- 相關(guān)推薦
初中數(shù)學(xué)圓系列知識點(diǎn)總結(jié)
上學(xué)期間,說到知識點(diǎn),大家是不是都習(xí)慣性的重視?知識點(diǎn)也可以理解為考試時會涉及到的知識,也就是大綱的分支。還在苦惱沒有知識點(diǎn)總結(jié)嗎?以下是小編收集整理的初中數(shù)學(xué)圓系列知識點(diǎn)總結(jié),僅供參考,歡迎大家閱讀。
初中數(shù)學(xué)圓系列知識點(diǎn)總結(jié)1
1、圓是定點(diǎn)的距離等于定長的點(diǎn)的集合
2、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
3、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
4、同圓或等圓的半徑相等
5、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓
6、和已知線段兩個端點(diǎn)的距離相等的點(diǎn)的軌跡,是這條線段的垂直平分線
7、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個角的平分線
8、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線
9、定理不在同一直線上的三點(diǎn)確定一個圓。
10、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
11、推論1:
①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的'直徑,垂直平分弦,并且平分弦所對的另一條弧。
12、推論2:圓的兩條平行弦所夾的弧相等
13、圓是以圓心為對稱中心的中心對稱圖形
14、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
15、推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等
16、定理:一條弧所對的圓周角等于它所對的圓心角的一半
17、推論:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
18、推論:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
19、推論:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
20、定理:圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角
21、①直線L和⊙O相交d﹤r
、谥本L和⊙O相切d=r
③直線L和⊙O相離d﹥r
22、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
23、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點(diǎn)的半徑
24、推論:經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)
25、推論:經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
26、切線長定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角
27、圓的外切四邊形的兩組對邊的和相等
28、弦切角定理:弦切角等于它所夾的弧對的圓周角
29、推論:如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等
30、相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等
31、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項
32、切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項
33、推論:從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等
34、如果兩個圓相切,那么切點(diǎn)一定在連心線上
35、①兩圓外離d﹥R+r
、趦蓤A外切d=R+r
、蹆蓤A相交R-r﹤d﹤R+r(R﹥r)
、軆蓤A內(nèi)切d=R-r(R﹥r)
、輧蓤A內(nèi)含d﹤R-r(R﹥r)
36、定理:相交兩圓的連心線垂直平分兩圓的公共弦
37、定理:把圓分成n(n≥3):
、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個圓的內(nèi)接正n邊形
、平(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個圓的外切正n邊形
38、定理:
任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓
39、正n邊形的每個內(nèi)角都等于(n-2)×180°/n
40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
41、正n邊形的面積Sn=pr/2p表示正n邊形的周長,r為邊心距
42、正三角形面積√3a2/4a表示邊長
43、如果在一個頂點(diǎn)周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此
k(n-2)180°/n=360°化為(n-2)(k-2)=4
44、弧長計算公式:L=n兀R/180
45、扇形面積公式:
S扇形=n兀R2/360=LR/2
外公切線長=d-(R+r)
初中數(shù)學(xué)圓系列知識點(diǎn)總結(jié)2
1、在一個平面內(nèi),線段OA繞它固定的一個端點(diǎn)O旋轉(zhuǎn)一周,另一個端點(diǎn)A隨之旋轉(zhuǎn)所形成的封閉曲線叫做圓。固定的端點(diǎn)O叫做圓心,線段OA叫做半徑,以點(diǎn)O為圓心的圓,記作☉O,讀作“圓O”
2、與圓有關(guān)的概念
。1)弦和直徑(連結(jié)圓上任意兩點(diǎn)的線段BC叫做弦,經(jīng)過圓心的弦AB叫做直徑)
。2)弧和半圓(圓上任意兩點(diǎn)間的部分叫做弧,圓的任意一條直徑的兩個端點(diǎn)分圓成兩條 弧,每一條弧都叫做半圓)
。3)等圓(半徑相等的兩個圓叫做等圓)
3、點(diǎn)和圓的.位置關(guān)系:
