y(jié)合已經(jīng)學過的數(shù)學實例,了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過程、特點。

 、诮Y(jié)合已經(jīng)學過的數(shù)學實例,了解間接證明的一種基本方法--反證法;了解反證法的思考過程、特點。

  數(shù)學概率知識點匯總

  第一部分:隨機事件和概率

  (1)樣本空間與隨機事件

  (2)概率的定義與性質(zhì)(含古典概型、幾何概型、加法公式)

  (3)條件概率與概率的乘法公式

  (4)事件之間的關(guān)系與運算(含事件的獨立性)

  (5)全概公式與貝葉斯公式

  (6)伯努利概型

  其中:條件概率和獨立為本章的重點,這也是后續(xù)章節(jié)的難點之一,大家一定要引起重視

  第二部分:隨機變量及其概率分布

  (1)隨機變量的概念及分類

  (2)離散型隨機變量概率分布及其性質(zhì)

  (3)連續(xù)型隨機變量概率密度及其性質(zhì)

  (4)隨機變量分布函數(shù)及其性質(zhì)

  (5)常見分布

  (6)隨機變量函數(shù)的分布

  其中:要理解分布函數(shù)的定義,還有就是常見分布的分布律抑或密度函數(shù)必須記好且熟練。

  第三部分:二維隨機變量及其概率分布

  (1)多維隨機變量的概念及分類

  (2)二維離散型隨機變量聯(lián)合概率分布及其性質(zhì)

  (3)二維連續(xù)型隨機變量聯(lián)合概率密度及其性質(zhì)

  (4)二維隨機變量聯(lián)合分布函數(shù)及其性質(zhì)

  (5)二維隨機變量的邊緣分布和條件分布

  (6)隨機變量的獨立性

  (7)兩個隨機變量的簡單函數(shù)的分布

  其中:本章是概率的重中之重,每年的解答題定會有一道與此知識點有關(guān),每個知識點都是重點,一定要重視!

  第四部分:隨機變量的數(shù)字特征

  (1)隨機變量的數(shù)字期望的概念與性質(zhì)

  (2)隨機變量的方差的概念與性質(zhì)

  (3)常見分布的數(shù)字期望與方差

  (4)隨機變量矩、協(xié)方差和相關(guān)系數(shù)

  其中:本章只要清楚概念和運算性質(zhì),其實就會顯得很簡單,關(guān)鍵在于計算

  第五部分:大數(shù)定律和中心極限定理

  (1)切比雪夫不等式

  (2)大數(shù)定律

  (3)中心極限定理

  其中:其實本章考試的可能性不大,最多以選擇填空的形式,但那也是十年前的事情了。

  第六部分:數(shù)理統(tǒng)計的基本概念

  (1)總體與樣本

  (2)樣本函數(shù)與統(tǒng)計量

  (3)樣本分布函數(shù)和樣本矩

  其中:本章還是以概念為主,清楚概念后靈活運用解決此類問題不在話下

  第七部分:參數(shù)估計

  (1)點估計

  (2)估計量的優(yōu)良性

  (3)區(qū)間估計

初中數(shù)學概率知識點總結(jié)5

  一、可能性:

  1. 必然事件:有些事情我們能確定他一定會發(fā)生,這些事情稱為必然事件;

  2.不可能事件:有些事情我們能肯定他一定不會發(fā)生,這些事情稱為不可能事件;

  3.確定事件:必然事件和不可能事件都是確定的;

  4.不確定事件:有很多事情我們無法肯定他會不會發(fā)生,這些事情稱為不確定事件。

  5.一般來說,不確定事件發(fā)生的可能性是有大小的。.

