- 相關推薦
高中數(shù)學必修五的教案
在教學工作者開展教學活動前,通常會被要求編寫教案,借助教案可以讓教學工作更科學化。怎樣寫教案才更能起到其作用呢?下面是小編精心整理的高中數(shù)學必修五的教案,僅供參考,希望能夠幫助到大家。
高中數(shù)學必修五的教案1
教材分析
本節(jié)課重在探究等比數(shù)列的前n項和公式的推導及簡單的應用。教學中注重公式的形成過程及數(shù)學思想方法的滲透,并揭示公式的結構特征和內在聯(lián)系.就知識的應用價值來看,它是從大量數(shù)學問題和現(xiàn)實問題中抽象出來的模型,在公式推導中所蘊含的數(shù)學思想方法在各種數(shù)列求和問題中有著廣泛的應用.就內容的人文價值上看,它的探究與推導需要學生觀察、分析、歸納、猜想,有助于培養(yǎng)學生的創(chuàng)新思維和探索精神,是培養(yǎng)學生數(shù)學的思考問題的良好載體.
教學目標
知識與技能: 掌握等比數(shù)列的前n項和公式以及推導方法;會用等比數(shù)列的前n項和公式解決有關等比數(shù)列的一些簡單問題.
過程與方法: 經歷等比數(shù)列前n 項和的推導過程,總結數(shù)列求和方法,體會數(shù)學中的思想方法.
情感態(tài)度與價值觀:通過教材中的實際引例,激發(fā)學生學習數(shù)學的積極性及學習數(shù)學的主動性.
教學重點
等比數(shù)列的前n項和公式推導及公式的簡單應用
教學難點
等比數(shù)列的前n項和公式推導過程和思想方法
教學過程
、、課題導入
[創(chuàng)設情境]
[提出問題] “國王對國際象棋的發(fā)明者的獎勵”的.故事
、、講授新課
[分析問題]如果把各格所放的麥粒數(shù)看成是一個數(shù)列,我們可以得到一個等比數(shù)列,它的首項是1,公比是2,求第一個格子到第64個格子各格所放的麥粒數(shù)總合就是求這個等比數(shù)列的前64項的和。下面我們先來推導等比數(shù)列的前n項和公式。
高中數(shù)學必修五的教案2
教學目標
A、知識目標:
掌握等差數(shù)列前n項和公式的推導方法;掌握公式的運用。
B、能力目標:
。1)通過公式的探索、發(fā)現(xiàn),在知識發(fā)生、發(fā)展以及形成過程中培養(yǎng)學生觀察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。
。2)利用以退求進的思維策略,遵循從特殊到一般的認知規(guī)律,讓學生在實踐中通過觀察、嘗試、分析、類比的方法導出等差數(shù)列的求和公式,培養(yǎng)學生類比思維能力。
。3)通過對公式從不同角度、不同側面的剖析,培養(yǎng)學生思維的靈活性,提高學生分析問題和解決問題的能力。
C、情感目標:(數(shù)學文化價值)
。1)公式的發(fā)現(xiàn)反映了普遍性寓于特殊性之中,從而使學生受到辯證唯物主義思想的熏陶。
(2)通過公式的運用,樹立學生"大眾教學"的思想意識。
。3)通過生動具體的現(xiàn)實問題,令人著迷的數(shù)學史,激發(fā)學生探究的興趣和欲望,樹立學生求真的勇氣和自信心,增強學生學好數(shù)學的。心理體驗,產生熱愛數(shù)學的情感。
教學重點:
等差數(shù)列前n項和的公式。
教學難點:
等差數(shù)列前n項和的公式的靈活運用。
教學方法:
啟發(fā)、討論、引導式。
教具:
現(xiàn)代教育多媒體技術。
教學過程
一、創(chuàng)設情景,導入新課。
師:上幾節(jié),我們已經掌握了等差數(shù)列的概念、通項公式及其有關性質,今天要進一步研究等差數(shù)列的前n項和公式。提起數(shù)列求和,我們自然會想到德國偉大的數(shù)學家高斯"神速求和"的.故事,小高斯上小學四年級時,一次教師布置了一道數(shù)學習題:"把從1到100的自然數(shù)加起來,和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來巧妙地計算出來的呢?如果大家也懂得那樣巧妙計算,那你們就是二十世紀末的新高斯。(教師觀察學生的表情反映,然后將此問題縮小十倍)。我們來看這樣一道一例題。
例1,計算:1+2+3+4+5+6+7+8+9+10。
這道題除了累加計算以外,還有沒有其他有趣的解法呢?小組討論后,讓學生自行發(fā)言解答。
二、教授新課(嘗試推導)
師:如果已知等差數(shù)列的首項a1,項數(shù)為n,第n項an,根據等差數(shù)列的性質,如何來導出它的前n項和Sn計算公式呢?根據上面的例子同學們自己完成推導,并請一位學生板演。
上面(I)、(II)兩個式子稱為等差數(shù)列的前n項和公式。公式(I)是基本的,我們可以發(fā)現(xiàn),它可與梯形面積公式(上底+下底)×高÷2相類比,這里的上底是等差數(shù)列的首項a1,下底是第n項an,高是項數(shù)n。引導學生總結:這些公式中出現(xiàn)了幾個量?(a1,d,n,an,Sn),它們由哪幾個關系聯(lián)系?[an=a1+(n—1)d,Sn==na1+ d];這些量中有幾個可自由變化?(三個)從而了解到:只要知道其中任意三個就可以求另外兩個了。下面我們舉例說明公式(I)和(II)的一些應用。
師:通過以上幾例,說明在解題中靈活應用所學性質,要糾正那種不明理由盲目套用公式的學習方法。同時希望大家在學習中做一個有心人,去發(fā)現(xiàn)更多的性質,主動積極地去學習。
高中數(shù)學必修五的教案3
教學目標
1.數(shù)列求和的綜合應用
教學重難點
2.數(shù)列求和的綜合應用
教學過程
典例分析
3.數(shù)列{an}的前n項和Sn=n2-7n-8,(1)求{an}的通項公式
(2)求{|an|}的前n項和Tn
4.等差數(shù)列{an}的公差為,S100=145,則a1+a3 + a5 + …+a99=