如果P是圓所在平面內(nèi)的一點(diǎn),d 表示P到圓心的距離,r表示圓的半徑,則:
。1)d 。2)d=r →圓上 。3)d>r →圓外 4、三角形的外接圓 經(jīng)過三角形的三個頂點(diǎn)的圓叫做三角形的外接圓,外接圓的圓心叫做三角形的外心,三角形叫做圓的內(nèi)接三角形。三角形的外心到各頂點(diǎn)距離相等。 一個三角形有且僅有一個外接圓,但一個圓有無數(shù)內(nèi)接三角形。 5、垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。 推論: (1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧; 。2)平分弧的直徑,垂直平分弧所對的弦。 6、圓心角定理:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。 7、圓周角定理: 一條弧所對的圓周角等于它所對的 圓心角的一半 。 推論:半圓(或直徑)所對的圓周角是 直角,90°圓周角所對的弦是 直徑 。 同弧或等弧所對的圓周角相等;在同圓或等圓中,相等的圓周角所對的弧也相等。 8、弧長及扇形的面積圓錐的側(cè)面積和全面積 (1)弧長公式:lnr 180 nr21lr(2)扇形的面積公式:3602 (3)圓錐的側(cè)面積公式:rl (4)圓錐的表面積公式:rlr 9、圓與圓的位置關(guān)系 、賰蓤A外離 d﹥R+r ②兩圓外切 d=R+r 、蹆蓤A相交 R-r﹤d﹤R+r(R﹥r) 、軆蓤A內(nèi)切 d=R-r(R﹥r) ⑤兩圓內(nèi)含 d﹤R-r(R﹥r) 一、圓 1、圓的有關(guān)性質(zhì) 在一個平面內(nèi),線段OA繞它固定的一個端點(diǎn)O旋轉(zhuǎn)一周,另一個端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點(diǎn)O叫圓心,線段OA叫半徑。 由圓的意義可知: 圓上各點(diǎn)到定點(diǎn)(圓心O)的距離等于定長的點(diǎn)都在圓上。 就是說:圓是到定點(diǎn)的距離等于定長的點(diǎn)的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點(diǎn)的集合。 圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的集合。連結(jié)圓上任意兩點(diǎn)的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點(diǎn)間的部分叫圓弧,簡稱弧。 圓的任意一條直徑的兩個端點(diǎn)分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu)弧;小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。 圓心相同,半徑不相等的兩個圓叫同心圓。 能夠重合的兩個圓叫等圓。 同圓或等圓的半徑相等。 在同圓或等圓中,能夠互相重合的弧叫等弧。 二、過三點(diǎn)的圓 l、過三點(diǎn)的圓 過三點(diǎn)的圓的作法:利用中垂線找圓心 定理不在同一直線上的三個點(diǎn)確定一個圓。 經(jīng)過三角形各頂點(diǎn)的圓叫三角形的外接圓,外接圓的圓心叫外心,這個三角形叫圓的內(nèi)接三角形。 2、反證法 反證法的三個步驟: 、偌僭O(shè)命題的結(jié)論不成立; 、趶倪@個假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾; 、塾擅艿贸黾僭O(shè)不正確,從而肯定命題的結(jié)論正確。 例如:求證三角形中最多只有一個角是鈍角。 證明:設(shè)有兩個以上是鈍角 則兩個鈍角之和>180° 與三角形內(nèi)角和等于180°矛盾。 ∴不可能有二個以上是鈍角。 即最多只能有一個是鈍角。 三、垂直于弦的直徑 圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的`對稱軸。 垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。 推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。 弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。 平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個條弧。 推理2:圓兩條平行弦所夾的弧相等。 四、圓心角、弧、弦、弦心距之間的關(guān)系 圓是以圓心為對稱中心的中心對稱圖形。 實(shí)際上,圓繞圓心旋轉(zhuǎn)任意一個角度,都能夠與原來的圖形重合。 頂點(diǎn)是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。 定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。 推理:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。 五、圓周角 頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫圓周角。 推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。 推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。 推理3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。 由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。 一、圓及圓的相關(guān)量的定義) 1.平面上到定點(diǎn)的距離等于定長的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱為圓心,定長稱為半徑。 2.圓上任意兩點(diǎn)間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點(diǎn)的線段叫做弦。經(jīng)過圓心的弦叫做直徑。 3.頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個交點(diǎn)的角叫做圓周角。 4.