當前位置:育文網(wǎng)>教學文檔>教案> 初一數(shù)學有理數(shù)教案

初一數(shù)學有理數(shù)教案

時間:2024-09-04 07:12:04 教案 我要投稿

初一數(shù)學有理數(shù)教案

  作為一位不辭辛勞的人民教師,可能需要進行教案編寫工作,教案是實施教學的主要依據(jù),有著至關重要的作用。教案應該怎么寫呢?下面是小編為大家收集的初一數(shù)學有理數(shù)教案,歡迎閱讀與收藏。

初一數(shù)學有理數(shù)教案

初一數(shù)學有理數(shù)教案1

  教學目標:

  知識能力:

  理解有理數(shù)的概念,掌握有理數(shù)的兩種分類方法,能把給出的有理數(shù)按要求分類。

  過程與方法:

  經歷本節(jié)的學習,培養(yǎng)學生分類討論的觀點和正確進行分類的能力。

  情感態(tài)度與價值觀:

  通過本課的學習,體驗成功的喜悅,保持學好數(shù)學的信心。

  教學重點:

  掌握有理數(shù)的兩種分類方法

  教學難點:

  會把所給的各數(shù)填入它所屬于的集合里

  教學方法:

  問題引導法

  學習方法:

  自主探究法

  一、情境誘導

  在小學我們學習了整數(shù)、分數(shù),上一節(jié)課我們又學習了正數(shù)、負數(shù),誰能很快的做出下面的題目。

  1.有下面這些數(shù):15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33

  (1)將上面的數(shù)填入下面兩個集合:正整數(shù)集合{ },負整數(shù)集合{ },填完了嗎?

  (2)將上面的數(shù)填入下面兩個集合:整數(shù)集合{ },分數(shù)集合{ },填完了嗎?

  把整數(shù)和分數(shù)起個名字叫有理數(shù)。(點題并板書課題)

  二、自學指導

  學生自學課本,對照課本找自學提綱中問題的答案;老師先做必要的板書準備,再到學生中巡視指導,并了解掌握學生自學情況,為展示歸納作準備。

  附:自學提綱:

  1.___________、____、_______統(tǒng)稱為整數(shù)

  2._______和_________統(tǒng)稱為分數(shù)

  3.__________統(tǒng)稱為有理數(shù)

  4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整數(shù):、分數(shù):__________;正整數(shù):__________、負整數(shù):__________、正分數(shù):__________、負分數(shù):__________.

  三、展示歸納

  1、找有問題的學生逐題展示自學提綱中的'問題答案,學生說,老師板書;

  2、發(fā)動學生進行評價、補充、完善,教師根據(jù)每個題目的展示情況進行必要的講解和強調;

  3、全部展示完畢后,老師對本段知識做系統(tǒng)梳理,關鍵點予以強調。

  四、變式練習

  逐題出示,先讓學生獨立完成,再請有問題的學生匯報結果,老師板書,并發(fā)動其他學生評價、補充并完善,最后老師根據(jù)需要進行重點強調。

  1.整數(shù)可分為:_____、______和_______,分數(shù)可分為:_______和_________.有理數(shù)按符號不同可分為正有理數(shù),_______和________.b

  2.判斷下列說法是否正確,并說明理由。

  (1)有理數(shù)包括有整數(shù)和分數(shù).

  (2)0.3不是有理數(shù).

  (3)0不是有理數(shù).

  (4)一個有理數(shù)不是正數(shù)就是負數(shù).

  (5)一個有理數(shù)不是整數(shù)就是分數(shù)

  3.所有的正整數(shù)組成正整集合,所有負整數(shù)組成負整數(shù)集合,依次類推有正數(shù)集合、負數(shù)集合、整數(shù)集合、分數(shù)集合等,把下面的有理數(shù)填入它屬于的集合中(大括號內,將各數(shù)用逗號分開):

  教學設計

  正數(shù)集合:{ …}負數(shù)集合:{ …}

  正整數(shù)集合:{ …}負分數(shù)集合:{ …}

  4.下列說法正確的是()

  A.0是最小的正整數(shù)

  B.0是最小的有理數(shù)

  C.0既不是整數(shù)也不是分數(shù)

  D.0既不是正數(shù)也不是負數(shù)

  5、下列說法正確的有()

  (1)整數(shù)就是正整數(shù)和負整數(shù)

  (2)零是整數(shù),但不是自然數(shù)

  (3)分數(shù)包括正分數(shù)和負分數(shù)

  (4)正數(shù)和負數(shù)統(tǒng)稱為有理數(shù)

  (5)一個有理數(shù),它不是整數(shù)就是分數(shù)

  五、總結與反思:

  通過本節(jié)課的學習,你有什么收獲?

