高一數(shù)學教案
作為一名辛苦耕耘的教育工作者,總歸要編寫教案,借助教案可以提高教學質量,收到預期的教學效果。教案應該怎么寫呢?以下是小編為大家整理的高一數(shù)學教案,僅供參考,歡迎大家閱讀。
高一數(shù)學教案1
一、指導思想與理論依據(jù)
數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構主義的“創(chuàng)設問題情境——提出數(shù)學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導、探索相結合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現(xiàn)的更加完美。
二、教材分析
三角函數(shù)的誘導公式是普通高中課程標準實驗教科書(人教A版)數(shù)學必修四,第一章第三節(jié)的內容,其主要內容是三角函數(shù)誘導公式中的公式(二)至公式(六)。本節(jié)是第一課時,教學內容為公式(二)、(三)、(四)。教材要求通過學生在已經掌握的任意角的三角函數(shù)的定義和誘導公式(一)的基礎上,利用對稱思想發(fā)現(xiàn)任意角與、、終邊的對稱關系,發(fā)現(xiàn)他們與單位圓的交點坐標之間關系,進而發(fā)現(xiàn)他們的三角函數(shù)值的關系,即發(fā)現(xiàn)、掌握、應用三角函數(shù)的誘導公式公式(二)、(三)、(四)。同時教材滲透了轉化與化歸等數(shù)學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求。為此本節(jié)內容在三角函數(shù)中占有非常重要的地位。
三、學情分析
本節(jié)課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發(fā)現(xiàn)的教學方法應該能輕松的完成本節(jié)課的教學內容。
四、教學目標
(1);A知識目標:理解誘導公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導公式;
。2)。能力訓練目標:能正確運用誘導公式求任意角的正弦、余弦、正切值,以及進行簡單的三角函數(shù)求值與化簡;
。3)。創(chuàng)新素質目標:通過對公式的推導和運用,提高三角恒等變形的能力和滲透化歸、數(shù)形結合的數(shù)學思想,提高學生分析問題、解決問題的能力;
(4)。個性品質目標:通過誘導公式的學習和應用,感受事物之間的普通聯(lián)系規(guī)律,運用化歸等數(shù)學思想方法,揭示事物的本質屬性,培養(yǎng)學生的唯物史觀。
五、教學重點和難點
1。教學重點
理解并掌握誘導公式。
2。教學難點
正確運用誘導公式,求三角函數(shù)值,化簡三角函數(shù)式。
六、教法學法以及預期效果分析
“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數(shù)學知識,更重要的是傳授給學生數(shù)學思想方法,如何實現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認真探究。下面我從教法、學法、預期效果等三個方面做如下分析。
1。教法
數(shù)學教學是數(shù)學思維活動的教學,而不僅僅是數(shù)學活動的結果,數(shù)學學習的目的不僅僅是為了獲得數(shù)學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質。
在本節(jié)課的教學過程中,本人以學生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結合等數(shù)學思想方法,采用提出問題、啟發(fā)引導、共同探究、綜合應用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環(huán)境,讓學生體味學習的快樂和成功的喜悅。
2。學法
“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情。如何能讓學生程度的消化知識,提高學習熱情是教者必須思考的問題。
在本節(jié)課的教學過程中,本人引導學生的學法為思考問題、共同探討、解決問題簡單應用、重現(xiàn)探索過程、練習鞏固。讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉化為主動的'自主學習。
3。預期效果
本節(jié)課預期讓學生能正確理解誘導公式的發(fā)現(xiàn)、證明過程,掌握誘導公式,并能熟練應用誘導公式了解一些簡單的化簡問題。
七、教學流程設計
。ㄒ唬﹦(chuàng)設情景
1。復習銳角300,450,600的三角函數(shù)值;
2。復習任意角的三角函數(shù)定義;
3。問題:由,你能否知道sin2100的值嗎?引如新課。
設計意圖
自信的鼓勵是增強學生學習數(shù)學的自信,簡單易做的題加強了每個學生學習的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機會證明我能行,從而思考解決的辦法。
。ǘ┬轮骄
1。讓學生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關系;
2。讓學生發(fā)現(xiàn)300角的終邊和2100角的終邊與單位圓的交點的坐標有什么關系;
3。Sin2100與sin300之間有什么關系。
設計意圖
由特殊問題的引入,使學生容易了解,實現(xiàn)教學過程的平淡過度,為同學們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關系做好鋪墊。
。ㄈ﹩栴}一般化
探究一
1。探究發(fā)現(xiàn)任意角的終邊與的終邊關于原點對稱;
2。探究發(fā)現(xiàn)任意角的終邊和角的終邊與單位圓的交點坐標關于原點對稱;
3。探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關系。
設計意圖
首先應用單位圓,并以對稱為載體,用聯(lián)系的觀點,把單位圓的性質與三角函數(shù)聯(lián)系起來,數(shù)形結合,問題的設計提問從特殊到一般,從線對稱到點對稱到三角函數(shù)值之間的關系,逐步上升,一氣呵成誘導公式二。同時也為學生將要自主發(fā)現(xiàn)、探索公式三和四起到示范作用,下面練習設計為了熟悉公式一,讓學生感知到成功的喜悅,進而敢于挑戰(zhàn),敢于前進
。ㄋ模┚毩
利用誘導公式(二),口答下列三角函數(shù)值。
。1)。;(2)。;(3)。。
喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題。
。ㄎ澹﹩栴}變形
由sin3000=—sin600出發(fā),用三角的定義引導學生求出sin(—3000),Sin1500值,讓學生聯(lián)想若已知sin3000=—sin600,能否求出sin(—3000),Sin1500)的值。學生自主探究
高一數(shù)學教案2
【學習目標】
1、感受數(shù)學探索的成功感,提高學習數(shù)學的興趣;
2、經歷誘導公式的探索過程,感悟由未知到已知、復雜到簡單的數(shù)學轉化思想。
3、能借助單位圓的對稱性理解記憶誘導公式,能用誘導公式進行簡單應用。
【學習重點】三角函數(shù)的誘導公式的理解與應用
【學習難點】誘導公式的推導及靈活運用
【知識鏈接】(1)單位圓中任意角α的正弦、余弦的定義
。2)對稱性:已知點P(x,),那么,點P關于x軸、軸、原點對稱的點坐標
【學習過程】
一、預習自學
閱讀書第19頁——20頁內容,通過對-α、π-α、π+α、2π-α、α的終邊與單位圓的交點的對稱性規(guī)律的探究,結合單位圓中任意角的正弦、余弦的定義,從中自我發(fā)現(xiàn)歸納出三角函數(shù)的誘導公式,并寫出下列關系:
(1)- 407[導學案]4.4單位圓的對稱性與誘導公式與 407[導學案]4.4單位圓的對稱性與誘導公式 的正弦函數(shù)、余弦函數(shù)關系
(2)角407[導學案]4.4單位圓的對稱性與誘導公式與角 407[導學案]4.4單位圓的`對稱性與誘導公式 的正弦函數(shù)、余弦函數(shù)關系
(3)角 407[導學案]4.4單位圓的對稱性與誘導公式與角 407[導學案]4.4單位圓的對稱性與誘導公式 的正弦函數(shù)、余弦函數(shù)關系
(4)角 407[導學案]4.4單位圓的對稱性與誘導公式與角 407[導學案]4.4單位圓的對稱性與誘導公式 的正弦函數(shù)、余弦函數(shù)關系
二、合作探究
探究1、求下列函數(shù)值,思考你用到了哪些三角函數(shù)誘導公式?試總結一下求任意角的三角函數(shù)值的過程與方法。
。1) 407[導學案]4.4單位圓的對稱性與誘導公式 (2) 407[導學案]4.4單位圓的對稱性與誘導公式 (3)sin(-1650°);
探究2: 化簡: 407[導學案]4.4單位圓的對稱性與誘導公式 407[導學案]4.4單位圓的對稱性與誘導公式(先逐個化簡)
探究3、利用單位圓求滿足 407[導學案]4.4單位圓的對稱性與誘導公式 的角的集合。
三、學習小結
(1)你能說說化任意角的正(余)弦函數(shù)為銳角正(余)弦函數(shù)的一般思路嗎?
。2)本節(jié)學習涉及到什么數(shù)學思想方法?
。3)我的疑惑有
【達標檢測】
1、在單位圓中,角α的終邊與單位圓交于點P(- 407[導學案]4.4單位圓的對稱性與誘導公式 , 407[導學案]4.4單位圓的對稱性與誘導公式 ),
則sin(-α)= ;cs(α±π)= ;cs(π-α)=
2.求下列函數(shù)值:
。1)sin( 407[導學案]4.4單位圓的對稱性與誘導公式 )= ; (2) cs210&rd;=
3、若csα=-1/2,則α的集合S=
高一數(shù)學教案3
【內容與解析】
本節(jié)課要學的內容有函數(shù)的概念指的是函數(shù)的概念及符號的理解,理解它關鍵就是能用集合與對應的語言刻畫函數(shù),體會對應關系在刻畫函數(shù)概念中的作用。學生已經學過了集合并且初中對函數(shù)的概念已經作了介紹,本節(jié)課的內容函數(shù)的概念就是在此基礎上的發(fā)展的。由于它還與基本初等函數(shù)和函數(shù)模型等內容有必要的聯(lián)系,所以在本學科有著很重要的地位,是學習后面知識的基礎,是本學科的核心內容。教學的重點是函數(shù)的概念,函數(shù)的三要素,所以解決重點的關鍵是通過實例領悟構成函數(shù)的三個要素;會求一些簡單函數(shù)的定義域和值域。
【教學目標與解析】
1、教學目標
。1)理解函數(shù)的概念;
(2)了解區(qū)間的概念;
2、目標解析
(1)理解函數(shù)的概念就是指能用集合與對應的語言刻畫函數(shù),體會對應關系在刻畫函數(shù)概念中的作用;
(2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;
【問題診斷分析】
在本節(jié)課的教學中,學生可能遇到的問題是函數(shù)的概念及符號的理解,產生這一問題的原因是:函數(shù)本身就是一個抽象的概念,對學生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數(shù)的概念,培養(yǎng)學生的抽象概況能力,其中關鍵是理論聯(lián)系實際,把抽象轉化為具體。
【教學過程】
問題1:一枚炮彈發(fā)射后,經過26s落到地面擊中目標.炮彈的射高為845m,且炮彈距離地面的'高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時間變量t之間的對應關系是否為函數(shù)?若是,其自變量是什么?
設計意圖:通過以上問題,讓學生正確理解讓學生體會用解析式或圖象刻畫兩個變量之間的依賴關系,從問題的實際意義可知,在t的變化范圍內任給一個t,按照給定的對應關系,都有唯一的一個高度h與之對應。
問題2:分析教科書中的實例(2),引導學生看圖并啟發(fā):在t的變化t按照給定的圖象,都有唯一的一個臭氧層空洞面積S與之相對應。
問題3:要求學生仿照實例(1)、(2),描述實例(3)中恩格爾系數(shù)和時間的關系。
設計意圖:通過這些問題,讓學生理解得到函數(shù)的定義,培養(yǎng)學生的歸納、概況的能力。
問題4:上述三個實例中變量之間的關系都是函數(shù),那么從集合與對應的觀點分析,函數(shù)還可以怎樣定義?
4.1在一個函數(shù)中,自變量x和函數(shù)值y的變化范圍都是集合,這兩個集合分別叫什么名稱?
4.2在從集合A到集合B的一個函數(shù)f:A→B中,集合A是函數(shù)的定義域,集合B是函數(shù)的值域嗎?怎樣理解f(x)=1,x∈R?
4.3一個函數(shù)由哪幾個部分組成?如果給定函數(shù)的定義域和對應關系,那么函數(shù)的值域確定嗎?兩個函數(shù)相等的條件是什么?
【例題】:
例1求下列函數(shù)的定義域
分析:求定義域就是使式子有意義的x的取值所構成的集合;定義域一定是集合!