  二、概率:

  1.概率的意義:表示一個事件發(fā)生的可能性大小的這個數(shù)叫做該事件的概率。

  2.必然事件發(fā)生的概率為1,記作P(必然事件)=1;不可能事件發(fā)生的概率為0,記作P(不可能事件)=0;如果A為不確定事件,那么0

  3.一步試驗事件發(fā)生的概率的計算公式是P=k/n,n為該事件所有等可能出現(xiàn)的結(jié)果數(shù),k為事件包含的結(jié)果數(shù)。兩步試驗事件發(fā)生的概率的發(fā)生的概率的計算方法有兩種,一種是列表法,另一種是畫樹狀圖,利用這兩種方法計算兩步實驗時,應(yīng)用樹狀圖或列表將簡單的兩步試驗所有可能的情況表示出來,從而計算隨機事件的概率。

  初中數(shù)學知識點總結(jié):平面直角坐標系

  下面是對平面直角坐標系的內(nèi)容學習,希望同學們很好的掌握下面的內(nèi)容。

  平面直角坐標系

  平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。

  水平的。數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

  平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合

  三個規(guī)定:

  ①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

  ②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜.規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標系知識的講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們都能考試成功。

  初中數(shù)學知識點:平面直角坐標系的構(gòu)成

  對于平面直角坐標系的構(gòu)成內(nèi)容,下面我們一起來學習哦。

  平面直角坐標系的構(gòu)成

  在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。

  通過上面對平面直角坐標系的構(gòu)成知識的講解學習,希望同學們對上面的內(nèi)容都能很好的掌握,同學們認真學習吧。

  初中數(shù)學知識點:點的坐標的性質(zhì)

  下面是對數(shù)學中點的坐標的性質(zhì)知識學習,同學們認真看看哦。

  點的坐標的性質(zhì)

  建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。

  對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標、縱坐標,有序?qū)崝?shù)對(a,b)叫做點C的坐標。

  一個點在不同的象限或坐標軸上,點的坐標不一樣。

  希望上面對點的坐標的性質(zhì)知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。

  初中數(shù)學知識點:因式分解的一般步驟

  關(guān)于數(shù)學中因式分解的一般步驟內(nèi)容學習,我們做下面的知識講解。

  因式分解的一般步驟

  如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

  通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。

  相信上面對因式分解的一般步驟知識的內(nèi)容講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們會考出好成績。

初中數(shù)學概率知識點總結(jié)6

  古典概率與幾何概率

  1、基本事件特點:任何兩個基本事件是互斥的;任何事件(除不可能事件)都可以表示成基本事件的和。

  2、古典概率:具有下列兩個特征的隨機試驗的數(shù)學模型稱為古典概型:

  (1)試驗中所有可能出現(xiàn)的基本事件只有有限個;(2)每個基本事件出現(xiàn)的可能性相等。

  P(A)A中所含樣本點的個數(shù)nA中所含樣本點的個數(shù)n.

  3、幾何概率:如果隨機試驗的樣本空間是一個區(qū)域(可以是直線上的區(qū)間、平面或空間中的區(qū)域),且樣本空間中每個試驗結(jié)果的出現(xiàn)具有等可能性,那么規(guī)定事件A的概率為幾何概率。幾何概率具有無限性和等可能性。

  4、古典概率和幾何概率的基本事件都是等可能的;但古典概率基本事件的個數(shù)是有限的.,幾何概率的是無限個的。

  1、必然事件、不可能事件、隨機事件的區(qū)別

  2、概率

  一般地,在大量重復(fù)試驗中,如果事件A發(fā)生的頻率 會穩(wěn)定在某個常數(shù)p附近,那么這個常數(shù)p就叫做事件A的概率(probability), 記作P(A)= p.

  注意:(1)概率是隨機事件發(fā)生的可能性的大小的數(shù)量反映。

  (2)概率是事件在大量重復(fù)試驗中頻率逐漸穩(wěn)定到的值,即可以用大量重復(fù)試驗中事件發(fā)生的頻率去估計得到事件發(fā)生的概率,但二者不能簡單地等同。

  3、求概率的方法

  (1)用列舉法求概率(列表法、畫樹形圖法)

  (2)用頻率估計概率:一大面,可用大量重復(fù)試驗中事件發(fā)生頻率來估計事件發(fā)生的概率。另一方面,大量重復(fù)試驗中事件發(fā)生的頻率穩(wěn)定在某個常數(shù)(事件發(fā)生的概率)附近,說明概率是個定值,而頻率隨不同試驗次數(shù)而有所不同,是概率的近似值,二者不能簡單地等同。

初中數(shù)學概率知識點總結(jié)7

  一、求復(fù)雜事件的概率:

