當(dāng)前位置:育文網(wǎng)>高中> 淺談高中數(shù)學(xué)解題技巧分享

淺談高中數(shù)學(xué)解題技巧分享

時(shí)間:2022-03-22 11:15:35 高中 我要投稿
  • 相關(guān)推薦

淺談高中數(shù)學(xué)解題技巧分享

  數(shù)學(xué)的學(xué)習(xí)與語(yǔ)文、英語(yǔ)不太一樣,死記硬背公式、方法對(duì)學(xué)習(xí)成績(jī)的提高沒(méi)有一點(diǎn)幫助,數(shù)學(xué)的學(xué)習(xí)需要我們有好的解題思維,數(shù)學(xué)解題的思維過(guò)程是指從理解問(wèn)題開(kāi)始,經(jīng)過(guò)探索思路,轉(zhuǎn)換問(wèn)題直至解決問(wèn)題,進(jìn)行回顧的全過(guò)程的思維活動(dòng)。

淺談高中數(shù)學(xué)解題技巧分享

  對(duì)于數(shù)學(xué)解題思維過(guò)程,G.波利亞提出了四個(gè)階段*(見(jiàn)附錄),即弄清問(wèn)題、擬定計(jì)劃、實(shí)現(xiàn)計(jì)劃和回顧。這四個(gè)階段思維過(guò)程的實(shí)質(zhì),可以用下列八個(gè)字加以概括:理解、轉(zhuǎn)換、實(shí)施、反思。

  第一階段:理解問(wèn)題是解題思維活動(dòng)的開(kāi)始。

  第二階段:轉(zhuǎn)換問(wèn)題是解題思維活動(dòng)的核心,是探索解題方向和途徑的積極的嘗試發(fā)現(xiàn)過(guò)程,是思維策略的選擇和調(diào)整過(guò)程。

  第三階段:計(jì)劃實(shí)施是解決問(wèn)題過(guò)程的實(shí)現(xiàn),它包含著一系列基礎(chǔ)知識(shí)和基本技能的靈活運(yùn)用和思維過(guò)程的具體表達(dá),是解題思維活動(dòng)的重要組成部分。

  第四階段:反思問(wèn)題往往容易為人們所忽視,它是發(fā)展數(shù)學(xué)思維的一個(gè)重要方面,是一個(gè)思維活動(dòng)過(guò)程的結(jié)束包含另一個(gè)新的思維活動(dòng)過(guò)程的開(kāi)始。

  數(shù)學(xué)解題的技巧

  為了使回想、聯(lián)想、猜想的方向更明確,思路更加活潑,進(jìn)一步提高探索的成效,我們必須掌握一些解題的策略。

  一切解題的策略的基本出發(fā)點(diǎn)在于“變換”,即把面臨的問(wèn)題轉(zhuǎn)化為一道或幾道易于解答的新題,以通過(guò)對(duì)新題的考察,發(fā)現(xiàn)原題的解題思路,最終達(dá)到解決原題的目的。

  基于這樣的認(rèn)識(shí),常用的解題策略有:熟悉化、簡(jiǎn)單化、直觀化、特殊化、一般化、整體化、間接化等。

  一、熟悉化策略所謂熟悉化策略,就是當(dāng)我們面臨的是一道以前沒(méi)有接觸過(guò)的陌生題目時(shí),要設(shè)法把它化為曾經(jīng)解過(guò)的或比較熟悉的題目,以便充分利用已有的知識(shí)、經(jīng)驗(yàn)或解題模式,順利地解出原題。

  一般說(shuō)來(lái),對(duì)于題目的熟悉程度,取決于對(duì)題目自身結(jié)構(gòu)的認(rèn)識(shí)和理解。從結(jié)構(gòu)上來(lái)分析,任何一道解答題,都包含條件和結(jié)論(或問(wèn)題)兩個(gè)方面。因此,要把陌生題轉(zhuǎn)化為熟悉題,可以在變換題目的條件、結(jié)論(或問(wèn)題)以及它們的聯(lián)系方式上多下功夫。

  常用的途徑有:

  (一)、充分聯(lián)想回憶基本知識(shí)和題型:

  按照波利亞的觀點(diǎn),在解決問(wèn)題之前,我們應(yīng)充分聯(lián)想和回憶與原有問(wèn)題相同或相似的知識(shí)點(diǎn)和題型,充分利用相似問(wèn)題中的方式、方法和結(jié)論,從而解決現(xiàn)有的問(wèn)題。

  (二)、全方位、多角度分析題意:

  對(duì)于同一道數(shù)學(xué)題,常?梢圆煌膫(cè)面、不同的角度去認(rèn)識(shí)。因此,根據(jù)自己的知識(shí)和經(jīng)驗(yàn),適時(shí)調(diào)整分析問(wèn)題的視角,有助于更好地把握題意,找到自己熟悉的解題方向。

  (三)恰當(dāng)構(gòu)造輔助元素:

  數(shù)學(xué)中,同一素材的題目,常?梢杂胁煌谋憩F(xiàn)形式;條件與結(jié)論(或問(wèn)題)之間,也存在著多種聯(lián)系方式。因此,恰當(dāng)構(gòu)造輔助元素,有助于改變題目的形式,溝通條件與結(jié)論(或條件與問(wèn)題)的內(nèi)在聯(lián)系,把陌生題轉(zhuǎn)化為熟悉題。

【淺談高中數(shù)學(xué)解題技巧分享】相關(guān)文章:

高中數(shù)學(xué)解題技巧方法05-25

高中數(shù)學(xué)解題技巧15篇06-15

高中數(shù)學(xué)大題解題技巧04-04

高中數(shù)學(xué)向量解題技巧必看06-11

高中數(shù)學(xué)學(xué)霸解題技巧歸納06-09

高中數(shù)學(xué)幾何題解題技巧必看06-11

高中數(shù)學(xué)導(dǎo)數(shù)解題技巧和必備資料06-11

超全整合高中數(shù)學(xué)的各類(lèi)題型的解題技巧06-11

高中數(shù)學(xué)學(xué)習(xí)技巧分享03-01

高中數(shù)學(xué)考試題型解題技巧方法10-25