例2已知函數(shù)
分析:理解函數(shù)f(x)的意義
例3下列函數(shù)中哪個與函數(shù)相等?
例4在下列各組函數(shù)中與是否相等?為什么?
分析:
(1)兩個函數(shù)相等,要求定義域和對應關系都一致;
。2)用x還是用其它字母來表示自變量對函數(shù)實質而言沒有影響.
【課堂目標檢1測】
教科書第19頁1、2.
【課堂小結】
1、理解函數(shù)的定義,函數(shù)的三要素,會球簡單的函數(shù)的定義域和函數(shù)值;
2、理解區(qū)間是表示數(shù)集的一種方法,會把不等式轉化為區(qū)間。
高一數(shù)學教案4
【教學目的】
通過等可能事件概率的講解,使學生得到一種較簡單的、較現(xiàn)實的計算事件概率的方法。
1.了解基本事件;等可能事件的概念;
2.理解等可能事件的概率的定義,能運用此定義計算等可能事件的概率
【教學重點】
熟練、準確地應用排列、組合知識,是順利求出等可能事件概率的重要方法。1.等可能事件的概率的意義:如果在一次試驗中可能出現(xiàn)的結果有n個,而且所有結果出現(xiàn)的可能性都相等,那么每一個基本事件的概率都是,如果事件A包含m個結果,那么事件A的概率P(A)=? 。2.等可能事件A的概率公式的簡單應用。
【教學難點】
等可能事件概率的計算方法。試驗中出現(xiàn)的結果個數(shù)n必須是有限的,每個結果出現(xiàn)的可能性必須是相等的。
【教學過程】
一、復習提問
1.下面事件:①在標準大氣壓下,水加熱到800C時會沸騰。②擲一枚硬幣,出現(xiàn)反面。③實數(shù)的絕對值不小于零;是不可能事件的有
A.②B. ① C. ①②D. ③
2.下面事件中:①連續(xù)擲一枚硬幣,兩次都出現(xiàn)正面朝上;②異性電荷,相互吸引;③在標準大氣壓下,水在10C結冰。是隨機事件的有
A.②B. ③ C. ① D.②③
3.下列命題是否正確,請說明理由
①“當x∈R時,sinx+cosx≤1”是必然事件;
、凇爱敚蔙時,sinx+cosx≤1”是不可能然事件;
、邸爱敚蔙時,sinx+cosx<2”是隨機事件;
、堋爱敚蔙時,sinx+cosx<2”是必然事件;
3.某人進行打靶練習,共射擊10次,其中有2次擊中10環(huán),有3次擊中9環(huán),有4次擊中8環(huán),有1次未中靶,試計算此人中靶的頻率,假設此人射擊1次,問中靶的概率大約是多少?
4.上拋一個刻著1、2、3、4、5、6字樣的正六面體方塊出現(xiàn)字樣為“3”的事件的概率是多少?出現(xiàn)字樣為“0”的事件的概率為多少?上拋一個刻著六個面都是“P”字樣的正方體方塊出現(xiàn)字樣為“P”的事件的概率為多少?
二、新課引入
隨機事件的概率,一般可以通過大量重復試驗求得其近似值。但對于某些隨機事件,也可以不通過重復試驗,而只通過對一次試驗中可能出現(xiàn)的結果的分析來計算其概率。這種計算隨機事件概率的方法,比經過大量重復試驗得出來的概率,有更簡便的運算過程;有更現(xiàn)實的計算方法。這一節(jié)課程的學習,對有關排列、組合的基本知識和基本思考問題的方法有較高的要求。
三、進行新課
上面我們已經說過:隨機事件的概率,一般可以通過大量重復試驗求得其近似值。但對于某些隨機事件,也可以不通過重復試驗,而只通過對一次試驗中可能出現(xiàn)的結果的分析來計算其概率。
例如,擲一枚均勻的硬幣,可能出現(xiàn)的結果有:正面向上,反面向上。由于硬幣是均勻的,可以認為出現(xiàn)這兩種結果的可能發(fā)生是相等的。即可以認為出現(xiàn)“正面向上”的概率是1/2,出現(xiàn)“反面向上”的概率也是1/2。這與前面表1中提供的大量重復試驗的結果是一致的。
又如拋擲一個骰子,它落地時向上的數(shù)的可能是情形1,2,3,4,5,6之一。即可能出現(xiàn)的結果有6種。由于骰子是均勻的,可以認為這6種結果出現(xiàn)的.可能發(fā)生都相等,即出現(xiàn)每一種結果的概率都是1/6。這種分析與大量重復試驗的結果也是一致的。
現(xiàn)在進一步問:骰子落地時向上的數(shù)是3的倍數(shù)的概率是多少?
由于向上的數(shù)是3,6這2種情形之一出現(xiàn)時,“向上的數(shù)是3的倍數(shù)”這一事件(記作事件A)發(fā)生。因此事件A的概率P(A)=2/6=1/3
定義1基本事件:一次試驗連同其中可能出現(xiàn)的每一個結果稱為一個基本事件。
通常此試驗中的某一事件A由幾個基本事件組成。如果一次試驗中可能出現(xiàn)的結果有n個,即此試驗由n個基本事件組成,而且所有結果出現(xiàn)的可能性都相等。那么每一個基本的概率都是。如果某個事件A包含的結果有m個,那么事件A的概率P(A)=。亦可表示為P(A)=? 。
四、課堂舉例:
【例題1】有10個型號相同的杯子,其中一等品6個,二等品3個,三等品1個.從中任取1個,取到各個杯子的可能性是相等的。由于是從10個杯子中任取1個,共有10種等可能的結果。又由于其中有6個一等品,從這10個杯子中取到一等品的結果有6種。因此,可以認為取到一等品的概率是。同理,可以認為取到二等品的概率是3/10,取到三等品的概率是。這和大量重復試驗的結果也是一致的。
【例題2】從52張撲克牌中任意抽取一張(記作事件A),那么不論抽到哪一張都是機會均等的,也就是等可能性的,不論抽到哪一張花色是紅心的牌(記作事件B)也都是等可能性的;又不論抽到哪一張印有“A”字樣的牌(記作事件C)也都是等可能性的。所以各個事件發(fā)生的概率分別為P(A)==1,P(B)==,P(C)==
在一次試驗中,等可能出現(xiàn)的n個結果組成一個集合I,這n個結果就是集合I的n個元素。各基本事件均對應于集合I的含有1個元素的子集,包含m個結果的事件A對應于I的含有m個元素的子集A.因此從集合的角度看,事件A的概率是子集A的元素個數(shù)(記作card(A))與集合I的元素個數(shù)(記作card(I))的比值。即P(A)==
例如,上面擲骰子落地時向上的數(shù)是3的倍數(shù)這一事件A的概率P(A)===
【例3】先后拋擲兩枚均勻的硬幣,計算:
(1)兩枚都出現(xiàn)正面的概率;
(2)一枚出現(xiàn)正面、一枚出現(xiàn)反面的概率。
分析:拋擲一枚硬幣,可能出現(xiàn)正面或反面這兩種結果。因而先后拋擲兩枚硬幣可能出現(xiàn)的結果數(shù),可根據(jù)乘法原理得出。由于硬幣是均勻的,所有結果出現(xiàn)的可能性都相等。又在所有等可能的結果中,兩枚都出現(xiàn)正面這一事件包含的結果數(shù)是可以知道的,從而可以求出這個事件的概率。同樣,一枚出現(xiàn)正面、一枚出現(xiàn)反面這一事件包含的結果數(shù)是可以知。道的,從而也可求出這個事件的概率。
解:由乘法原理,先后拋擲兩枚硬幣可能出現(xiàn)的結果共有2×2=4種,且這4種結果出現(xiàn)的可能性都相等。
(1)記“拋擲兩枚硬幣,都出現(xiàn)正面”為事件A,那么在上面4種結果中,事件A包含的結果有1種,因此事件A的概率
P(A)=1/4
答:兩枚都出現(xiàn)正面的概率是1/4。
(2)記“拋擲兩枚硬幣,一枚出觀正面、一枚出現(xiàn)反面”為事件B。那么事件B包含的結果有2種,因此事件B的概率
P(B)=2/4=1/2
答:一枚出現(xiàn)正面、一枚出現(xiàn)反面的概率是1/2。
【例4】在100件產品中,有95件合格品,5件次品。從中任取2件,計算:
(1)2件都是合格品的概率;
(2)2件都是次品的概率;
(3)1件是合格品、1件是次品的概率。
分析:從100件產品中任取2件可能出現(xiàn)的結果數(shù),就是從、100個元素中任取2個的組合數(shù)。由于是任意抽取,這些結果出現(xiàn)的可能性都相等。又由于在所有產品中有95件合格品、5件次品,取到2件合格品的結果數(shù),就是從95個元素中任取2個的組合數(shù);取到2件次品的結果數(shù),就是從5個元素中任取2個的組合數(shù);取到1件合格品、1件次品的結果數(shù),就是從95個元素中任取1個元素的組合數(shù)與從5個元素中任取1個元素的組合數(shù)的積,從而可以分別得到所求各個事件的概率。
解:(1)從100件產品中任取2件,可能出現(xiàn)的結果共有種,且這些結果出現(xiàn)的可能性都相等。又在種結果中,取到2件合格品的結果有種。記“任取2件,都是’合格品”為事件A,那么事件A的概率
P(A)=? /? =893/990
答:2件都是合格品的概率為893/990
(2)記“任取2件,都是次品”為事件B。由于在種結果中,取到2件次品的結果有C52種,事件B的概率
P(B)=? /? =1/495
答:2件都是次品的概率為1/495
(3)記“任取2件,1件是合格品、I件是次品”為C。由于在種結果中,取到1件合格品、l件次品的結果有?種,事件C的概率
P(C)= /? =19/198
答:1件是合格品、1件是次品的概率為19/198
【例5】某號碼鎖有6個撥盤,每個撥盤上有從0到9共十個數(shù)字,當6個撥盤上的數(shù)字組成某一個六位數(shù)字號碼(開鎖號碼)時,鎖才能打開。如果不知道開鎖號碼,試開一次就把鎖打開的概率是多少?
分析:號碼鎖每個撥盤上的數(shù)字,從0到9共有十個。6個撥盤上的各一個數(shù)字排在?起,就是一個六位數(shù)字號碼。根據(jù)乘法原理,這種號碼共有10的6次方個。由于不知道開鎖號碼,試開時采用每一個號碼的可能性都相等。又開鎖號碼只有一個,從而可以求出試開一次就把鎖打開的概率。
解:號碼鎖每個撥盤上的數(shù)字有10種可能的取法。根據(jù)乘法原理,6個撥盤上的數(shù)字組成的六位數(shù)字號碼共有10的6次方個。又試開時采用每一個號碼的可能性都相等,且開鎖號碼只有一個,所以試開一次就把鎖打開的概率
P=1/1000000
答:試開一次就把鎖打開的概率是1/1000000
五、課堂小結:用本節(jié)課的觀點求隨機事件的概率時,首先對于在試驗中出現(xiàn)的結果的可能性認為是相等的;其次是對于通過一個比值的計算來確定隨機事件的概率,并不需要通過大量重復的試驗。因此,從方法上來說這一節(jié)課所提到的方法,要比上一節(jié)所提到的方法簡便得多,并且更具有實用價值。
六、課堂練習
1.(口答)在40根纖維中,有12根的長度超過30毫米。從中任取1根,取到長度超過30毫米的纖維的概率是多少?
2.在10支鉛筆中,有8支正品和2支副品。從中任取2支,恰好都取到正品的概率是多少?