  六、作業(yè):

  必做題:課本14頁:1、9題

初一數(shù)學有理數(shù)教案2

  教學目標:

  1、明白生活中存在著無數(shù)表示相反意義的量,能舉例說明;

  2、能體會引進負數(shù)的必要性和意義,建立正數(shù)和負數(shù)的數(shù)感。

  重點:通過列舉現(xiàn)實世界中的“相反意義的量”的例子來引進正數(shù)和負數(shù),要求學生理解正數(shù)和負數(shù)的意義,為以后通過實例引進有理數(shù)的大小比較、加法和乘法法則打基礎。

  難點:對負數(shù)的意義的理解。

  教學過程:

  一、知識導向:本節(jié)課是一個從小學過渡的知識點,主要是要抓緊在數(shù)范圍上擴充,對引進“負數(shù)”這一概念的必要性及意義的理解。

  二、新課拆析:1、回顧小學中有關數(shù)的范圍及數(shù)的分類,指出小學中的“數(shù)”是為了滿足生產和生活的需要而產生發(fā)展起來的'。如:0,1,2,3,…,,

  2、能讓學生舉例出更多的有關生活中表示相反意義的量,能發(fā)現(xiàn)事物之間存在的對立面。

  如:汽車向東行駛3千米和向西行駛2千米

  溫度是零上10°C和零下5°C;收入500元和支出237元;水位升高1.2米和下降0.7米; 3、上面所列舉的表示相反意義量,我們也許就會發(fā)現(xiàn):如果只用原來所學過的數(shù)很難區(qū)分具有相反意義的量。

  一般地,對于具有相反意義的量,我們可把其中一種意義的量規(guī)定為正的,用過去學過的數(shù)表示;把與它意義相反的量規(guī)定為負的,用過去學過的數(shù)(零除外)前面放上一個“—”號來表示。

  如:在表示溫度時,通常規(guī)定零上為“正”,零下為“負”即零上10°C表示為10°C,零下5°C表示為-5°C概括:我們把這一種新數(shù),叫做負數(shù),如:-3,-45,…過去學過的那些數(shù)(零除外)叫做正數(shù),如:1,2.2…零既不是正數(shù),也不是負數(shù)例:下面各數(shù)中,哪些數(shù)是正數(shù),哪些數(shù)是負數(shù),1,2.3,-5.5,68,-,0,-11,+123,…

  三、階梯訓練:P18練習:1,2,3,4。

  四、知識小結:

  從本節(jié)課所學的內容中,應能從數(shù)的角度來區(qū)分小學與初中的異同點,通過運用發(fā)現(xiàn)相反意義量,能理解引進“負數(shù)”的必要性及其意義。

  五、作業(yè)鞏固:

  1、每個同學分別舉出5個生活中表示相反意義量的的例子;并用正、負數(shù)來表示; 2、分別舉出幾個正數(shù)與負數(shù)(最少6個)。 3、P20習題2.1:1題。

初一數(shù)學有理數(shù)教案3

  【學習目標】

  1.掌握有理數(shù)的混合運算法則,并能熟練地進行有理數(shù)的加、減、乘、除、乘方的混合運算;

  2.通過計算過程的反思,獲得解決問題的經驗,體會在解決問題的過程中與他人合作的重要性;

  【學習方法】

  自主探究與合作交流相結合。

  【學習重難點】

  重點:能熟練地按照有理數(shù)的運算順序進行混合運算

  難點:在正確運算的基礎上,適當?shù)貞眠\算律簡化運算

  【學習過程】

  模塊一預習反饋

  一、學習準備

  1.四則(加減乘除)混合運算的順序:先算_______,再算_______,如有括號,就先算__________.同級運算按照從___往___的順序依次計算。

  2.有理數(shù)的運算定律:__________________________________________________.