5.已知方程(x2-2x+m)(x2-2x+n)=0的四個根組成一個首項為的等差數(shù)列,則|m-n|=
6.數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12
(1)求{an}的通項公式
(2)令bn=anxn ,求數(shù)列{bn}前n項和公式
7.四數(shù)中前三個數(shù)成等比數(shù)列,后三個數(shù)成等差數(shù)列,首末兩項之和為21,中間兩項之和為18,求此四個數(shù)
8.在等差數(shù)列{an}中,a1=20,前n項和為Sn,且S10= S15,求當n為何值時,Sn有最大值,并求出它的最大值
.已知數(shù)列{an},an∈N,Sn= (an+2)2
(1)求證{an}是等差數(shù)列
(2)若bn= an-30 ,求數(shù)列{bn}前n項的最小值
0.已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈N)
(1)設f(x)的圖象的頂點的橫坐標構成數(shù)列{an},求證數(shù)列{an}是等差數(shù)列
(2設f(x)的圖象的頂點到x軸的距離構成數(shù)列{dn},求數(shù)列{dn}的前n項和sn.
11 .購買一件售價為5000元的商品,采用分期付款的辦法,每期付款數(shù)相同,購買后1個月第1次付款,再過1個月第2次付款,如此下去,共付款5次后還清,如果按月利率0.8%,每月利息按復利計算(上月利息要計入下月本金),那么每期應付款多少?(精確到1元)
12 .某商品在最近100天內的價格f(t)與時間t的
函數(shù)關系式是f(t)=
銷售量g(t)與時間t的函數(shù)關系是
g(t)= -t/3 +109/3 (0≤t≤100)
求這種商品的日銷售額的最大值
注:對于分段函數(shù)型的應用題,應注意對變量x的取值區(qū)間的討論;求函數(shù)的最大值,應分別求出函數(shù)在各段中的最大值,通過比較,確定最大值
高中數(shù)學必修五復習知識點
1、棱柱
棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。
棱柱的性質
(1)側棱都相等,側面是平行四邊形
(2)兩個底面與平行于底面的截面是全等的多邊形
(3)過不相鄰的兩條側棱的截面(對角面)是平行四邊形
2、棱錐
棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐
棱錐的性質:
(1)側棱交于一點。側面都是三角形
(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方
3、正棱錐
正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質:
(1)各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(2)多個特殊的直角三角形
a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
高中數(shù)學學習方法
一)、課內重視聽講,課后及時復習。
新知識的接受,數(shù)學能力的培養(yǎng)主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的.思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課后要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,應盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業(yè),勤于思考,從某種意義上講,應不造成不懂即問的學習作風,對于有些題目由于自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網絡,納入自己的知識體系。
二)、適當多做題,養(yǎng)成良好的解題習慣。
要想學好數(shù)學,多做題是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養(yǎng)成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態(tài),在考試中能運用自如。實踐證明:越到關鍵時候,你所表現(xiàn)的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養(yǎng)成良好的解題習慣是非常重要的。
三)、調整心態(tài),正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。調整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好準備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發(fā)揮。
由此可見,要把數(shù)學學好就得找到適合自己的學習方法,了解數(shù)學學科的特點,使自己進入數(shù)學的廣闊天地中去。
【高中數(shù)學必修五的教案】相關文章:
高中數(shù)學必修教案03-01
高中數(shù)學必修2教案07-20
高中數(shù)學必修5教案04-22
高中數(shù)學必修5教案6篇04-22
高中數(shù)學必修知識點11-08
高中數(shù)學必修知識點8篇11-09
高中數(shù)學必修知識點(8篇)11-10
高中數(shù)學必修2知識點總結11-22
高中數(shù)學必修1知識點總結04-25
高中數(shù)學必修知識點合集8篇11-11