七、布置作業(yè):課本第120頁習題10.5第2――-6題
高一數(shù)學教案5
教學目標
熟悉與數(shù)列知識相關的背景,如增長率、存款利息等問題,提高學生閱讀理解能力、抽象轉化的能力以及解答實際問題的能力,強化應用儀式。
教學重難點
熟悉與數(shù)列知識相關的背景,如增長率、存款利息等問題,提高學生閱讀理解能力、抽象轉化的能力以及解答實際問題的能力,強化應用儀式。
教學過程
【復習要求】
熟悉與數(shù)列知識相關的背景,如增長率、存款利息等問題,提高學生閱讀理解能力、抽象轉化的能力以及解答實際問題的能力,強化應用儀式。
【方法規(guī)律】
應用數(shù)列知識界實際應用問題的關鍵是通過對實際問題的綜合分析,確定其數(shù)學模型是等差數(shù)列,還是等比數(shù)列,并確定其首項,公差(或公比)等基本元素,然后設計合理的計算方案,即數(shù)學建模是解答數(shù)列應用題的關鍵。
一、基礎訓練
1.某種細菌在培養(yǎng)過程中,每20分鐘xx一次(一個xx為兩個),經過3小時,這種細菌由1個可繁殖成()
A、511B、512C、1023D、1024
2.若一工廠的生產總值的月平均增長率為p,則年平均增長率為()
A、B、
C、D、
二、典型例題
例1:某人每期期初到銀行存入一定金額A,每期利率為p,到第n期共有本金nA,xx期的利息是nAp,第二期的利息是(n-1)Ap……,第n期(即xx后一期)的利息是Ap,問到第n期期末的本金和是多少?
評析:此例來自一種常見的存款叫做零存整取。存款的方式為每月的某日存入一定的金額,這是零存,一定時期到期,可以提出全部本金及利息,這是整取。計算本利和就是本例所用的有窮等差數(shù)列求和的方法。用實際問題列出就是:本利和=每期存入的`金額[存期+1/2存期(存期+1)利率]
例2:某人從1999到20xx年間,每年6月1日都到銀行存入m元的一年定期儲蓄,若每年利率q保持不變,且每年到期的存款本息均自動轉為新的一年定期,到20xx年6月1日,此人到銀行不再存款,而是將所有存款的本息全部取回,則取回的金額是多少元?
例3、某地區(qū)位于沙漠邊緣,人與自然進行長期頑強的斗爭,到1999年底全地區(qū)的綠化率已達到30%,從20xx年開始,每年將出現(xiàn)以下的變化:原有沙漠面積的16%將栽上樹,改造為綠洲,同時,原有綠洲面積的4%又被侵蝕,變?yōu)樯衬?問經過多少年的努力才能使全縣的綠洲面積超過60%.(lg2=0.3)
例4、.流行性感冒(簡稱流感)是由流感病毒引起的急性呼吸道傳染病.某市去年11月分曾發(fā)生流感,據(jù)資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染著減少30人,到11月30日止,該市在這30天內感染該病毒的患者共有8670人,問11月幾日,該市感染此病毒的新的患者人數(shù)xx多?并求這一天的新患者人數(shù).
高一數(shù)學教案6
一、教學目標:
1、知識與技能:理解并掌握等比數(shù)列的性質并且能夠初步應用。
2、過程與方法:通過觀察、類比、猜測等推理方法,提高我們分析、綜合、抽象、概括等邏輯思維能力。
3、情感態(tài)度價值觀:體會類比在研究新事物中的作用,了解知識間存在的共同規(guī)律。
二、重點:等比數(shù)列的性質及其應用。
難點:等比數(shù)列的性質應用。
三、教學過程。
同學們,我們已經學習了等差數(shù)列,又學習了等比數(shù)列的基礎知識,今天我們繼續(xù)學習等比數(shù)列的性質及應用。我給大家發(fā)了導學稿,讓大家做了預習,現(xiàn)在找同學對照下面的表格說說等差數(shù)列和等比數(shù)列的差別。
數(shù)列名稱等差數(shù)列等比數(shù)列
定義一個數(shù)列,若從第二項起每一項減去前一項之差都是同一個常數(shù),則這個數(shù)列是等差數(shù)列。一個數(shù)列,若從第二項起每一項與前一項之比都是同一個非零常數(shù),則這個數(shù)列是等比數(shù)列。
定義表達式an—an—1=d(n≥2)
。╭≠0)
通項公式證明過程及方法
an—an—1=d;an—1—an—2=d,…a2—a1=d
an—an—1+ an—1—an—2+…+a2—a1=(n—1)d
an=a1+(n—1)—d
累加法;……、
an=a1q n—1
累乘法
通項公式an=a1+(n—1)—d an=a1q n—1
多媒體投影(總結規(guī)律)
數(shù)列名稱等差數(shù)列等比數(shù)列
定義等比數(shù)列用“比”代替了等差數(shù)列中的“差”
定義
表
達式an—an—1=d(n≥2)
通項公式證明
迭加法迭乘法
通項公式
加—乘
乘—乘方
通過觀察,同學們發(fā)現(xiàn):
等差數(shù)列中的減法、加法、乘法,等比數(shù)列中升級為除法、乘法、乘方
四、探究活動。
探究活動1:小組根據(jù)導學稿內容研討等比數(shù)列的性質,并派學生代表上來講解練習1;等差數(shù)列的性質1;猜想等比數(shù)列的性質1;性質證明。
練習1在等差數(shù)列{an}中,a2= —2,d=2,求a4=_____(用一個公式計算)解:a4= a2+(n—2)d=—2+(4—2)—2=2
等差數(shù)列的性質1:在等差數(shù)列{an}中,a n=am+(n—m)d、
猜想等比數(shù)列的性質1若{an}是公比為q的等比數(shù)列,則an=am—qn—m
性質證明右邊= am—qn—m= a1qm—1qn—m= a1qn—1=an=左邊
應用在等比數(shù)列{an}中,a2= —2,q=2,求a4=_____、解:a4= a2q4—2=—2—22=—8
探究活動2:小組根據(jù)導學稿內容研討等比數(shù)列的性質,并派學生代表上來講解練習2;等差數(shù)列的性質2;猜想等比數(shù)列的性質2;性質證明。
練習2在等差數(shù)列{an}中,a3+a4+a5+a6+a7=450,則a2+a8的值為、解:a3+a4+a5+a6+a7=(a3+ a7)+(a4+ a6)+ a5= 2a5+2a5+a5=5 a5=450 a5=90 a2+a8=2×90=180
等差數(shù)列的性質2:在等差數(shù)列{an}中,若m+n=p+q,則am+an=ap+aq特別的,當m=n時,2 an=ap+aq
猜想等比數(shù)列的性質2在等比數(shù)列{an}中,若m+n=s+t則am—an=as—at特別的,當m=n時,an2=ap—aq
性質證明右邊=am—an= a1qm—1 a1qn—1= a12qm+n—1= a12qs+t—1=a1qs—1 a1qt—1= as—at=左邊證明的方向:一般來說,由繁到簡
應用在等比數(shù)列{an}若an>0,a2a4+2a3a5+a4a6=36,則a3+a5=_____、解:a2a4+2a3a5+a4a6= a32+2a3a5+a52=(a3+a5)2=36
由于an>0,a3+a5>0,a3+a5=6
探究活動3:小組根據(jù)導學稿內容研討等比數(shù)列的`性質,并派學生代表上來講解練習3;等差數(shù)列的性質3;猜想等比數(shù)列的性質3;性質證明。
練習3在等差數(shù)列{an}中,a30=10,a45=90,a60=_____、解:a60=2— a45— a30=2×90—10=170
等差數(shù)列的性質3:若an—k,an,an+k是等差數(shù)列{an}中的三項,則這些項構成新的等差數(shù)列,且2an=an—k+an+k
an即時an—k,an,an+k的等差中項
猜想等比數(shù)列的性質3若an—k,an,an+k是等比數(shù)列{an}中的三項,則這些項構成新的等比數(shù)列,且an2=an—k—an+k
an即時an—k,an,an+k的等比中項
性質證明右邊=an—k—an+k= a1qn—k—1 a1qn+k—1= a12qn—k—1+n+k—1= a12q2n—2=(a1qn—1)2t=an2左邊證明的方向:由繁到簡
應用在等比數(shù)列{an}中a30=10,a45=90,a60=_____、
解:a60= = =810
應用等比數(shù)列{an}中,a15=10,a45=90,a60=________、解:
a30= = = 30
A60=
探究活動4:小組根據(jù)導學稿內容研討等比數(shù)列的性質,并派學生代表上來講解練習4;等差數(shù)列的性質4;猜想等比數(shù)列的性質4;性質證明。
練習4設數(shù)列{an} 、{ bn}都是等差數(shù)列,若a1+b1=7,a3+b3=21,則a5+b5=_____、解:a5+b5=2(a3+b3)—(a1+b1)=2—21—7=35
等差數(shù)列的性質4:設數(shù)列{an} 、{ bn}是公差分別為d1、d2的等差數(shù)列,則數(shù)列{an+bn}是公差d1+d2的等差數(shù)列兩個項數(shù)相同的等差數(shù)列的和任然是等差數(shù)列
猜想等比數(shù)列的性質4設數(shù)列{an} 、{ bn}是公比分別為q1、q2的等比數(shù)列,則數(shù)列{an—bn}是公比為q1q2的等比數(shù)列兩個項數(shù)相同的等比數(shù)列的和比一定是等比數(shù)列,兩個項數(shù)相同的等比數(shù)列的積任然是等比數(shù)列。
性質證明證明:設數(shù)列{an}的首項是a1,公比為q1;{bn}的首項為b1,公比為q2,設cn=an?bn那么數(shù)列{an?bn}的第n項與第n+1項分別為:
應用設數(shù)列{an} 、{ bn}都是等比數(shù)列,若a1b1=7,a3b3=21,則a5b5=_____、解:由題意可知{an?bn}是等比數(shù)列,a3b3是a1b1;a5b5的等比中項。
由(a3b3)2= a1b1— a5b5 212= 7— a5b5 a5b5=63
(四個探究活動的設計充分尊重學生的主體地位,以學生的自主學習,自主探究為主題,以教師的指導為輔,開展教學活動)
五、等比數(shù)列具有的單調性
。1)q<0,等比數(shù)列為擺動數(shù)列,不具有單調性
。2)q>0(舉例探討并填表)
a1 a1>0 a1<0
q的范圍0 q=1 q>1 0 q=1 q>1
{an}的單調性單調遞減不具有單調性單調遞增單調遞增不具有單調性單調遞減
讓學生舉例說明,并查驗有多少學生填對。(真確評價)
六、課堂練習:
1、已知各項均為正數(shù)的等比數(shù)列{an}中,a1a2a3=5,a7a8a9=10,則a4a5a6等于()、
A、 B、?7 C、?6 D、?
解析:由已知得a32?=5,?a82=10,∴a4a5a6=a53?= = =5?、
答案:A
2、已知數(shù)列1,a1,a2,4是等比數(shù)列,則a1a2= 、
答案:4
3、 +1與—1兩數(shù)的等比中項是()、
A、1 B、?—1 C、?D、±1?
解析:根據(jù)等比中項的定義式去求。答案:選D
4、已知等比數(shù)列{an}的公比為正數(shù),且a3a9=2?,a2=1,則a1等于()、
A、2 B、?C、?D、?