  3.請同學們閱讀教材p65—p66,預習過程中請注意:⑴不懂的地方要用紅筆標記符號;⑵完成你力所能及的習題和課后作業(yè)。

  《2.11有理數(shù)的`混合運算》課后作業(yè)

  9.用符號“>”“<”“=”填空.

  42+32________2×4×3;

  (-3)2+12________2×ok3w_ads("s002");

  《2.11有理數(shù)的混合運算》同步練習

  5、小亮的爸爸在一家合資企業(yè)工作,月工資2500元,按規(guī)定:其中800元是免稅的,其余部分要繳納個人所得稅,應納稅部分又要分為兩部分,并按不同稅率納稅,即不超過500元的部分按5%的稅率;超過500元不超過20xx元的部分則按10%的稅率,你能算出小亮的爸爸每月要繳納個人所得稅多少元?

初一數(shù)學有理數(shù)教案4

  〖教學目的〗

  〖知識與技能目標:〗理解有理數(shù)減法的意義。

  〖過程與方法:〗會進行有理數(shù)減法運算

  〖情感態(tài)度與價值觀:〗

  有意識培養(yǎng)學生學習數(shù)學的信心和克服困難的勇氣,從中體味成功的快樂.

  〖教學重點、難點:〗重點:異號兩數(shù)相減。難點:異號兩數(shù)相減。

  〖教學方法:〗引導發(fā)現(xiàn)法

  〖教具準備:〗尺、小黑板。

  〖教學過程:〗

 、.復習提問:

  1.敘述有理數(shù)加法法則。

  2.兩個有理數(shù)的和一定大于每一個加數(shù)嗎?

  3.10比3大多少?10比-3大多少?-10比3大多少?如何計算?

  4.3-10有意義嗎?它應當?shù)扔诙嗌?

  注:問2是要向學生強調,兩數(shù)的和不一定大于每一個加數(shù),一個數(shù)加一個非零的有理數(shù),其和可能增加也可能減少。問3是向學生說明求一個數(shù)比另一個數(shù)大多少在有理數(shù)范圍內同樣要用減法運算。問2和問3都是為了引入新課而設計的。

 、.新課講解:

  1.由問2、問3講解有理數(shù)減法的意義。

  在正有理數(shù)范圍內3-10是沒有意義的,因為3比10小,問3比10大多少,問題的本身就有問題,但引入負數(shù)就不同了。如果你有3元錢向售貨員買了10元的物品,如果售貨員讓你先把物品拿走,那么你將欠售貨員7元。這件事實如用算式表達,即3-10=-7。

  由實際運算的例子歸納有理微減法法則。

  考察:3-10=3+(-10)=-7,3-(-10)=3+10=13,

  (-10)-(-3)=-10+3=-7,(-10)-7=-10+(-7)=-17。

  等式左邊的運算結果,用減法意義求出。3比10大-7,3比-10大13,-10比-3大-7,-10比7大-17,或畫數(shù)軸,讓學生觀察得出。考察以上計算后。提問:減法是否都可轉化為加法計算?啟發(fā)學生自己得出有理數(shù)減法法則:減去一個數(shù)等于加上這個數(shù)的相反數(shù)。

  3.講解例題:

  (l)補充例題:問15℃比5℃高多少度?15℃比-5℃呢?-5℃比15℃呢?

  解:∵15-5=10,∴15℃比5℃高10℃;

  ∵15-(-5)-15+5=20,∴15℃比-5℃高20℃;

  ∵-5-15=-5+(-15)=-20,∴-5℃比15℃高-20℃。即-5℃

  比15℃低20℃。

  (2)教科書例1、例2。

 、.做一做

  課堂練習:教科書第82頁練習第1~3題。

 、.課時小結

  有理數(shù)減法的.意義。

 、.課后作業(yè)

  1.習題2.6A組第1~9題,B組選做。

  《2.5有理數(shù)的減法》同步練習

  2.(題型一)李明的練習冊上有這樣一道題:計算|(-3)+_|,其中“_”是被墨水污染而看不到的一個數(shù),他翻看了后邊的答案得知該題的計算結果為6,那么“_”表示的數(shù)應該是.

