- 相關(guān)推薦
高中數(shù)學(xué)學(xué)習(xí)的知識(shí)點(diǎn)
上學(xué)期間,說(shuō)起知識(shí)點(diǎn),應(yīng)該沒(méi)有人不熟悉吧?知識(shí)點(diǎn)在教育實(shí)踐中,是指對(duì)某一個(gè)知識(shí)的泛稱(chēng)。相信很多人都在為知識(shí)點(diǎn)發(fā)愁,下面是小編整理的高中數(shù)學(xué)學(xué)習(xí)的知識(shí)點(diǎn),歡迎閱讀,希望大家能夠喜歡。
高中數(shù)學(xué)學(xué)習(xí)的知識(shí)點(diǎn)1
1、正角、負(fù)角、零角、象限角的概念你清楚嗎,若角的終邊在坐標(biāo)軸上,那它歸哪個(gè)象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?
2、三角函數(shù)的定義及單位圓內(nèi)的`三角函數(shù)線(xiàn)(正弦線(xiàn)、余弦線(xiàn)、正切線(xiàn))的定義你知道嗎?
3、 在解三角問(wèn)題時(shí),你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?
4、 你還記得三角化簡(jiǎn)的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角。 異角化同角,異名化同名,高次化低次)
5、 反正弦、反余弦、反正切函數(shù)的取值范圍分別是
6、你還記得某些特殊角的三角函數(shù)值嗎?
7、掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì)。你會(huì)寫(xiě)三角函數(shù)的單調(diào)區(qū)間嗎?會(huì)寫(xiě)簡(jiǎn)單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書(shū)寫(xiě)規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過(guò)怎樣的變換得到嗎?
高中數(shù)學(xué)學(xué)習(xí)的知識(shí)點(diǎn)2
一、初中數(shù)學(xué)形象化,便于學(xué)生理解,并且聯(lián)系生活實(shí)際比較多。對(duì)于這些知識(shí)點(diǎn),只要用心一些,很是比較容易把握的,運(yùn)用起來(lái)也會(huì)比較自如。而高中數(shù)學(xué)相對(duì)來(lái)說(shuō)則比較抽象,學(xué)生經(jīng)常不能很好的把所學(xué)知識(shí)理解透徹,甚至進(jìn)入理解誤區(qū),如此,便造成運(yùn)用定理和公式不熟練或運(yùn)用錯(cuò)誤的現(xiàn)象。針對(duì)這些情況,建議家長(zhǎng)由專(zhuān)業(yè)教師引導(dǎo)一下,深入淺出,為高中數(shù)學(xué)后續(xù)課程的學(xué)習(xí)打下堅(jiān)實(shí)的基礎(chǔ);
二、初中數(shù)學(xué)淺顯化,學(xué)生只要認(rèn)真思考,理解其所表達(dá)的意思。而高中很多知識(shí)點(diǎn)則較為隱晦,學(xué)生體會(huì)不到所表達(dá)的意思。比如:初中所學(xué)的.二次函數(shù),比較多的偏向于感性認(rèn)識(shí),學(xué)生們往往能較好地掌握,但是進(jìn)入高中之后,高中數(shù)學(xué)對(duì)二次函數(shù)提出了新的更高的要求,比較偏向于理性思維時(shí),某些學(xué)生便會(huì)適應(yīng)不過(guò)來(lái)。
三、初中數(shù)學(xué)知識(shí)容量相對(duì)較小?傮w而言,初中數(shù)學(xué)知識(shí)點(diǎn)較少,學(xué)生能夠通過(guò)三年的系統(tǒng)學(xué)習(xí),比較好地掌握。高中數(shù)學(xué)則知識(shí)點(diǎn)眾多,而每個(gè)章節(jié)所包含的小知識(shí)點(diǎn)則更是繁雜,學(xué)生們則往往難以適應(yīng)。
綜上,建議學(xué)生與家長(zhǎng)以謹(jǐn)慎、認(rèn)真的態(tài)度去對(duì)待初三升高中這一蛻變的階段,因?yàn)檫@是我們邁進(jìn)高中的第一步,只有第一步走踏實(shí)了,我們才能走過(guò)高中,踏進(jìn)高考的大門(mén)!
高中數(shù)學(xué)學(xué)習(xí)的知識(shí)點(diǎn)3
1、解決一些等比數(shù)列的前項(xiàng)和問(wèn)題,你注意到要對(duì)公比及兩種情況進(jìn)行討論了嗎?