解析:∵a3a9= =2?,∴?=q2=2,∵q>0,∴q=?、故a1=?=?=?、
答案:C
5練習題:三個數(shù)成等比數(shù)列,它們的和等于14,它們的積等于64,求這三個數(shù)。
分析:若三個數(shù)成等差數(shù)列,則設這三個數(shù)為a—d,a,a+d、
由類比思想的應用可得,若三個數(shù)成等比數(shù)列,則設這三個數(shù)
為:根據(jù)題意
再由方程組可得:q=2或
既這三個數(shù)為2,4,8或8,4,2。
七、小結
本節(jié)課通過觀察、類比、猜測等推理方法,研究等比數(shù)列的性質及其應用,從而培養(yǎng)和提高我們綜合運用分析、綜合、抽象、概括,邏輯思維解決問題的能力。
八、
§3、1、2等比數(shù)列的性質及應用
性質一:若{an}是公比為q的等比數(shù)列,則an=am—qn—m
性質二:在等比數(shù)列{an}中,若m+n=s+t則am—an=as—at
性質三:若an—k,an,an+k是等比數(shù)列{an}中的三項,則這些
項構成新的等比數(shù)列,且an2=an—k—an+k
性質四:設數(shù)列{an} 、{ bn}是公比分別為q1、q2的等比
數(shù)列,則數(shù)列{an—bn}是公比為q1q2的等比數(shù)列
板書設計
九、反思
高一數(shù)學教案7
教學目標
(1)掌握一元二次不等式的解法;
(2)知道一元二次不等式可以轉化為一元一次不等式組;
(3)了解簡單的分式不等式的解法;
(4)能利用二次函數(shù)與一元二次方程來求解一元二次不等式,理解它們三者之間的內在聯(lián)系;
(5)能夠進行較簡單的分類討論,借助于數(shù)軸的直觀,求解簡單的含字母的一元二次不等式;
(6)通過利用二次函數(shù)的圖象來求解一元二次不等式的解集,培養(yǎng)學生的數(shù)形結合的數(shù)學思想;
(7)通過研究函數(shù)、方程與不等式之間的內在聯(lián)系,使學生認識到事物是相互聯(lián)系、相互轉化的,樹立辨證的世界觀.
教學重點:一元二次不等式的解法;
教學難點:弄清一元二次不等式與一元二次方程、二次函數(shù)的關系.
教與學過程設計
第一課時
、.設置情境
問題:
①解方程
、谧骱瘮(shù) 的圖像
③解不等式
【置疑】在解決上述三問題的基礎上分析,一元一次函數(shù)、一元一次方程、一元一次不等式之間的關系。能通過觀察一次函數(shù)的圖像求得一元一次不等式的解集嗎?
【回答】函數(shù)圖像與x軸的交點橫坐標為方程的根,不等式 的解集為函數(shù)圖像落在x軸上方部分對應的橫坐標。能。
通過多媒體或其他載體給出下列表格。扼要講解怎樣通過觀察一次函數(shù)的圖像求得一元一次不等式的解集。注意色彩或彩色粉筆的運用
在這里我們發(fā)現(xiàn)一元一次方程,一次不等式與一次函數(shù)三者之間有著密切的聯(lián)系。利用這種聯(lián)系(集中反映在相應一次函數(shù)的圖像上!)我們可以快速準確地求出一元一次不等式的解集,類似地,我們能不能將現(xiàn)在要求解的一元二次不等式與二次函數(shù)聯(lián)系起來討論找到其求解方法呢?
Ⅱ.探索與研究
我們現(xiàn)在就結合不等式 的求解來試一試。(師生共同活動用“特殊點法”而非課本上的“列表描點”的方法作出 的圖像,然后請一位程度中下的同學寫出相應一元二次方程及一元二次不等式的解集。)
【答】方程 的解集為
不等式 的解集為
【置疑】哪位同學還能寫出 的解法?(請一程度差的同學回答)
【答】不等式 的解集為
我們通過二次函數(shù) 的圖像,不僅求得了開始上課時我們還不知如何求解的那個第(5)小題 的解集,還求出了 的解集,可見利用二次函數(shù)的圖像來解一元二次不等式是個十分有效的方法。
下面我們再對一般的一元二次不等式 與 來進行討論。為簡便起見,暫只考慮 的情形。請同學們思考下列問題:
如果相應的一元二次方程 分別有兩實根、惟一實根,無實根的話,其對應的二次函數(shù) 的圖像與x軸的位置關系如何?(提問程度較好的學生)
【答】二次函數(shù) 的圖像開口向上且分別與x軸交于兩點,一點及無交點。
現(xiàn)在請同學們觀察表中的二次函數(shù)圖,并寫出相應一元二次不等式的解集。(通過多媒體或其他載體給出以下表格)
【答】 的解集依次是
的解集依次是
它是我們今后求解一元二次不等式的主要工具。應盡快將表中的結果記住。其關鍵就是抓住相應二次函數(shù) 的圖像。
課本第19頁上的'例1.例2.例3.它們均是求解二次項系數(shù) 的一元二次不等式,卻都沒有給出相應二次函數(shù)的圖像。其解答過程雖很簡練,卻不太直觀,F(xiàn)在我們在課本預留的位置上分別給它們補上相應二次函數(shù)圖像。
(教師巡視,重點關注程度稍差的同學。)
、.演練反饋
1.解下列不等式:
(1) (2)
(3) (4)
2.若代數(shù)式 的值恒取非負實數(shù),則實數(shù)x的取值范圍是 。
3.解不等式
(1) (2)
參考答案:
1.(1) ;(2) ;(3) ;(4)R
2.
3.(1)
(2)當 或 時, ,當 時,當 或 時, 。
、.總結提煉
這節(jié)課我們學習了二次項系數(shù) 的一元二次不等式的解法,其關鍵是抓住相應二次函數(shù)的圖像與x軸的交點,再對照課本第39頁上表格中的結論給出所求一元二次不等式的解集。
(五)、課時作業(yè)
(P20.練習等3、4兩題)
(六)、板書設計
第二課時
Ⅰ.設置情境
(通過講評上一節(jié)課課后作業(yè)中出現(xiàn)的問題,復習利用“三個二次”間的關系求解一元二次不等式的主要操作過程。)
上節(jié)課我們只討論了二次項系數(shù) 的一元二次不等式的求解問題。肯定有同學會問,那么二次項系數(shù) 的一元二次不等式如何來求解?咱們班上有誰能解答這個疑問呢?
、.探索研究
(學生議論紛紛.有的說仍然利用二次函數(shù)的圖像,有的說將二次項的系數(shù)變?yōu)檎龜?shù)后再求解,…….教師分別請持上述見解的學生代表進一步說明各自的見解.)
生甲:只要將課本第39頁上表中的二次函數(shù)圖像次依關于x軸翻轉變成開口向下的拋物線,再根據(jù)可得的圖像便可求得二次項系數(shù) 的一元二次不等式的解集.
生乙:我覺得先在不等式兩邊同乘以-1將二次項系數(shù)變?yōu)檎龜?shù)后直接運用上節(jié)課所學的方法求解就可以了.
師:首先,這兩種見解都是合乎邏輯和可行的不過按前一見解來操作的話,同學們則需再記住一張類似于第39頁上的表格中的各結論.這不但加重了記憶負擔,而且兩表中的結論容易搞混導致錯誤.而按后一種見解來操作時則不存在這個問題,請同學們閱讀第19頁例4.
(待學生閱讀完畢,教師再簡要講解一遍.)
[知識運用與解題研究]
由此例可知,對于二次項系數(shù)的一元二次不等式是將其通過同解變形化為 的一元二次不等式來求解的,因此只要掌握了上一節(jié)課所學過的方法。我們就能求
解任意一個一元二次不等式了,請同學們求解以下兩不等式.(調兩位程度中等的學生演板)
(1) (2)
(分別為課本P21習題1.5中1大題(2)、(4)兩小題.教師講評兩位同學的解答,注意糾正表述方面存在的問題.)
訓練二 可化為一元一次不等式組來求解的不等式.
目前我們熟悉了利用“三個二次”間的關系求解一元二次不等式的方法雖然對任意一元二次不等式都適用,但具體操作起來還是讓我們感到有點麻煩.故在求解形如 (或 )的一元二次不等式時則根據(jù)(有理數(shù))乘(除)運算的“符號法則”化為同學們更加熟悉的一元一次不等式組來求解.現(xiàn)在清同學們閱讀課本P20上關于不等式 求解的內容并思考:原不等式的解集為什么是兩個一次不等式組解集的并集?(待學生閱讀完畢,請一程度較好,表達能力較強的學生回答該問題.)
【答】因為滿足不等式組 或 的x都能使原不等式 成立,且反過來也是對的,故原不等式的解集是兩個一元二次不等式組解集的并集.
這個回答說明了原不等式的解集A與兩個一次不等式組解集的并集B是互為子集的關系,故它們必相等,現(xiàn)在請同學們求解以下各不等式.(調三位程度各異的學生演板.教師巡視,重點關注程度較差的學生).
(1) [P20練習中第1大題]
(2) [P20練習中第1大題]
(3) [P20練習中第2大題]
(老師扼要講評三位同學的解答.尤其要注意糾正表述方面存在的問題.然后講解P21例5).
例5 解不等式
因為(有理數(shù))積與商運算的“符號法則”是一致的,故求解此類不等式時,也可像求解 (或 )之類的不等式一樣,將其化為一元一次不等式組來求解。具體解答過程如下。
解:(略)
現(xiàn)在請同學們完成課本P21練習中第3、4兩大題。
(等學生完成后教師給出答案,如有學生對不上答案,由其本人追查原因,自行糾正。)
[訓練三]用“符號法則”解不等式的復式訓練。
(通過多媒體或其他載體給出下列各題)
1.不等式 與 的解集相同此說法對嗎?為什么[補充]
2.解下列不等式:
(1) [課本P22第8大題(2)小題]
(2) [補充]
(3) [課本P43第4大題(1)小題]
(4) [課本P43第5大題(1)小題]
(5) [補充]
(每題均先由學生說出解題思路,教師扼要板書求解過程)
參考答案:
1.不對。同 時前者無意義而后者卻能成立,所以它們的解集是不同的。
2.(1)
(2)原不等式可化為: ,即
解集為 。
(3)原不等式可化為
解集為
(4)原不等式可化為 或
解集為
(5)原不等式可化為: 或 解集為
、.總結提煉
這節(jié)課我們重點講解了利用(有理數(shù))乘除法的符號法則求解左式為若干一次因式的積或商而右式為0的不等式。值得注意的是,這一方法對符合上述形狀的高次不等式也是有效的,同學們應掌握好這一方法。
(五)布置作業(yè)
(P22.2(2)、(4);4;5;6。)
(六)板書設計
高一數(shù)學教案8
一、教材
《直線與圓的位置關系》是高中人教版必修2第四章第二節(jié)的內容,直線和圓的位置關系是本章的重點內容之一。從知識體系上看,它既是點與圓的位置關系的延續(xù)與提高,又是學習切線的判定定理、圓與圓的位置關系的基礎。從數(shù)學思想方法層面上看它運用運動變化的觀點揭示了知識的發(fā)生過程以及相關知識間的內在聯(lián)系,滲透了數(shù)形結合、分類討論、類比、化歸等數(shù)學思想方法,有助于提高學生的思維品質。
二、學情
學生初中已經接觸過直線與圓相交、相切、相離的定義和判定;且在上節(jié)的學習過程中掌握了點的坐標、直線的方程、圓的方程以及點到直線的距離公式;掌握利用方程組的方法來求直線的交點;具有用坐標法研究點與圓的位置關系的基礎;具有一定的數(shù)形結合解題思想的基礎。
三、教學目標
(一)知識與技能目標
能夠準確用圖形表示出直線與圓的三種位置關系;可以利用聯(lián)立方程的方法和求點到直線的距離的方法簡單判斷出直線與圓的關系。
(二)過程與方法目標
經歷操作、觀察、探索、總結直線與圓的位置關系的判斷方法,從而鍛煉觀察、比較、概括的邏輯思維能力。
(三)情感態(tài)度價值觀目標
激發(fā)求知欲和學習興趣,鍛煉積極探索、發(fā)現(xiàn)新知識、總結規(guī)律的能力,解題時養(yǎng)成歸納總結的良好習慣。
四、教學重難點
(一)重點
用解析法研究直線與圓的位置關系。
(二)難點
體會用解析法解決問題的數(shù)學思想。
五、教學方法
根據(jù)本節(jié)課教材內容的特點,為了更直觀、形象地突出重點,突破難點,借助信息技術工具,以幾何畫板為平臺,通過圖形的動態(tài)演示,變抽象為直觀,為學生的數(shù)學探究與數(shù)學思維提供支持.在教學中采用小組合作學習的方式,這樣可以為不同認知基礎的學生提供學習機會,同時有利于發(fā)揮各層次學生的作用,教師始終堅持啟發(fā)式教學原則,設計一系列問題串,以引導學生的數(shù)學思維活動。
六、教學過程
(一)導入新課
教師借助多媒體創(chuàng)設泰坦尼克號的情景,并從中抽象出數(shù)學模型:已知冰山的分布是一個半徑為r的'圓形區(qū)域,圓心位于輪船正西的l處,問,輪船如何航行能夠避免撞到冰山呢?如何行駛便又會撞到冰山呢?
