當(dāng)前位置:育文網(wǎng)>初中>初中數(shù)學(xué)> 初中數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)

初中數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)

時(shí)間:2022-04-26 08:29:00 初中數(shù)學(xué) 我要投稿

初中數(shù)學(xué)關(guān)于圓的知識(shí)點(diǎn)總結(jié)

  在平日的學(xué)習(xí)中,大家對(duì)知識(shí)點(diǎn)應(yīng)該都不陌生吧?知識(shí)點(diǎn)是傳遞信息的基本單位,知識(shí)點(diǎn)對(duì)提高學(xué)習(xí)導(dǎo)航具有重要的作用。那么,都有哪些知識(shí)點(diǎn)呢?下面是小編精心整理的初中數(shù)學(xué)關(guān)于圓的知識(shí)點(diǎn)總結(jié),希望能夠幫助到大家。

初中數(shù)學(xué)關(guān)于圓的知識(shí)點(diǎn)總結(jié)

  初中數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)1

  1.圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形;同圓或等圓的半徑相等。

  2.到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓。

  3.定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等。

  4.圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合。

  5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合;圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合。

  6.不在同一直線上的三點(diǎn)確定一個(gè)圓。

  7.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧。

  推論1:

 、倨椒窒(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧;

  ②弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧;

 、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧。

  推論2:圓的兩條平行弦所夾的弧相等。

  8.推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。

  9.定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角。

  10.經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心。

  11.切線的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線。

  12.切線的性質(zhì)定理圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑。

  13.經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)

  14.切線長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角。

  15.圓的.外切四邊形的兩組對(duì)邊的和相等外角等于內(nèi)對(duì)角。

  16.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上。

  17.

 、賰蓤A外離d>R+r

  ②兩圓外切d=R+r

 、蹆蓤A相交d>R-r)

 、軆蓤A內(nèi)切d=R-r(R>r)

 、輧蓤A內(nèi)含d=r)

  18.定理把圓分成n(n≥3):

 、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

 、平(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形。

  19.定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓。

  20.弧長(zhǎng)計(jì)算公式:L=n兀R/180;扇形面積公式:S扇形=n兀R^2/360=LR/2。

  21.內(nèi)公切線長(zhǎng)= d-(R-r)外公切線長(zhǎng)= d-(R+r)。

  22.定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。

  23.推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。

  24.推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。

  初中數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)2

  圓定義:

  (1)平面上到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)組成的圖形叫做圓。

  (2)平面上一條線段,繞它的一端旋轉(zhuǎn)360°,留下的軌跡叫圓。

  圓心:

  (1)如定義(1)中,該定點(diǎn)為圓心

  (2)如定義(2)中,繞的那一端的端點(diǎn)為圓心。

  (3)圓任意兩條對(duì)稱軸的交點(diǎn)為圓心。

  (4)垂直于圓內(nèi)任意一條弦且兩個(gè)端點(diǎn)在圓上的線段的二分點(diǎn)為圓心。

  注:圓心一般用字母O表示

  直徑:通過(guò)圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。

  半徑:連接圓心和圓上任意一點(diǎn)的線段,叫做圓的半徑。半徑一般用字母r表示。

  圓的直徑和半徑都有無(wú)數(shù)條。圓是軸對(duì)稱圖形,每條直徑所在的直線是圓的對(duì)稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=二分之d。

  圓的半徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。

  圓的周長(zhǎng):圍成圓的曲線的長(zhǎng)度叫做圓的周長(zhǎng),用字母C表示。

  圓的周長(zhǎng)與直徑的比值叫做圓周率。圓的周長(zhǎng)除以直徑的商是一個(gè)固定的數(shù),把它叫做圓周率,它是一個(gè)無(wú)限不循環(huán)小數(shù)(無(wú)理數(shù)),用字母π表示。計(jì)算時(shí),通常取它的近似值,π≈3.14。

  直徑所對(duì)的圓周角是直角。90°的圓周角所對(duì)的弦是直徑。

  圓的面積公式:圓所占平面的大小叫做圓的面積。πr^2,用字母S表示。

  一條弧所對(duì)的圓周角是圓心角的二分之一。

  在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦心距也相等。

  在同圓或等圓中,如果兩條弧相等,那么他們所對(duì)的圓心角相等,所對(duì)的弦相等,所對(duì)的弦心距也相等。

  在同圓或等圓中,如果兩條弦相等,那么他們所對(duì)的圓心角相等,所對(duì)的弧相等,所對(duì)的弦心距也相等。

  周長(zhǎng)計(jì)算公式

  1.、已知直徑:C=πd

  2、已知半徑:C=2πr

  3、已知周長(zhǎng):D=cπ

  4、圓周長(zhǎng)的一半:12周長(zhǎng)(曲線)