  3.(考點一)計算:(1)-2- (+10);

  (2)0-(-3.6);

  (3)(-30)-(-6)-(+6)-(-15);

  《2.5有理數(shù)的減法》測試

  16.下表記錄了七年級(1)班一個組學生的體重與標準體重的差(正號表示比標準體重重,負號表示比標準體重輕),標準體重是50 kg.

  姓名小明小丁小麗小文小天小樂

  體重與標準體重的差(kg)-5+3-7+4+60

  (1)誰最重?誰最輕?

  (2)最重的比最輕的重多少千克?

初一數(shù)學有理數(shù)教案5

  【對話探索設計】

  〖復習

  我們知道,所有的分數(shù)都可以寫成兩個整數(shù)的比.有限小數(shù)5.32可以寫成兩個整數(shù)的比嗎?所有的有限小數(shù)都是分數(shù)嗎?可以寫成兩個整數(shù)的比嗎?是不是分數(shù)?

  結論:所有的有限小數(shù)和無限循環(huán)小數(shù)都是分數(shù).

  〖探索1

  小學時所指的整數(shù)包括正整數(shù)和零,學了負整數(shù)以后,今后我們所指的整數(shù)與小學時所指的整數(shù)有什么不同?

  結論:正整數(shù)﹑零﹑負整數(shù)統(tǒng)稱整數(shù).

  〖探索2

  下列負數(shù)哪些是負分數(shù)?

  -12, ,-0.33, ,-12.03, .

  〖探索3

  所有正整數(shù)組成正整數(shù)集合,所有負整數(shù)組成負整數(shù)集合.請把下列各數(shù)填入它所屬于的集合的大括號里:

  1, 0.0708, -700, -, -3.88, 0, , 3.14159265, , .

  正整數(shù)集合:{ }負整數(shù)集合:{ }

  整數(shù)集合:{ }

  正分數(shù)集合:{ }負分數(shù)集合:{ }

  (注意:大括號內的.'省略號表示什么?)

  〖探索4

  為什么不是分數(shù)?如果說所有的分數(shù)都是小數(shù),對嗎?反過來,所有的小數(shù)都是分數(shù),對嗎?

  結論: (1)小數(shù)可以分為無限小數(shù)和有限小數(shù)兩類,而無限小數(shù)又可分為(無限)循環(huán)小數(shù)和無限不循環(huán)小數(shù)兩類;

  (2)分數(shù)一定是小數(shù),小數(shù)不一定是分數(shù).

  〖探索5

  整數(shù)和分數(shù)統(tǒng)稱有理數(shù).

  在數(shù)-100, 70.8, -7, , -3.8, 0, , ,中,不是分數(shù)的是___________________;不是小數(shù)的是_____________;不是有理數(shù)的是__________.

  (友情提示:,都是小數(shù),但都不是分數(shù),自然也都不是有理數(shù).你答對了嗎?)

  〖練習

  P10.練習

  【作業(yè)】

  P18.習題1.

  【補充作業(yè)】

  1.列出豎式,把分數(shù)化為小數(shù).(體會分數(shù)不可能是無限不循環(huán)小數(shù).)

  2.把下列小數(shù)化為分數(shù):3.14159, .

  【備選素材】

  1.判斷:

  (1)一個有理數(shù),不是正數(shù),就是負數(shù);

  (2)一個有理數(shù),不是整數(shù),就是分數(shù);

  (3)一個有理數(shù),是分數(shù),就一定是小數(shù);

  (4)一個無限小數(shù),如果不循環(huán),就不是有理數(shù);

  (5)小數(shù)就是分數(shù);

  (6)有理數(shù)只能分成兩類.

  (7)負分數(shù)不是負數(shù).

  2.按符號分,整數(shù)可以分為正整數(shù)、______和______三類,而分數(shù)則分為__________和_________,共兩類.

  3.分數(shù)可以分為有限小數(shù)和________________兩類.

  4.滿足什么條件的小數(shù)才是有理數(shù)?

  5.(1)列出豎式,把分數(shù)化為小數(shù);(體會分數(shù)不可能是無限不循環(huán)小數(shù).)