教師引導學生回顧初中已經學習的直線與圓的位置關系,將所想到的航行路線轉化成數(shù)學簡圖,即相交、相切、相離。
設計意圖:在已有的知識基礎上,提出新的問題,有利于保持學生知識結構的連續(xù)性,同時開闊視野,激發(fā)學生的學習興趣。
(二)新課教學——探究新知
教師提問如何判斷直線與圓的位置關系,學生先獨立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學所想到的思路。在整個交流討論中,教師既要有對正確認識的贊賞,又要有對錯誤見解的分析及對該學生的鼓勵。
判斷方法:
(1)定義法:看直線與圓公共點個數(shù)
即研究方程組解的個數(shù),具體做法是聯(lián)立兩個方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關系。
(2)比較法:圓心到直線的距離d與圓的半徑r做比較,
(三)合作探究——深化新知
教師進一步拋出疑問,對比兩種方法,由學生觀察實踐發(fā)現(xiàn),兩種方法本質相同,但比較法只適合于直線與圓,而定義法適用范圍更廣。教師展示較為基礎的題目,學生解答,總結思路。
已知直線3x+4y-5=0與圓x2+y2=1,判斷它們的位置關系?
讓學生自主探索,討論交流,并闡述自己的解題思路。
當已知了直線與圓的方程之后,圓心坐標和半徑r易得到,問題的關鍵是如何得到圓心到直線的距離d,他的本質是點到直線的距離,便可以直接利用點到直線的距離公式求d。類比前面所學利用直線方程求兩直線交點的方法,聯(lián)立直線與圓的方程,組成方程組,通過方程組解得個數(shù)確定直線與圓的交點個數(shù),進一步確定他們的位置關系。最后明確解題步驟。
(四)歸納總結——鞏固新知
為了將結論由特殊推廣到一般引導學生思考:
可由方程組的解的不同情況來判斷:
當方程組有兩組實數(shù)解時,直線l與圓C相交;
當方程組有一組實數(shù)解時,直線l與圓C相切;
當方程組沒有實數(shù)解時,直線l與圓C相離。
活動:我將抽取兩位同學在黑板上扮演,并在巡視過程中對部分學生加以指導。最后對黑板上的兩名學生的解題過程加以分析完善。通過對基礎題的練習,鞏固兩種判斷直線與圓的位置關系判斷方法,并使每一個學生獲得后續(xù)學習的信心。
(五)小結作業(yè)
在小結環(huán)節(jié),我會以口頭提問的方式:
(1)這節(jié)課學習的主要內容是什么?
(2)在數(shù)學問題的解決過程中運用了哪些數(shù)學思想?
設計意圖:啟發(fā)式的課堂小結方式能讓學生主動回顧本節(jié)課所學的知識點。也促使學生對知識網絡進行主動建構。
作業(yè):在學生回顧本堂學習內容明確兩種解題思路后,教師讓學生對比兩種解法,那種更簡捷,明確本節(jié)課主要用比較d與r的關系來解決這類問題,對用方程組解的個數(shù)的判斷方法,要求學生課外做進一步的探究,下一節(jié)課匯報。
七、板書設計
我的板書本著簡介、直觀、清晰的原則,這就是我的板書設計。
高一數(shù)學教案9
教學目標:
(1)了解集合的表示方法;
(2)能正確選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;
教學重點:掌握集合的表示方法;
教學難點:選擇恰當?shù)谋硎痉椒?
教學過程:
一、復習回顧:
1.集合和元素的定義;元素的三個特性;元素與集合的關系;常用的數(shù)集及表示。
2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分別是什么?有何關系
二、新課教學
(一).集合的表示方法
我們可以用自然語言和圖形語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。
(1) 列舉法:把集合中的元素一一列舉出來,并用花括號“ ”括起來表示集合的方法叫列舉法。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;
說明:1.集合中的元素具有無序性,所以用列舉法表示集合時不必考
慮元素的順序。
2.各個元素之間要用逗號隔開;
3.元素不能重復;
4.集合中的元素可以數(shù),點,代數(shù)式等;
5.對于含有較多元素的'集合,用列舉法表示時,必須把元素間的規(guī)律顯示清楚后方能用省略號,象自然數(shù)集N用列舉法表示為
例1.(課本例1)用列舉法表示下列集合:
(1)小于10的所有自然數(shù)組成的集合;
(2)方程x2=x的所有實數(shù)根組成的集合;
(3)由1到20以內的所有質數(shù)組成的集合;
(4)方程組 的解組成的集合。
思考2:(課本P4的思考題)得出描述法的定義:
(2)描述法:把集合中的元素的公共屬性描述出來,寫在花括號{ }內。
具體方法:在花括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。
一般格式:
如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…;
說明:
1.課本P5最后一段話;
2.描述法表示集合應注意集合的代表元素,如{(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}是不同的兩個集合,只要不引起誤解,集合的代表元素也可省略,例如:{x|整數(shù)},即代表整數(shù)集Z。
辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實數(shù)集},{R}也是錯誤的。
例2.(課本例2)試分別用列舉法和描述法表示下列集合:
(1)方程x2—2=0的所有實數(shù)根組成的集合;
(2)由大于10小于20的所有整數(shù)組成的集合;
(3)方程組 的解。
思考3:(課本P6思考)
說明:列舉法與描述法各有優(yōu)點,應該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。
(二).課堂練習:
1.課本P6練習2;
2.用適當?shù)姆椒ū硎炯希捍笥?的所有奇數(shù)
3.集合A={x| ∈Z,x∈N},則它的元素是 。
4.已知集合A={x|-3
歸納小結:
本節(jié)課從實例入手,介紹了集合的常用表示方法,包括列舉法、描述法。
作業(yè)布置:
1. 習題1.1,第3.4題;
2. 課后預習集合間的基本關系.
高一數(shù)學教案10
一、目的要求
1、通過本章的引言,使學生初步了解本章所研究的問題是集合與簡易邏輯的有關知識,并認識到用數(shù)學解決實際問題離不開集合與邏輯的知識。
2、在小學與初中的基礎上,結合實例,初步理解集合的概念,并知道常用數(shù)集及其記法。
3、從集合及其元素的概念出發(fā),初步了解屬于關系的意義。
二、內容分析
1、集合是中學數(shù)學的一個重要的基本概念。在小學數(shù)學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題。例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點集。至于邏輯,可以說,從開始學習數(shù)學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具。這些可以幫助學生認識學習本章的意義,也是本章學習的`基礎。
把集合的初步知識與簡易邏輯知識安排在高中數(shù)學的最開始,是因為在高中數(shù)學中,這些知識與其他內容有著密切聯(lián)系,它們是學習、掌握和使用數(shù)學語言的基礎。例如,下一章講函數(shù)的概念與性質,就離不開集合與邏輯。
2、1、1節(jié)首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明。然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子。
3、這節(jié)課主要學習全章的引言和集合的基本概念。學習引言是引發(fā)學生的學習興趣,使學生認識學習本章的意義。本節(jié)課的教學重點是集合的基本概念。
4、在初中幾何中,點、直線、平面等概念都是原始的、不定義的概念,類似地,集合則是集合論中的原始的、不定義的概念。在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識。教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集!边@句話,只是對集合概念的描述性說明。
三、教學過程
提出問題:
教科書引言所給的問題。
組織討論:
為什么“回答有20名同學參賽”不一定對,怎么解決這個問題。
歸納總結:
1、可能有的同學兩次運動會都參加了,因此,不能簡單地用加法解決這個問題、
2、怎么解決這個問題呢?以前我們解一個問題,通常是先用代數(shù)式表示問題中的數(shù)量關系,再進一步求解,也就是先用數(shù)學語言描述它,把它數(shù)學化。這個問題與我們過去學過的問題不同,是屬于與集合有關的問題,因此需要先用集合的語言描述它,完全解決問題,還需要更多的集合與邏輯的知識,這就是本章將要學習的內容了。
提出問題:
1、在初中,我們學過哪些集合?
2、在初中,我們用集合描述過什么?
組織討論:
什么是集合?
歸納總結:
1、代數(shù):實數(shù)集合,不等式的解集等;
幾何:點的集合等。
2、在初中幾何中,圓的概念是用集合描述的。
新課講解:
1、集合的概念:(具體舉例后,進行描述性定義)
(1)某種指定的對象集在一起就成為一個集合,簡稱集。
。2)元素:集合中的每個對象叫做這個集合的元素。
。3)集合中的元素與集合的關系:
a是集合A的元素,稱a屬于集合A,記作a∈A;
a不是集合A的元素,稱a不屬于集合A,記作。
例如,設B={1,2,3,4,5},那么5∈B,注:集合、元素概念是數(shù)學中的原始概念,可以結合實例理解它們所描述的整體與個體的關系,同時,應著重從以下三個元素的屬性,來把握集合及其元素的確切含義。
、俅_定性:集合中的元素是確定的,即給定一個集合,任何一個對象是不是這個集合的元素也就確定了。
例如,像“我國的小河流”、“年輕人”、“接近零的數(shù)”等都不能組成一個集合。
、诨ギ愋裕杭现械脑厥腔ギ惖模醇现械脑厥菦]有重復的。
此外,集合還有無序性,即集合中的元素無順序。
例如,集合{1,2},與集合{2,1}表示同一集合。
2、常用的數(shù)集及其記法:
全體非負整數(shù)的集合通常簡稱非負整數(shù)集(或自然數(shù)集),記作N,非負整數(shù)集內排除0的集,表示成或;
全體整數(shù)的集合通常簡稱整數(shù)集,記作Z;
全體有理數(shù)的集合通常簡稱有理數(shù)集,記作Q;
全體實數(shù)的集合通常簡稱實數(shù)集,記作R。
注:①自然數(shù)集與非負整數(shù)集是相同的,就是說,自然數(shù)集包括數(shù)0,這與小學和初中學習的可能有所不同;
、诜秦撜麛(shù)集內排除0的集,也就是正整數(shù)集,表示成或。其它數(shù)集內排除0的集,也是這樣表示,例如,整數(shù)集內排除0的集,表示成或。負整數(shù)集、正有理數(shù)集、正實數(shù)集等,沒有專門的記法。
課堂練習:
教科書1、1節(jié)第一個練習第1題。
歸納總結:
1、集合及其元素是數(shù)學中的原始概念,只能作描述性定義。學習時應結合實例弄清其含義。
2、集合中元素的特性中,確定性可以用于判定某些對象是否是給定集合的元素,互異性可用于簡化集合的表示,無序性可以用于判定集合間的關系(如后面要學習的包含或相等關系等)。
四、布置作業(yè)
教科書1、1節(jié)第一個練習第2題(直接填在教科書上)。
高一數(shù)學教案11
教材分析
圓是學生在初中已初步了解了圓的知識及前面學習了直線方程的基礎上來進一步學習《圓的標準方程》,它既是前面圓的知識的復習延伸,又是后繼學習圓與直線的位置關系奠定了基礎。因此,本節(jié)課在本章中起著承上啟下的重要作用。
教學目標
1、知識與技能:探索并掌握圓的標準方程,能根據(jù)方程寫出圓的坐標和圓的半徑。
2、過程與方法:通過圓的標準方程的學習,掌握求曲線方程的方法,領會數(shù)形結合的思想。
3、情感態(tài)度與價值觀:激發(fā)學生學習數(shù)學的興趣,感受學習成功的喜悅。
教學重點難點
以及措施
教學重點:圓的標準方程理解及運用
教學難點:根據(jù)不同條件,利用待定系數(shù)求圓的標準方程。
根據(jù)教學內容的特點及高一年級學生的年齡、認知特征,緊緊抓住課堂知識的結構關系,遵循“直觀認知――操作體會――感悟知識特征――應用知識”的認知過程,設計出包括:觀察、操作、思考、交流等內容的教學流程。并且充分利用現(xiàn)代化信息技術的教學手段提高教學效率。以此使學生獲取知識,給學生獨立操作、合作交流的機會。學法上注重讓學生參與方程的推導過程,努力拓展學生思維的空間,促其在嘗試中發(fā)現(xiàn),討論中明理,合作中成功,讓學生真正體驗知識的形成過程。
學習者分析
高一年級的學生從知識層面上已經掌握了圓的相關性質;從能力層面具備了一定的觀察、分析和數(shù)據(jù)處理能力,對數(shù)學問題有自己個人的看法;從情感層面上學生思維活躍積極性高,但他們數(shù)學應用意識和語言表達的能力還有待加強。
教法設計
問題情境引入法啟發(fā)式教學法講授法
學法指導
自主學習法討論交流法練習鞏固法
教學準備
ppt課件導學案
教學環(huán)節(jié)
教學內容
教師活動
學生活動
設計意圖
情景引入
回顧復習
。2分鐘)
1、觀賞生活中有關圓的圖片
2、回顧復習圓的定義,并觀看圓的生成flash動畫。
提問:直線可以用一個方程表示,那么圓可以用一個方程表示嗎?