  1.有些隨機事件不可能用樹狀圖和列表法求其發(fā)生的概率,只能用試驗、統(tǒng)計的方法估計其發(fā)生的概率。

  2.對于作何一個隨機事件都有一個固定的概率客觀存在。

  3.對隨機事件做大量試驗時,根據(jù)重復(fù)試驗的特征,我們確定概率時應(yīng)當注意幾點:

  (1)盡量經(jīng)歷反復(fù)實驗的過程,不能想當然的作出判斷;(2)做實驗時應(yīng)當在相同條件下進行;(3)實驗的次數(shù)要足夠多,不能太少;(4)把每一次實驗的結(jié)果準確,實時的做好記錄;(5)分階段分別從第一次起計算,事件發(fā)生的頻率,并把這些頻率用折線統(tǒng)計圖直觀的表示出來;(6)觀察分析統(tǒng)計圖,找出頻率變化的逐漸穩(wěn)定值,并用這個穩(wěn)定值 ?估計事件發(fā)生的概率,這種估計概率的方法的優(yōu)點是直觀,缺點是估計值必須在實驗后才能得到,無法事件預(yù)測。

  二、判斷游戲公平:

  游戲?qū)﹄p方公平是指雙方獲勝的可能性相同。

  三、概率綜合運用:

  概率可以和很多知識綜合命題,主要涉及平面圖形、統(tǒng)計圖、平均數(shù)、中位數(shù)、眾數(shù)、函數(shù)等。

  初中數(shù)學知識點總結(jié):平面直角坐標系

  下面是對平面直角坐標系的內(nèi)容學習,希望同學們很好的掌握下面的內(nèi)容。

  平面直角坐標系

  平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

  平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合

  三個規(guī)定:

  ①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

  ②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標系知識的講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們都能考試成功。

  初中數(shù)學知識點:平面直角坐標系的構(gòu)成

  對于平面直角坐標系的構(gòu)成內(nèi)容,下面我們一起來學習哦。

  平面直角坐標系的構(gòu)成

  在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的`數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。

  通過上面對平面直角坐標系的構(gòu)成知識的講解學習,希望同學們對上面的內(nèi)容都能很好的掌握,同學們認真學習吧。

  初中數(shù)學知識點:點的坐標的性質(zhì)

  下面是對數(shù)學中點的坐標的性質(zhì)知識學習,同學們認真看看哦。

  點的坐標的性質(zhì)

  建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。

  對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標、縱坐標,有序?qū)崝?shù)對(a,b)叫做點C的坐標。

  一個點在不同的象限或坐標軸上,點的坐標不一樣。

  希望上面對點的坐標的性質(zhì)知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。

  初中數(shù)學知識點:因式分解的一般步驟

  關(guān)于數(shù)學中因式分解的一般步驟內(nèi)容學習,我們做下面的知識講解。

  因式分解的一般步驟

  如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

  通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。

  相信上面對因式分解的一般步驟知識的內(nèi)容講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們會考出好成績。

  初中數(shù)學知識點:因式分解

  下面是對數(shù)學中因式分解內(nèi)容的知識講解,希望同學們認真學習。

  因式分解

  因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

  因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

  因式分解與整式乘法的關(guān)系:m(a+b+c)

  公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

  公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

  提取公因式步驟:

  ①確定公因式。②確定商式③公因式與商式寫成積的形式。

  分解因式注意;

 、俨粶蕘G字母

 、诓粶蕘G常數(shù)項注意查項數(shù)

 、垭p重括號化成單括號

  ④結(jié)果按數(shù)單字母單項式多項式順序排列

 、菹嗤蚴綄懗蓛绲男问

  ⑥首項負號放括號外

 、呃ㄌ杻(nèi)同類項合并。

【初中數(shù)學概率知識點總結(jié)】相關(guān)文章:

初中數(shù)學概率知識點06-14

高中概率數(shù)學知識點 高中數(shù)學概率總結(jié)04-06

初中數(shù)學總結(jié)知識點08-26

初中數(shù)學幾何知識點總結(jié)11-05

初中數(shù)學函數(shù)知識點總結(jié)11-24

初中數(shù)學圓的知識點總結(jié)12-05

初中數(shù)學函數(shù)知識點總結(jié)06-14

數(shù)學初中知識點總結(jié)06-10

【經(jīng)典】數(shù)學初中知識點總結(jié)07-16