  (2)有的小數(shù)不是分數(shù),你能舉出一個例子嗎?

  (3)說明為什么0.3是分數(shù),而卻不是.

  6.有理數(shù)可以分為整數(shù)和分數(shù)兩類,還可以按符號分為正有理數(shù)﹑____和___________三類.

  7.把下列各數(shù)填在相應的集合里:

  -|-3|, -(-0.072), , -3.88, , 3.14, , .

初一數(shù)學有理數(shù)教案6

  教學目標:

  知識能力:理解有理數(shù)的概念,掌握有理數(shù)的兩種分類方法,能夠按要求對給定的有理數(shù)進行分類。

  過程與方法:通過本節(jié)的學習,培養(yǎng)學生正確的分類討論觀點和分類能力。

  情感、態(tài)度、價值觀:通過本節(jié)課的學習,體驗成功的喜悅,保持學好數(shù)學的信心。

  教學重點:掌握有理數(shù)的兩種分類方法

  教學難點:給定的數(shù)字將被填入它所屬的集合中

  教學方法:問題導向法

  學習方法:自主探究法

  一、形勢歸納

  小學我們學了整數(shù)和分數(shù),上節(jié)課我們學了正數(shù)和負數(shù)。誰能快速提出以下問題?

  1.有以下數(shù)字:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33

  (1)將以上數(shù)字填入以下兩組:正整數(shù)集{}和負整數(shù)集{}。你填完了嗎?

  (2)將以上數(shù)字填入以下兩個集合:整數(shù)集合{}和分數(shù)集合{}。你填完了嗎?

  稱整數(shù)和分數(shù)為有理數(shù)。(指點題,板書)

  二、自學指導

  學生自學課本,根據(jù)課本尋找自學的'機會

  提綱中問題的答案;老師先做必要的板書準備,再到學生中巡視指導,并了解掌握學生自學情況,為展示歸納作準備。

  附:自學提綱:

  1.___________、____、_______統(tǒng)稱為整數(shù),

  2._______和_________統(tǒng)稱為分數(shù)

  3.____ ______統(tǒng)稱為有理數(shù),

  4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整數(shù): 、分數(shù):;正整數(shù):、負整數(shù): 、正分數(shù): 、負分數(shù):.

  三、展示歸納

  1、找有問題的學生逐題展示自學提綱中的問題答案,學生說,老師板書;

  2、發(fā)動學生進行評價、補充、完善,教師根據(jù)每個題目的展示情況進行必要的講解和強調;

  3、全部展示完畢后,老師對本段知識做系統(tǒng)梳理,關鍵點予以強調。

  四、變式練習

  逐題出示,先讓學生獨立完成,再請有問題的學生匯報結果,老師板書,并發(fā)動其他學生評價、補充并完善,最后老師根據(jù)需要進行重點強調。

  1.整數(shù)可分為:_____、______和_______,分數(shù)可分為:_______和_________.有理數(shù)按符號不同可分為正有理數(shù),_______和________.

  2.判斷下列說法是否正確,并說明理由。

  (1)有理數(shù)包括有整數(shù)和分數(shù).

  (2)0.3不是有理數(shù).

  (3)0不是有理數(shù).

  (4)一個有理數(shù)不是正數(shù)就是負數(shù).

  (5)一個有理數(shù)不是整數(shù)就是分數(shù)

  3.所有的正整數(shù)組成正整數(shù)集合,所有負整數(shù)組成負整數(shù)集合,依次類推有正數(shù)集合、負數(shù)集合、整數(shù)集合、分數(shù)集合等,把下面的有理數(shù)填入它屬于的集合中(大括號內,將各數(shù)用逗號分開):

  楊桂花:1.2.1有理數(shù)教學設計

  正數(shù)集合:{ …}負數(shù)集合:{ …}

  正整數(shù)集合:{ …}負分數(shù)集合:{ …}

  4.下列說法正確的是( )

  A.0是最小的正整數(shù)

  B.0是最小的有理數(shù)

  C.0既不是整數(shù)也不是分數(shù)

  D. 0既不是正數(shù)也不是負數(shù)

  5、下列說法正確的有( )

  (1)整數(shù)就是正整數(shù)和負整數(shù)(2)零是整數(shù),但不是自然數(shù)(3)分數(shù)包括正分數(shù)和負分數(shù)(4)正數(shù)和負數(shù)統(tǒng)稱為有理數(shù)(5)一個有理數(shù),它不是整數(shù)就是分數(shù)

  五、總結與反思:通過本節(jié)課的學習,你有什么收獲?