教師創(chuàng)設情景,引領學生感受圓。
教師提出問題。引導學生思考,引出本節(jié)主旨。
學生觀賞圓的圖片和動畫,思考如何表示圓的方程。
生活中的圖片展示,調動學生學習的積極性,讓學生體會到園在日常生活中的廣泛應用
自主學習
(5分鐘)
1、介紹動點軌跡方程的求解步驟:
(1)建系:在圖形中建立適當?shù)淖鴺讼担?/p>
。2)設點:用有序實數(shù)對(x,y)表示曲線上任意一點M的坐標;
。3)列式:用坐標表示條件P(M)的方程;
。4)化簡:對P(M)方程化簡到最簡形式;
2、學生自主學習圓的方程推導,并完成相應學案內容,教師介紹求軌跡方程的.步驟后,引導學生自學圓的標準方程
自主學習課本中圓的標準方程的推導過程,并完成導學案的內容,并當堂展示。
培養(yǎng)學生自主學習,獲取知識的能力
合作探究(10分鐘)
1、根據(jù)圓的標準方程說明確定圓的方程的條件有哪些?
2、點M(x0,y0)與圓(x—a)2+(y—b)2=r2的關系的判斷方法:
。1)點在圓上
。2)點在圓外
。3)點在圓內
教師引導學生分組探討,從旁巡視指導學生在自學和探討中遇到的問題,并鼓勵學生以小組為單位展示探究成果。
學生展開合作性的探討,并陳述自己的研究成果。
通過合作探究和自我的展示,鼓勵學生合作學習的品質
當堂訓練(18分鐘)
1、求下列圓的圓心坐標和半徑
C1:x2+y2=5
C2:(x—3)2+y2=4
C3:x2+(y+1)2=a2(a≠0)
2、以C(4,—6)為圓心,半徑等于3的圓的標準方程
3、設圓(x—a)2+(y—b)2=r2
則坐標原點的位置是()
A、在圓外B、在圓上
C、在圓內D、與a的取值有關
4、寫出下列各圓的標準方程(1)圓心在原點,半徑等于5
。2)經過點P(5,1),圓心在點C(6,—2);
。3)以A(2,5),B(0,—1)為直徑的圓
5、下列方程分別表示什么圖形
。1)x2+y2=0
(2)(x—1)2 =8—(y+2)2
。3)《圓的標準方程》教學設計—賈偉
6、鞏固提升:已知圓心為C的圓經過點A(1,1)和B(2,—2),且圓心在直線l:x—y+1=0上,求圓C的標準方程并作圖
指導學生就不同條件下給出的圓心和半徑關系,求解圓的標準方程這兩個要素展開訓練。
學生自主開展訓練,并糾正學習中所遇到的問題
鞏固所學知識,并查缺補漏。
回顧小結
。1分鐘)
1、你學到了哪些知識?
2、你掌握了哪些技能?
3、你體會到了哪些數(shù)學思想?
采用提問的形式幫助學生回顧和分析本節(jié)所學。
學生思考并從知識、技能和思想方法上回顧總結。
培養(yǎng)學生歸納總結能力
作業(yè)布置
(1分鐘)
課本87頁習題2—2
A組的第1道題
布置訓練任務
標記并完成相應的任務
檢測學生掌握知識情況。
教學反思
本節(jié)教學主要遵循“回—導—學—展—講—練—結”的高效課堂教學模式,遵循學生學習的主體地位,鼓勵學生自主思考和探討。
教學中要積極鼓勵學生多思考總結,在判斷點與圓的位置關系中,要遵從學生個性化的發(fā)展思路,鼓勵學生創(chuàng)造性的解決問題。
高一數(shù)學教案12
教學目標
。1)正確理解充分條件、必要條件和充要條件的概念;
。2)能正確判斷是充分條件、必要條件還是充要條件;
。3)培養(yǎng)學生的邏輯思維能力及歸納總結能力;
。4)在充要條件的教學中,培養(yǎng)等價轉化思想.
教學建議
。ㄒ唬┙滩姆治
1.知識結構
首先給出推斷符號“”,并引出的意義,在此基礎上講述了充要條件的初步知識.
2.重點難點分析
本節(jié)的重點與難點是關于充要條件的判斷.
。1)充分但不必要條件、必要但不充分條件、充要條件、既不充分也不必要條件是重要的數(shù)學概念,主要用來區(qū)分命題的條件和結論之間的因果關系.
。2)在判斷條件和結論之間的因果關系中應該:
①首先分清條件是什么,結論是什么;
②然后嘗試用條件推結論,再嘗試用結論推條件.推理方法可以是直接證法、間接證法(即反證法),也可以舉反例說明其不成立;
、圩詈笤僦赋鰲l件是結論的什么條件.
(3)在討論條件和條件的關系時,要注意:
①若,但,則是的充分但不必要條件;
、谌簦,則是的必要但不充分條件;
、廴簦,則是的充要條件;
、苋,且,則是的充要條件;
、萑簦,則是的既不充分也不必要條件.
(4)若條件以集合的形式出現(xiàn),結論以集合的形式出現(xiàn),則借助集合知識,有助于充要條件的理解和判斷.
、偃簦瑒t是的充分條件;
顯然,要使元素,只需就夠了.類似地還有:
、谌,則是的必要條件;
、廴,則是的充要條件;
、苋,且,則是的既不必要也不充分條件.
。5)要證明命題的條件是充要條件,就既要證明原命題成立,又要證明它的逆命題成立.證明原命題即證明條件的充分性,證明逆命題即證明條件的必要性.由于原命題逆否命題,逆命題否命題,當我們證明某一命題有困難時,可以證明該命題的逆否命題成立,從而得出原命題成立.
。ǘ┙谭ńㄗh
1.學習充分條件、必要條件和充要條件知識,要注意與前面有關邏輯初步知識內容相聯(lián)系.充要條件中的,與四種命題中的,要求是一樣的.它們可以是簡單命題,也可以是不能判斷真假的'語句,也可以是含有邏輯聯(lián)結詞或“若則”形式的復合命題.
2.由于這節(jié)課概念性、理論性較強,一般的教學使學生感到枯燥乏味,為此,激發(fā)學生的學習興趣是關鍵.教學中始終要注意以學生為主,讓學生在自我思考、相互交流中去結概念“下定義”,去體會概念的本質屬性.
3.由于“充要條件”與命題的真假、命題的條件與結論的相互關系緊密相關,為此,教學時可以從判斷命題的真假入手,來分析命題的條件對于結論來說,是否充分,從而引入“充分條件”的概念,進而引入“必要條件”的概念.
4.教材中對“充分條件”、“必要條件”的定義沒有作過多的解釋說明,為了讓學生能理解定義的合理性,在教學過程中,教師可以從一些熟悉的命題的條件與結論之間的關系來認識“充分條件”的概念,從互為逆否命題的等價性來引出“必要條件”的概念.
教學設計示例
充要條件
教學目標:
(1)正確理解充分條件、必要條件和充要條件的概念;
。2)能正確判斷是充分條件、必要條件還是充要條件;
。3)培養(yǎng)學生的邏輯思維能力及歸納總結能力;
(4)在充要條件的教學中,培養(yǎng)等價轉化思想.
教學重點難點:
關于充要條件的判斷
教學用具:
幻燈機或實物投影儀
教學過程設計
1.復習引入
練習:判斷下列命題是真命題還是假命題(用幻燈投影):
。1)若,則;
(2)若,則;
(3)全等三角形的面積相等;
(4)對角線互相垂直的四邊形是菱形;
。5)若,則;
(6)若方程有兩個不等的實數(shù)解,則.
(學生口答,教師板書.)
(1)、(3)、(6)是真命題,(2)、(4)、(5)是假命題.
置疑:對于命題“若,則”,有時是真命題,有時是假命題.如何判斷其真假的?
答:看能不能推出,如果能推出,則原命題是真命題,否則就是假命題.
對于命題“若,則”,如果由經過推理能推出,也就是說,如果成立,那么一定成立.換句話說,只要有條件就能充分地保證結論的成立,這時我們稱條件是成立的充分條件,記作.
2.講授新課
。ò鍟浞謼l件的定義.)
一般地,如果已知,那么我們就說是成立的充分條件.
提問:請用充分條件來敘述上述(1)、(3)、(6)的條件與結論之間的關系.
。▽W生口答)
。1)“,”是“”成立的充分條件;
。2)“三角形全等”是“三角形面積相等”成立的充分條件;
(3)“方程的有兩個不等的實數(shù)解”是“”成立的充分條件.
從另一個角度看,如果成立,那么其逆否命題也成立,即如果沒有,也就沒有,亦即是成立的必須要有的條件,也就是必要條件.
(板書必要條件的定義.)
提出問題:用“充分條件”和“必要條件”來敘述上述6個命題.
。▽W生口答).
(1)因為,所以是的充分條件,是的必要條件;
。2)因為,所以是的必要條件,是的充分條件;
(3)因為“兩三角形全等”“兩三角形面積相等”,所以“兩三角形全等”是“兩三角形面積相等”的充分條件,“兩三角形面積相等”是“兩三角形全等”的必要條件;
(4)因為“四邊形的對角線互相垂直”“四邊形是菱形”,所以“四邊形的對角線互相垂直”是“四邊形是菱形”的必要條件,“四邊形是菱形”是“四邊形的對角線互相垂直”的充分條件;
。5)因為,所以是的必要條件,是的充分條件;
。6)因為“方程的有兩個不等的實根”“”,而且“方程的有兩個不等的實根”“”,所以“方程的有兩個不等的實根”是“”充分條件,而且是必要條件.
總結:如果是的充分條件,又是的必要條件,則稱是的充分必要條件,簡稱充要條件,記作.
。ò鍟湟獥l件的定義.)
3.鞏固新課
例1(用投影儀投影.)
。▽W生活動,教師引導學生作出下面回答.)
、僖驗橛欣頂(shù)一定是實數(shù),但實數(shù)不一定是有理數(shù),所以是的充分非必要條件,是的必要非充分條件;
、谝欢芡瞥,而不一定推出,所以是的充分非必要條件,是的必要非充分條件;
、、是奇數(shù),那么一定是偶數(shù);是偶數(shù),、不一定都是奇數(shù)(可能都為偶數(shù)),所以是的充分非必要條件,是的必要非充分條件;
④表示或,所以是成立的必要非充分條件;
⑤由交集的定義可知且是成立的充要條件;
⑥由知且,所以是成立的充分非必要條件;
、哂芍颍允,成立的必要非充分條件;
、嘁字笆4的倍數(shù)”是“是6的倍數(shù)”成立的既非充分又非必要條件;
(通過對上述問題的交流、思辯,在爭論中得到了正確答案,并加深了對充分條件、必要條件的認識.)