2、在“已知,求”的問(wèn)題中,你在利用公式時(shí)注意到了嗎?(時(shí),應(yīng)有)需要驗(yàn)證,有些題目通項(xiàng)是分段函數(shù)。
3、你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無(wú)窮數(shù)列的概念嗎?你知道無(wú)窮數(shù)列的前項(xiàng)和與所有項(xiàng)的和的不同嗎?什么樣的無(wú)窮等比數(shù)列的所有項(xiàng)的和必定存在?
4、數(shù)列單調(diào)性問(wèn)題能否等同于對(duì)應(yīng)函數(shù)的'單調(diào)性問(wèn)題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)
5、應(yīng)用數(shù)學(xué)歸納法一要注意步驟齊全,二要注意從到過(guò)程中,先假設(shè)時(shí)成立,再結(jié)合一些數(shù)學(xué)方法用來(lái)證明時(shí)也成立。
高中數(shù)學(xué)學(xué)習(xí)的知識(shí)點(diǎn)4
橢圓的標(biāo)準(zhǔn)方程共分兩種情況:當(dāng)焦點(diǎn)在x軸時(shí),橢圓的標(biāo)準(zhǔn)方程是:x^2/a^2+y^2/b^2=1,(a>b>0);當(dāng)焦點(diǎn)在y軸時(shí),橢圓的`標(biāo)準(zhǔn)方程是:y^2/a^2+x^2/b^2=1,(a>b>0);其中a^2—c^2=b^2推導(dǎo):PF1+PF2>F1F2(P為橢圓上的點(diǎn)F為焦點(diǎn))
橢圓的對(duì)稱(chēng)性:不論焦點(diǎn)在X軸還是Y軸,橢圓始終關(guān)于X/Y/原點(diǎn)對(duì)稱(chēng)。
頂點(diǎn):焦點(diǎn)在X軸時(shí):長(zhǎng)軸頂點(diǎn):(—a,0),(a,0),短軸頂點(diǎn):(0,b),(0,—b),焦點(diǎn)在Y軸時(shí):長(zhǎng)軸頂點(diǎn):(0,—a),(0,a),短軸頂點(diǎn):(b,0),(—b,0)。注意長(zhǎng)短軸分別代表哪一條軸,在此容易引起混亂,還需數(shù)形結(jié)合逐步理解透徹。
焦點(diǎn):當(dāng)焦點(diǎn)在X軸上時(shí)焦點(diǎn)坐標(biāo)F1(—c,0)F2(c,0),當(dāng)焦點(diǎn)在Y軸上時(shí)焦點(diǎn)坐標(biāo)F1(0,—c)F2(0,c)。
距離問(wèn)題
習(xí)題:一列火車(chē)從甲地開(kāi)往乙地,開(kāi)出2。5小時(shí),行了150千米。照這樣的速度,再行駛3小時(shí)到達(dá)乙地。甲、乙兩地相距多少千米?
答案:先求火車(chē)每小時(shí)行多少千米,再求共行了幾小時(shí),最后求出共行了多少千米(即甲、乙兩地距離)。火車(chē)每小時(shí)行多少千米:150÷2。5=60(千米)火車(chē)共行了多少小時(shí):2。5+3=5。5(小時(shí))甲乙兩地相距多少千米:60×5。5=330(千米)
綜合算式:150÷2。5×(2。5+3)=150÷2。5×5。5=60×5。5=330(千米)
常見(jiàn)運(yùn)算符號(hào)
如加號(hào)(+),減號(hào)(—),乘號(hào)(×或·),除號(hào)(÷或/),兩個(gè)集合的并集(∪),交集(∩),根號(hào)(√ ̄),對(duì)數(shù)(log,lg,ln,lb,lim),比(:),絕對(duì)值符號(hào)| |,微分(d),積分(∫),閉合曲面(曲線(xiàn))積分(∮)等。
【高中數(shù)學(xué)學(xué)習(xí)的知識(shí)點(diǎn)】相關(guān)文章:
高中數(shù)學(xué)必修知識(shí)點(diǎn)11-08
高中數(shù)學(xué)知識(shí)點(diǎn)11-03
高中數(shù)學(xué)知識(shí)點(diǎn)07-25
高中數(shù)學(xué)橢圓知識(shí)點(diǎn)06-15
高中數(shù)學(xué)導(dǎo)數(shù)知識(shí)點(diǎn)總結(jié)05-09
高中數(shù)學(xué)全部知識(shí)點(diǎn)總結(jié)04-25
高中數(shù)學(xué)統(tǒng)計(jì)知識(shí)點(diǎn)總結(jié)10-21
高中數(shù)學(xué)知識(shí)點(diǎn)的總結(jié)03-07