  六、作業(yè):必做題:課本14頁:1、9題

初一數(shù)學有理數(shù)教案7

  教學目標

  1、知道有理數(shù)混合運算的運算順序,能正確進行有理數(shù)的混合運算;

  2、會用計算器進行較繁雜的有理數(shù)混合運算。

  教學重點

  1、有理數(shù)的混合運算;

  2、運用運算律進行有理數(shù)的混合運算的簡便計算。

  教學難點

  運用運算律進行有理數(shù)的混合運算的簡便計算。

  有理數(shù)的混合運算的運算順序

  也就是說,在進行含有加、減、乘、除的混合運算時,應按照運算級別從高到低進行,因為乘方是比乘除高一級的`運算,所以像這樣的有理數(shù)的混合運算,有以下運算順序:

  先乘方,再乘除,最后加減。如果有括號,先進行括號內的運算。

  你會根據(jù)有理數(shù)的運算順序計算上面的算式嗎?

  2、8有理數(shù)的混合運算:同步練習

  1、有依次排列的3個數(shù):2,9,7,對任意相鄰的兩個數(shù),都用右邊的數(shù)減去左邊的數(shù),所得之差寫在這兩個數(shù)之間,可產生一個新數(shù)串:2,7,9,—2,7,這稱為第一次操作。做第二次同樣的操作后也可產生一個新數(shù)串:2,5,7,2,9,—11,—2,9,7,繼續(xù)依次操作下去,問:從數(shù)串2,9,7開始操作第一百次以后所產生的那個新數(shù)串的所有數(shù)之和是。

  《2、8有理數(shù)的混合運算》課后訓練

  1、興旺肉聯(lián)廠的冷藏庫能使冷藏食品每小時降溫3 ℃,每開庫一次,庫內溫度上升4 ℃,現(xiàn)有12 ℃的肉放入冷藏庫,2小時后開了一次庫,再過3小時后又開了一次庫,再關上庫門4小時后,肉的溫度是多少攝氏度?

初一數(shù)學有理數(shù)教案8

  教學目的:

  1.了解計算器的`性能,并會操作和使用;

  2.會用計算器求數(shù)的平方根;

  重點:用計算器進行數(shù)的加、減、乘、除、乘方和開方的計算;

  難點:乘方和開方運算;

  教學過程:

  1.計算器的使用介紹(科學計算器)

  2.用計算器進行加、減、乘、除、乘方、開方運算

  例1用計算器求下列各式的值.

  (1)(-3.75)+(-22.5) (2)51.7(-7.2)

  解(1)

  (-3.75)+(-22.5)=-26.25

  (2)

  51.7(-7.2)=-372.24

  說明輸入數(shù)據(jù)時,按鍵順序與寫這個數(shù)據(jù)的順序完全相同,但輸入負數(shù)時,符號轉換鍵要放在數(shù)據(jù)之后鍵入.

  隨堂練習

  用計算器求值

  1.9.23+10.2 2.(-2.35)×(-0.46)

  答案1.37.8 2.1.081

初一數(shù)學有理數(shù)教案9

  學習目標:

  1、會進行包括小數(shù)或分數(shù)的有理數(shù)的加減混合運算。

  2、熟練地進行有理數(shù)加減混合運算,并利用運算律簡化運算。

  3、會比較“加減法統(tǒng)一為加法”與“省略加號的代數(shù)和”兩種計算形式。

  學習重難點:

  1、準確迅速地進行有理數(shù)的加減混合運算,加減運算法則和加法運算律。

  2、減法直接轉化為加法及混合運算的準確性,省略加號與括號的代數(shù)和計算。

  學習過程:

  任務一:溫故知新

  1、完成課本44頁習題2、7的第1、2題,寫在作業(yè)本上。

  2、6有理數(shù)的加減混合運算》課時練習

  一、選擇題(共10題)

  1、下列關于有理數(shù)的加法說法錯誤的是( )