過三角形的三個頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓心稱為內(nèi)心。 5.直線與圓有3種位置關(guān)系:無公共點(diǎn)為相離;有2個公共點(diǎn)為相交;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個唯一的公共點(diǎn)叫做切點(diǎn)。 6.兩圓之間有5種位置關(guān)系:無公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。 7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。 二、有關(guān)圓的字母表示方法(7個) 圓--⊙半徑—r弧--⌒直徑—d 扇形弧長/圓錐母線—l周長—C面積—S三、有關(guān)圓的基本性質(zhì)與定理(27個) 1.點(diǎn)P與圓O的位置關(guān)系(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離): P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO 2.圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。 3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。 4.在同圓或等圓中,如果2個圓心角,2個圓周角,2條弧,2條弦中有一組量相等,那么他們所對應(yīng)的其余各組量都分別相等。 5.一條弧所對的圓周角等于它所對的圓心角的一半。 6.直徑所對的圓周角是直角。90度的`圓周角所對的弦是直徑。 7.不在同一直線上的3個點(diǎn)確定一個圓。 8.一個三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點(diǎn),到三角形3個頂點(diǎn)距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點(diǎn),到三角形3邊距離相等。 9.直線AB與圓O的位置關(guān)系(設(shè)OP⊥AB于P,則PO是AB到圓心的距離): AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO 10.圓的切線垂直于過切點(diǎn)的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個圓的切線。 11.圓與圓的位置關(guān)系(設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為P): 外離P>R+r;外切P=R+r;相交R-r 三、有關(guān)圓的計算公式 1.圓的周長C=2πr=πd2.圓的面積S=s=πr23.扇形弧長l=nπr/180 4.扇形面積S=nπr2/360=rl/25.圓錐側(cè)面積S=πrl 四、圓的方程 1.圓的標(biāo)準(zhǔn)方程 在平面直角坐標(biāo)系中,以點(diǎn)O(a,b)為圓心,以r為半徑的圓的標(biāo)準(zhǔn)方程是 (x-a)^2+(y-b)^2=r^2 2.圓的一般方程 把圓的標(biāo)準(zhǔn)方程展開,移項,合并同類項后,可得圓的一般方程是 x^2+y^2+Dx+Ey+F=0 和標(biāo)準(zhǔn)方程對比,其實(shí)D=-2a,E=-2b,F=a^2+b^2 相關(guān)知識:圓的離心率e=0.在圓上任意一點(diǎn)的曲率半徑都是r. 五、圓與直線的位置關(guān)系判斷 鏈接:圓與直線的位置關(guān)系(一.5) 平面內(nèi),直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是 討論如下2種情況: (1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0], 代入x^2+y^2+Dx+Ey+F=0,即成為一個關(guān)于x的一元二次方程f(x)=0. 利用判別式b^2-4ac的符號可確定圓與直線的位置關(guān)系如下: 如果b^2-4ac>0,則圓與直線有2交點(diǎn),即圓與直線相交 如果b^2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切 如果b^2-4ac<0,則圓與直線有0交點(diǎn),即圓與直線相離 (2)如果B=0即直線為Ax+C=0,即x=-C/A.它平行于y軸(或垂直于x軸) 將x^2+y^2+Dx+Ey+F=0化為(x-a))^2+(y-b)^2=r^2 令y=b,求出此時的兩個x值x1,x2,并且我們規(guī)定x1 當(dāng)x=-C/Ax2時,直線與圓相離 當(dāng)x1 當(dāng)x=-C/A=x1或x=-C/A=x2時,直線與圓相切 圓的定理: 1、不在同一直線上的三點(diǎn)確定一個圓。 2、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧 推論1 、倨椒窒(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧 推論2圓的兩條平行弦所夾的弧相等 3、圓是以圓心為對稱中心的中心對稱圖形 4、圓是定點(diǎn)的距離等于定長的點(diǎn)的集合 5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合 6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合 7、同圓或等圓的半徑相等 【初中數(shù)學(xué)圓系列知識點(diǎn)總結(jié)】相關(guān)文章: 初中數(shù)學(xué)圓知識點(diǎn)總結(jié)04-06 初中數(shù)學(xué)圓的知識點(diǎn)總結(jié)12-05 初中數(shù)學(xué)關(guān)于圓的知識點(diǎn)總結(jié)04-26 初中數(shù)學(xué)圓的知識點(diǎn)歸納04-15 初中數(shù)學(xué)圓的方程知識點(diǎn)04-07 初中數(shù)學(xué)《圓的公式匯總》知識點(diǎn)04-07 初中數(shù)學(xué)圓的切線知識點(diǎn)匯總03-03 初中數(shù)學(xué)圓系列知識點(diǎn)總結(jié)3
初中數(shù)學(xué)圓系列知識點(diǎn)總結(jié)4