例2已知是的充要條件,是的必要條件同時又是的充分條件,試與的關系.(投影)
解:由已知得,
所以是的充分條件,或是的必要條件.
4.小結回授
今天我們學習了充分條件、必要條件和充要條件的概念,并學會了判斷條件A是B的什么條件,這為我們今后解決數(shù)學問題打下了等價轉化的基礎.
課內練習:課本(人教版,試驗修訂本,第一冊(上))第35頁練習l、2;第36頁練習l、2.
(通過練習,檢查學生掌握情況,有針對性的進行講評.)
5.課外作業(yè):教材第36頁 習題1.8 1、2、3.
高一數(shù)學教案13
教學目的:
。1)使學生初步理解集合的概念,知道常用數(shù)集的概念及記法
。2)使學生初步了解“屬于”關系的意義
。3)使學生初步了解有限集、無限集、空集的意義
教學重點:集合的基本概念及表示方法
教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合
授課類型:新授課
課時安排:1課時
教 具:多媒體、實物投影儀
內容分析:
集合是中學數(shù)學的一個重要的基本概念 在小學數(shù)學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題 例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點集 至于邏輯,可以說,從開始學習數(shù)學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具 這些可以幫助學生認識學習本章的意義,也是本章學習的基礎把集合的初步知識與簡易邏輯知識安排在高中數(shù)學的最開始,是因為在高中數(shù)學中,這些知識與其他內容有著密切聯(lián)系,它們是學習、掌握和使用數(shù)學語言的基礎 例如,下一章講函數(shù)的概念與性質,就離不開集合與邏輯。
本節(jié)首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明 然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子。
這節(jié)課主要學習全章的引言和集合的`基本概念 學習引言是引發(fā)學生的學習興趣,使學生認識學習本章的意義 本節(jié)課的教學重點是集合的基本概念集合是集合論中的原始的、不定義的概念 在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識 教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集 ”這句話,只是對集合概念的描述性說明。
教學過程:
一、復習引入:
1、簡介數(shù)集的發(fā)展,復習最大公約數(shù)和最小公倍數(shù),質數(shù)與和數(shù);
2、教材中的章頭引言;
3、集合論的創(chuàng)始人——康托爾(德國數(shù)學家)(見附錄);
4.“物以類聚”,“人以群分”;
5.教材中例子(P4)
二、講解新課:
閱讀教材第一部分,問題如下:
。1)有那些概念?是如何定義的?
。2)有那些符號?是如何表示的?
。3)集合中元素的特性是什么?
(一)集合的有關概念:
由一些數(shù)、一些點、一些圖形、一些整式、一些物體、一些人組成的。我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集。集合中的每個對象叫做這個集合的元素。
定義:一般地,某些指定的對象集在一起就成為一個集合.
1、集合的概念
。1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)
(2)元素:集合中每個對象叫做這個集合的元素
2、常用數(shù)集及記法
。1)非負整數(shù)集(自然數(shù)集):全體非負整數(shù)的集合 記作N,
。2)正整數(shù)集:非負整數(shù)集內排除0的集 記作N*或N+
。3)整數(shù)集:全體整數(shù)的集合 記作Z ,
。4)有理數(shù)集:全體有理數(shù)的集合 記作Q ,
。5)實數(shù)集:全體實數(shù)的集合 記作R
注:(1)自然數(shù)集與非負整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0
。2)非負整數(shù)集內排除0的集 記作N*或N+ Q、Z、R等其它數(shù)集內排除0的集,也是這樣表示,例如,整數(shù)集內排除0的集,表示成Z*
3、元素對于集合的隸屬關系
(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A
(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作
4、集合中元素的特性
。1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,或者不在,不能模棱兩可
。2)互異性:集合中的元素沒有重復
(3)無序性:集合中的元素沒有一定的順序(通常用正常的順序寫出)
5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫的拉丁字母表示,如a、b、c、p、q……
、啤啊省钡拈_口方向,不能把a∈A顛倒過來寫
三、練習題:
1、教材P5練習1、2
2、下列各組對象能確定一個集合嗎?
。1)所有很大的實數(shù) (不確定)
。2)好心的人 (不確定)
。3)1,2,2,3,4,5.(有重復)
3、設a,b是非零實數(shù),那么 可能取的值組成集合的元素是_—2,0,2__
4、由實數(shù)x,-x,|x|, 所組成的集合,最多含( A )
(A)2個元素 (B)3個元素 (C)4個元素 (D)5個元素
5、設集合G中的元素是所有形如a+b (a∈Z, b∈Z)的數(shù),求證:
。1) 當x∈N時, x∈G;
。2) 若x∈G,y∈G,則x+y∈G,而 不一定屬于集合G
證明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,則x= x+0* = a+b ∈G,即x∈G
證明(2):∵x∈G,y∈G,
∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)
∴x+y=( a+b )+( c+d )=(a+c)+(b+d)
∵a∈Z, b∈Z,c∈Z, d∈Z
∴(a+c) ∈Z, (b+d) ∈Z
∴x+y =(a+c)+(b+d) ∈G,
又∵ =且 不一定都是整數(shù),
∴ = 不一定屬于集合G
四、小結:本節(jié)課學習了以下內容:
1、集合的有關概念:(集合、元素、屬于、不屬于)
2、集合元素的性質:確定性,互異性,無序性
3、常用數(shù)集的定義及記法
高一數(shù)學教案14
。ㄒ唬┙虒W目標
1、知識與技能
。1)理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集和交集
。2)能使用Venn圖表示集合的并集和交集運算結果,體會直觀圖對理解抽象概念的作用。
。3)掌握的關的術語和符號,并會用它們正確進行集合的并集與交集運算。
2、過程與方法
通過對實例的分析、思考,獲得并集與交集運算的法則,感知并集和交集運算的實質與內涵,增強學生發(fā)現(xiàn)問題,研究問題的創(chuàng)新意識和能力
3、情感、態(tài)度與價值觀
通過集合的并集與交集運算法則的發(fā)現(xiàn)、完善,增強學生運用數(shù)學知識和數(shù)學思想認識客觀事物,發(fā)現(xiàn)客觀規(guī)律的興趣與能力,從而體會數(shù)學的應用價值
。ǘ┙虒W重點與難點
重點:交集、并集運算的含義,識記與運用
難點:弄清交集、并集的含義,認識符號之間的區(qū)別與聯(lián)系
。ㄈ┙虒W方法
在思考中感知知識,在合作交流中形成知識,在獨立鉆研和探究中提升思維能力,嘗試實踐與交流相結合
。ㄋ模┙虒W過程
教學環(huán)節(jié)教學內容師生互動設計意圖
提出問題引入新知思考:觀察下列各組集合,聯(lián)想實數(shù)加法運算,探究集合能否進行類似“加法”運算
(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6}
。2)A={x|x是有理數(shù)},B={x|x是無理數(shù)},C={x|x是實數(shù)}、
師:兩數(shù)存在大小關系,兩集合存在包含、相等關系;實數(shù)能進行加減運算,探究集合是否有相應運算
生:集合A與B的元素合并構成C、
師:由集合A、B元素組合為C,這種形式的組合就是為集合的并集運算、生疑析疑,導入新知,形成概念
思考:并集運算、集合C是由所有屬于集合A或屬于集合B的元素組成的,稱C為A和B的并集
定義:由所有屬于集合A或集合B的元素組成的.集合、稱為集合A與B的并集;記作:A∪B;讀作A并B,即A∪B={x|x∈A,或x∈B},Venn圖表示為:
師:請同學們將上述兩組實例的共同規(guī)律用數(shù)學語言表達出來、
學生合作交流:歸納→回答→補充或修正→完善→得出并集的定義、在老師指導下,學生通過合作交流,探究問題共性,感知并集概念,從而初步理解并集的含義
應用舉例例1設A={4,5,6,8},B={3,5,7,8},求A∪B
例2設集合A={x|–1
例1解:A∪B={4,5,6,8}∪{3,5,7,8}={3,4,5,6,7,8}
例2解:A∪B={x|–1
師:求并集時,兩集合的相同元素如何在并集中表示、
生:遵循集合元素的互異性、
師:涉及不等式型集合問題、
注意利用數(shù)軸,運用數(shù)形結合思想求解、
生:在數(shù)軸上畫出兩集合,然后合并所有區(qū)間、同時注意集合元素的互異性、學生嘗試求解,老師適時適當指導,評析
固化概念
提升能力
探究性質①A∪A=A,②A∪=A,③A∪B=B∪A,④∪B,∪B
老師要求學生對性質進行合理解釋、培養(yǎng)學生數(shù)學思維能力
形成概念自學提要:
、儆蓛杉系乃性睾喜⒖傻脙杉系牟⒓,而由兩集合的公共元素組成的集合又會是兩集合的一種怎樣的運算?
、诮患\算具有的運算性質呢?
交集的定義
由屬于集合A且屬于集合B的所有元素組成的集合,稱為A與B的交集;記作A∩B,讀作A交B
即A∩B={x|x∈A且x∈B}
Venn圖表示
老師給出自學提要,學生在老師的引導下自我學習交集知識,自我體會交集運算的含義、并總結交集的性質
生:①A∩A=A;
②A∩=;
、跘∩B=B∩A;
④A∩,A∩
師:適當闡述上述性質
自學輔導,合作交流,探究交集運算、培養(yǎng)學生的自學能力,為終身發(fā)展培養(yǎng)基本素質
應用舉例例1(1)A={2,4,6,8,10},B={3,5,8,12},C={8}、
。2)新華中學開運動會,設
A={x|x是新華中學高一年級參加百米賽跑的同學},B={x|x是新華中學高一年級參加跳高比賽的同學},求A∩B
例2設平面內直線l1上點的集合為L1,直線l2上點的集合為L2,試用集合的運算表示l1,l2的位置關系、學生上臺板演,老師點評、總結
例1解:(1)∵A∩B={8},∴A∩B=C、
。2)A∩B就是新華中學高一年級中那些既參加百米賽跑又參加跳高比賽的同學組成的集合、所以,A∩B={x|x是新華中學高一年級既參加百米賽跑又參加跳高比賽的同學}
例2解:平面內直線l1,l2可能有三種位置關系,即相交于一點,平行或重合
(1)直線l1,l2相交于一點P可表示為L1∩L2={點P};
。2)直線l1,l2平行可表示為
L1∩L2=;
(3)直線l1,l2重合可表示為
L1∩L2=L1=L2、提升學生的動手實踐能力
歸納總結并集:A∪B={x|x∈A或x∈B}
交集:A∩B={x|x∈A且x∈B}
性質:①A∩A=A,A∪A=A,②A∩=,A∪=A,③A∩B=B∩A,A∪B=B∪A、學生合作交流:回顧→反思→總理→小結
老師點評、闡述歸納知識、構建知識網絡
課后作業(yè)1、1第三課時習案學生獨立完成鞏固知識,提升能力,反思升華
備選例題
例1已知集合A={–1,a2+1,a2–3},B={–4,a–1,a+1},且A∩B={–2},求a的值
【解析】法一:∵A∩B={–2},∴–2∈B,∴a–1=–2或a+1=–2,解得a=–1或a=–3,當a=–1時,A={–1,2,–2},B={–4,–2,0},A∩B={–2}
當a=–3時,A={–1,10,6},A不合要求,a=–3舍去
∴a=–1、
法二:∵A∩B={–2},∴–2∈A,又∵a2+1≥1,∴a2–3=–2,解得a=±1,當a=1時,A={–1,2,–2},B={–4,0,2},A∩B≠{–2}
當a=–1時,A={–1,2,–2},B={–4,–2,0},A∩B={–2},∴a=–1
例2集合A={x|–1
。1)若A∩B=,求a的取值范圍;
。2)若A∪B={x|x<1},求a的取值范圍
【解析】(1)如下圖所示:A={x|–1
∴數(shù)軸上點x=a在x=–1左側
∴a≤–1、
(2)如右圖所示:A={x|–1
∴數(shù)軸上點x=a在x=–1和x=1之間
例3已知集合A={x|x2–ax+a2–19=0},B={x|x2–5x+6=0},C={x|x2+2x–8=0},求a取何實數(shù)時,A∩B與A∩C=同時成立?