  5、半圓的長(zhǎng):12周長(zhǎng)+直徑

  面積計(jì)算公式:

  1、已知半徑:S=πr平方

  2、已知直徑:S=π(d2)平方

  3、已知周長(zhǎng):S=π(c2π)平方

  點(diǎn)、直線、圓和圓的位置關(guān)系

  1.點(diǎn)和圓的位置關(guān)系

 、冱c(diǎn)在圓內(nèi)<=>點(diǎn)到圓心的距離小于半徑

 、邳c(diǎn)在圓上<=>點(diǎn)到圓心的距離等于半徑

  ③點(diǎn)在圓外<=>點(diǎn)到圓心的距離大于半徑

  2.過(guò)三點(diǎn)的圓不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。

  3.外接圓和外心經(jīng)過(guò)三角形的三個(gè)頂點(diǎn)可以做一個(gè)圓,這個(gè)圓叫做三角形的外接圓。外接圓的圓心是三角形三條邊垂直平分線的交點(diǎn),叫做三角形的外心。

  4.直線和圓的位置關(guān)系

  相交:直線和圓有兩個(gè)公共點(diǎn)叫這條直線和圓相交,這條直線叫做圓的割線。

  相切:直線和圓有一個(gè)公共點(diǎn)叫這條直線和圓相切,這條直線叫做圓的切線,這個(gè)點(diǎn)叫做切點(diǎn)。

  相離:直線和圓沒(méi)有公共點(diǎn)叫這條直線和圓相離。

  5.直線和圓位置關(guān)系的性質(zhì)和判定

  如果⊙O的半徑為r,圓心O到直線l的距離為d,那么

 、僦本l和⊙O相交<=>d<>

  ②直線l和⊙O相切<=>d=r;

 、壑本l和⊙O相離<=>d>r。

  圓和圓定義:

  兩個(gè)圓沒(méi)有公共點(diǎn)且每個(gè)圓的點(diǎn)都在另一個(gè)圓的外部時(shí),叫做這兩個(gè)圓的外離。

  兩個(gè)圓有唯一的公共點(diǎn)且除了這個(gè)公共點(diǎn)外,每個(gè)圓上的點(diǎn)都在另一個(gè)圓的外部,叫做兩個(gè)圓的外切。

  兩個(gè)圓有兩個(gè)交點(diǎn),叫做兩個(gè)圓的相交。

  兩個(gè)圓有唯一的公共點(diǎn)且除了這個(gè)公共點(diǎn)外,每個(gè)圓上的點(diǎn)都在另一個(gè)圓的內(nèi)部,叫做兩個(gè)圓的內(nèi)切。

  兩個(gè)圓沒(méi)有公共點(diǎn)且每個(gè)圓的點(diǎn)都在另一個(gè)圓的'內(nèi)部時(shí),叫做這兩個(gè)圓的內(nèi)含。

  原理:圓心距和半徑的數(shù)量關(guān)系:

  兩圓外離<=>d>R+r兩圓外切<=>d=R+r兩圓相交<=>R-r<>=r)

  兩圓內(nèi)切<=>d=R-r(R>r)兩圓內(nèi)含<=>dr)

  正多邊形和圓

  1、正多邊形的概念:各邊相等,各角也相等的多邊形叫做正多邊形。

  2、正多邊形與圓的關(guān)系:

  (1)將一個(gè)圓n(n≥3)等分(可以借助量角器),依次連結(jié)各等分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正多邊形。

  (2)這個(gè)圓是這個(gè)正多邊形的外接圓。

  3、正多邊形的有關(guān)概念:

  (1)正多邊形的中心——正多邊形的外接圓的圓心。

  (2)正多邊形的半徑——正多邊形的外接圓的半徑。

  (3)正多邊形的邊心距——正多邊形中心到正多邊形各邊的距離。

  (4)正多邊形的中心角——正多邊形每一邊所對(duì)的外接圓的圓心角。

  4、正多邊形性質(zhì):

  (1)任何正多邊形都有一個(gè)外接圓。

  (2)正多邊形都是軸對(duì)稱圖形,當(dāng)邊數(shù)是偶數(shù)時(shí),它又是中心對(duì)稱圖形,正n邊形的對(duì)稱軸有n條。(3)邊數(shù)相同的正多邊形相似。