【解析】B={x|x2–5x+6=0}={2,3},C={x|x2+2x–8=0}={2,–4}
由A∩B和A∩C=同時成立可知,3是方程x2–ax+a2–19=0的解、將3代入方程得a2–3a–10=0,解得a=5或a=–2
當a=5時,A={x|x2–5x+6=0}={2,3},此時A∩C={2},與題設A∩C=相矛盾,故不適合、
當a=–2時,A={x|x2+2x–15=0}={3,5},此時A∩B與A∩C=,同時成立,∴滿足條件的實數(shù)a=–2
例4設集合A={x2,2x–1,–4},B={x–5,1–x,9},若A∩B={9},求A∪B、
【解析】由9∈A,可得x2=9或2x–1=9,解得x=±3或x=5、
當x=3時,A={9,5,–4},B={–2,–2,9},B中元素違背了互異性,舍去、
當x=–3時,A={9,–7,–4},B={–8,4,9},A∩B={9}滿足題意,故A∪B={–7,–4,–8,4,9}
當x=5時,A={25,9,–4},B={0,–4,9},此時A∩B={–4,9}與A∩B={9}矛盾,故舍去
綜上所述,x=–3且A∪B={–8,–4,4,–7,9}、
高一數(shù)學教案15
教材分析:冪函數(shù)作為一類重要的函數(shù)模型,是學生在系統(tǒng)地學習了指數(shù)函數(shù)、對數(shù)函數(shù)之后研究的又一類基本的初等函數(shù)。本課的教學重點是掌握常見冪函數(shù)的概念和性質,難點是根據(jù)冪函數(shù)的單調性比較兩個同指數(shù)的指數(shù)式的大小。 冪函數(shù)模型在生活中是比較常見的,學習時結合生活中的具體實例來引出常見的冪函數(shù) 。
組織學生畫出他們的圖象,根據(jù)圖象觀察、總結這幾個常見冪函數(shù)的性質。對于冪函數(shù),只需重點掌握 這五個函數(shù)的圖象和性質。 學習中學生容易將冪函數(shù)和指數(shù)函數(shù)混淆,因此在引出冪函數(shù)的概念之后,可以組織學生對兩類不同函數(shù)的表達式進行辨析。
學生已經有了學習冪函數(shù)和對象函數(shù)的學習經歷,這為學習冪函數(shù)做好了方法上的準備。因此,學習過程中,引入冪函數(shù)的概念之后,嘗試放手讓學生自己進行合作探究學習。
教學目標:
、逯R和技能
1、了解冪函數(shù)的概念,會畫冪函數(shù) ,的圖象,并能結合這幾個冪函數(shù)的圖象,了解冪函數(shù)圖象的變化情況和性質。
2、了解幾個常見的冪函數(shù)的性質。
㈡過程與方法
1、通過觀察、總結冪函數(shù)的性質,培養(yǎng)學生概括抽象和識圖能力。
2、使學生進一步體會數(shù)形結合的思想。
、缜楦、態(tài)度與價值觀
1、通過生活實例引出冪函數(shù)的概念,使學生體會到生活中處處有數(shù)學,激發(fā)學生的學習興趣。
2、利用計算機等工具,了解冪函數(shù)和指數(shù)函數(shù)的本質差別,使學生充分認識到現(xiàn)代技術在人們認識世界的過程中的作用,從而激發(fā)學生的學習欲望。 教學重點 常見冪函數(shù)的概念和性質 教學難點 冪函數(shù)的單調性與冪指數(shù)的關系
教學過程
一、創(chuàng)設情景,引入新課
問題1:如果張紅購買了每千克1元的水果w千克,那么她需要付的錢數(shù)p(元)和購買的水果量w(千克)之間有何關系? (總結:根據(jù)函數(shù)的定義可知,這里p是w的函數(shù))
問題2:如果正方形的邊長為a,那么正方形的面積 ,這里S是a的函數(shù)。
問題3:如果正方體的邊長為a,那么正方體的體積 ,這里V是a的函數(shù)。
問題4:如果正方形場地面積為S,那么正方形的邊長xx,這里a是S的函數(shù)
問題5:如果某人xxs內騎車行進了xxkm,那么他騎車的速度,這里v是t的函數(shù)。
以上是我們生活中經常遇到的幾個數(shù)學模型,你能發(fā)現(xiàn)以上幾個函數(shù)解析式有什么共同點嗎?(右邊指數(shù)式,且底數(shù)都是變量)這只是我們生活中常用到的一類函數(shù)的幾個具體代表,如果讓你給他們起一個名字的話,你將會給他們起個什么名字呢?(變量在底數(shù)位置,解析式右邊都是冪的形式)(適當引導:從自變量所處的位置這個角度)(引入新課,書寫課題)
二、新課講解
。ㄒ唬﹥绾瘮(shù)的概念如果設變量為,函數(shù)值為xx,你能根據(jù)以上的生活實例得到怎樣的一些具體的函數(shù)式?這里所得到的函數(shù)是冪函數(shù)的幾個典型代表,你能根據(jù)此給出冪函數(shù)的一般式嗎?這就是冪函數(shù)的一般式,你能根據(jù)指數(shù)函數(shù)、對數(shù)函數(shù)的定義,給出冪函數(shù)的定義嗎?xx冪函數(shù)的定義:一般地,我們把形如xx的函數(shù)稱為冪函數(shù)(power function),其中xx是自變量,xx是常數(shù)。
【探究一】冪函數(shù)與指數(shù)函數(shù)有什么區(qū)別?(組織學生回顧指數(shù)函數(shù)的概念)
結論:冪函數(shù)和指數(shù)函數(shù)都是我們高中數(shù)學中研究的兩類重要的基本初等函數(shù),從它們的解析式看有如下區(qū)別:對冪函數(shù)來說,底數(shù)是自變量,指數(shù)是常數(shù)對指數(shù)函數(shù)來說,指數(shù)是自變量,底數(shù)是常數(shù)
試一試:判斷下列函數(shù)那些是冪函數(shù)(1)(2)(3)(4)我們已經對冪函數(shù)的概念有了比較深刻的認識,根據(jù)我們前面學習指數(shù)函數(shù)、對數(shù)函數(shù)的學習經歷,你認為我們下面應該研究什么呢?(研究圖象和性質)
。ǘ⿴讉常見冪函數(shù)的圖象和性質 在初中我們已經學習了冪函數(shù)x的圖象和性質,請同學們在同一坐標系中畫出它們的圖象。根據(jù)你的學習經歷,你能在同一坐標系內畫出函數(shù)x的圖象嗎?
【探究二】觀察函數(shù)x的圖象,將你發(fā)現(xiàn)的結論寫在下表內。定義域,值域,奇偶性,單調性,定點,圖象范圍
【探究三】根據(jù)上表的內容并結合圖象,試總結函數(shù):x的共同性質。
。1)函數(shù)x的圖象都過點
。2)函數(shù)x在x上單調遞增;
歸納:冪函數(shù)x圖象的基本特征是,當x是,圖象過點x,且在第一象限隨x的增大而上升,函數(shù)在區(qū)間x上是單調增函數(shù)。(演示幾何畫板制作課件:冪函數(shù)。asp)
請同學們模仿我們探究冪函數(shù)x圖象的基本特征x的情況探討x時冪函數(shù)x圖象的基本特征。(利用drawtools軟件作圖研究)
歸納:xx時冪函數(shù)x圖象的基本特征:過點x,且在第一象限隨x的增大而下降,函數(shù)在區(qū)間x上是單調減函數(shù),且向右無限接近X軸,向上無限接近Y軸。
(三)例題剖析
【例1】求下列冪函數(shù)的定義域,并指出其奇偶性、單調性。(1) (2) (3)
分析:根據(jù)你的學習經歷,你覺得求一個函數(shù)的定義域應該從哪些方面來考慮?
方法引導:解決有關函數(shù)求定義域的問題時,可以從以下幾個方面來考慮,列出相應不等式或不等式組,解不等式或不等式組即可得到所求函數(shù)的定義域。
。1)若函數(shù)解析式中含有分母,分母不能為0;
。2)若函數(shù)解析式中含有根號,要注意偶次根號下非負;
。3)0的.0次冪沒有意義;
。4)若函數(shù)解析式中含有對數(shù)式,要注意對數(shù)的真數(shù)大于0;求函數(shù)的定義域的本質是解不等式或不等式組。
結論:在函數(shù)解析式中含有分數(shù)指數(shù)時,可以把它們的解析式化成根式,根據(jù)“偶次根號下非負”這一條件來求出對應函數(shù)的定義域;當函數(shù)解析式的冪指數(shù)為負數(shù)時,根據(jù)負指數(shù)冪的意義將其轉化為分式形式,根據(jù)分式的分母不能為0這一限制條件來求出對應函數(shù)的定義域。歸納分析如果判斷冪函數(shù)的單調性(第一象限利用性質,其余象限利用函數(shù)奇偶性與單調性的關系)
【例2】比較下列各組數(shù)中兩個值的大。ㄔ跈M線上填上“<”或“>”)
(1)________
。2)________
。3)__________
。4)____________
分析:利用考察其相對應的冪函數(shù)和指數(shù)函數(shù)來比較大小
三、課堂小結
1、冪函數(shù)的概念及其指數(shù)函數(shù)表達式的區(qū)別
2、常見冪函數(shù)的圖象和冪函數(shù)的性質。
四、布置作業(yè)
㈠課本第73頁習題2.4
第1、2、3題
、嫠伎碱}:根據(jù)下列條件對于冪函數(shù)x的有關性質的敘述,分別指出冪函數(shù)x的圖象具有下列特點之一時的x的值,其中:
。1)圖象過原點,且隨x的增大而上升;
。2)圖象不過原點,不與坐標軸相交,且隨x的增大而下降;
(3)圖象關于x軸對稱,且與坐標軸相交;
(4)圖象關于x軸對稱,但不與坐標軸相交;
。5)圖象關于原點對稱,且過原點;
(6)圖象關于原點對稱,但不過原點;
檢測與反饋
1、下列函數(shù)中,是冪函數(shù)的是( )
A、 B、 C、 D、
2、下列結論正確的是( )
A、冪函數(shù)的圖象一定過原點
B、當xx時,冪函數(shù)x是減函數(shù)
C、當xx時,冪函數(shù)x是增函數(shù)
D、函數(shù) 既是二次函數(shù),也是冪函數(shù)
3、下列函數(shù)中,在 是增函數(shù)的是( )
A、 B、 C、 D、
4、函數(shù) 的圖象大致是( )
5、已知某冪函數(shù)的圖象經過點 ,則這個函數(shù)的解析式為_______________________
6、寫出下列函數(shù)的定義域,并指出它們的單調性:
同伴評 (優(yōu)、良、中、須努力)
自 評 (優(yōu)、良、中、須努力)
教師評 (優(yōu)、良、中、須努力)
【高一數(shù)學教案】相關文章:
高一數(shù)學教案07-21
高一數(shù)學教案15篇12-08
高一數(shù)學教案(15篇)12-13
高一數(shù)學教案(匯編15篇)12-21
高一數(shù)學教案等比數(shù)列12-28
數(shù)學教案03-28
小學數(shù)學教案04-07
《統(tǒng)計》數(shù)學教案06-24
《練習》數(shù)學教案06-25
小學數(shù)學教案02-07