  初中數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)3

  一、圓

  1、圓的有關(guān)性質(zhì)

  在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點(diǎn)O叫圓心,線段OA叫半徑。

  由圓的意義可知:

  圓上各點(diǎn)到定點(diǎn)(圓心O)的距離等于定長(zhǎng)的點(diǎn)都在圓上。

  就是說(shuō):圓是到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點(diǎn)的集合。

  圓的外部可以看作是到圓心的距離大于半徑的.點(diǎn)的集合。連結(jié)圓上任意兩點(diǎn)的線段叫做弦,經(jīng)過(guò)圓心的弦叫直徑。圓上任意兩點(diǎn)間的部分叫圓弧,簡(jiǎn)稱弧。

  圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu);小于半圓的弧叫劣弧。由弦及其所對(duì)的弧組成的圓形叫弓形。

  圓心相同,半徑不相等的兩個(gè)圓叫同心圓。

  能夠重合的兩個(gè)圓叫等圓。

  同圓或等圓的半徑相等。

  在同圓或等圓中,能夠互相重合的弧叫等弧。

  二、過(guò)三點(diǎn)的圓

  l、過(guò)三點(diǎn)的圓

  過(guò)三點(diǎn)的圓的作法:利用中垂線找圓心

  定理不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。

  經(jīng)過(guò)三角形各頂點(diǎn)的圓叫三角形的外接圓,外接圓的圓心叫外心,這個(gè)三角形叫圓的內(nèi)接三角形。

  2、反證法

  反證法的三個(gè)步驟:

  ①假設(shè)命題的結(jié)論不成立;

 、趶倪@個(gè)假設(shè)出發(fā),經(jīng)過(guò)推理論證,得出矛盾;

 、塾擅艿贸黾僭O(shè)不正確,從而肯定命題的結(jié)論正確。

  例如:求證三角形中最多只有一個(gè)角是鈍角。

  證明:設(shè)有兩個(gè)以上是鈍角

  則兩個(gè)鈍角之和>180°

  與三角形內(nèi)角和等于180°矛盾。

  ∴不可能有二個(gè)以上是鈍角。

  即最多只能有一個(gè)是鈍角。

  三、垂直于弦的直徑

  圓是軸對(duì)稱圖形,經(jīng)過(guò)圓心的每一條直線都是它的對(duì)稱軸。

  垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧。

  推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)兩條弧。

  弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧。

  平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一個(gè)條弧。

  推理2:圓兩條平行弦所夾的弧相等。

  四、圓心角、弧、弦、弦心距之間的關(guān)系

  圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形。

  實(shí)際上,圓繞圓心旋轉(zhuǎn)任意一個(gè)角度,都能夠與原來(lái)的圖形重合。

  頂點(diǎn)是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。

  定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦心距相等。

  推理:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等。

  五、圓周角

  頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫圓周角。

  推理1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。

  推理2:半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。

  推理3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。

  由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。

  初中數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)4

 、僦本和圓無(wú)公共點(diǎn),稱相離。 AB與圓O相離,d>r。

 、谥本和圓有兩個(gè)公共點(diǎn),稱相交,這條直線叫做圓的割線。

 、壑本和圓有且只有一公共點(diǎn),稱相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。AB與⊙O相切,d=r。(d為圓心到直線的.距離)

  平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:

  1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的方程

  如果b^2-4ac>0,則圓與直線有2交點(diǎn),即圓與直線相交。

  如果b^2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切。

  如果b^2-4ac<0,則圓與直線有0交點(diǎn),即圓與直線相離。

  2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時(shí)的兩個(gè)x值x1、x2,并且規(guī)定x1

  當(dāng)x=-C/Ax2時(shí),直線與圓相離;

【初中數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

初中數(shù)學(xué)圓知識(shí)點(diǎn)總結(jié)04-06

初中數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)12-05

初中數(shù)學(xué)圓系列知識(shí)點(diǎn)總結(jié)04-25

初中數(shù)學(xué)圓的知識(shí)點(diǎn)歸納04-15

初中數(shù)學(xué)圓的方程知識(shí)點(diǎn)04-07

初中數(shù)學(xué)《圓的公式匯總》知識(shí)點(diǎn)04-07

初中數(shù)學(xué)圓的切線知識(shí)點(diǎn)匯總03-03

初中數(shù)學(xué)圓的基本性質(zhì)定理知識(shí)點(diǎn)03-25

初中數(shù)學(xué)圓的解析幾何方程知識(shí)點(diǎn)整理12-07