  A、同號兩數(shù)相加,取相同的符號,并把絕對值相加

  B、異號兩數(shù)相加,絕對值相等時和為0

  C、互為相反數(shù)的兩數(shù)相加得0

  D、絕對值不等時,取絕對值較小的數(shù)的符號作為和的符號

  答案:D

  解析:解答:D選項應該是有理數(shù)相加時,如果絕對值不等時,取絕對值較小的數(shù)的符號作為和的符號

  分析:考查有理數(shù)的的`加法法則

  《2、6有理數(shù)的加減混合運算》同步練習

  2、有一架直升飛機從海拔1000米的高原上起飛,第一次上升了1500米,第二次上升上-1200米,第三次上升了1100米,第四次上升了-1700米,求此時這架飛機離海平面多少米?

  3、10名學生體檢測體重,以50千克為基準,超過的數(shù)記為正,不足的數(shù)記為負,稱得結果如下(單位:千克):2,3,-7、5,-3,5,-8,3、5,4、5,8,-1、5

  這10名學生的總體重為多少?10名學生的平均體重為多少?

初一數(shù)學有理數(shù)教案10

  一、教材分析

  分析本節(jié)課在教材中的地位和作用,以及在分析數(shù)學大綱的基礎上確定本節(jié)課的教學目標、重點和難點。首先來看一下本節(jié)課在教材中的地位和作用。

  1、有理數(shù)的加法在整個知識系統(tǒng)中的地位和作用是很重要的。初中階段要培養(yǎng)學生的運算能力、邏輯思維能力和空間想象能力以及讓學生根據(jù)一些現(xiàn)實模型,把它轉化成數(shù)學問題,從而培養(yǎng)學生的數(shù)學意識,增強學生對數(shù)學的理解和解決實際問題的能力。運算能力的培養(yǎng)主要是在初一階段完成。有理數(shù)的加法作為有理數(shù)的運算的一種,它是有理數(shù)運算的重要基礎之一,它是整個初中代數(shù)的一個基礎,它直接關系到有理數(shù)運算、實數(shù)運算、代數(shù)式運算、解方程、研究函數(shù)等內容的學習。

  本節(jié)課學生主要采用“探究學習法”,學生通過多媒體的演示;主動探索,發(fā)現(xiàn)規(guī)律;并及時進行歸納總結,使學生的主體地位得以體現(xiàn)又讓學生充分感受探究有理數(shù)加法法則的過程,符合學生的認知過程。并且將單調的練習轉換成學生互相提問,互相比賽的方式,使學生的學習熱情得以調動。

  采用這種學習方法的`優(yōu)點是:學生主動參與知識的發(fā)生、發(fā)展過程,在解決問題的過程中學習,在探究的過程中,激發(fā)學生學習興趣和創(chuàng)作新熱情。掌握這種學習方法后,對學生的終生學習、終生發(fā)展有積極的意義。

  教學過程

  《數(shù)學課程標準》明確指出:“數(shù)學教學是數(shù)學活動的教學,學生是數(shù)學學習的主人!睘槟芨嗟叵驅W生提供從事數(shù)學活動的機會,我將本節(jié)課的教學過程設為以下五個環(huán)節(jié):發(fā)現(xiàn)新知—再探新知—應用新知—深化拓展—小結鞏固。

  (二)探索規(guī)律,得出法則:

  課件演示:(設置六個探究活動,以原點為起點,一只小狗在數(shù)軸上左右走動來表示情況,規(guī)定向左為正,向右為負)讓學生體會兩個數(shù)相加的規(guī)律。

  (1)同向情況:

  1.情景

  探究1:一條狗先向右運動5米,再向右運動3米,那么兩次運動后的總結果是什么?

  探究2:一條狗先向左運動5米,再向左運動3米,那么兩次運動后的總結果是什么?

  2.探究問題:有理數(shù)兩個負數(shù)相加的和該怎么確定符號?怎么確定絕對值?(學生主動思考,展開討論)

  3.猜一猜,說一說(分組概括兩個負數(shù)的加法法則):

  ①兩數(shù)相加,取相同的符號,并把絕對值相加;

 、谪摂(shù)加負數(shù),取負號,并把絕對值相加。

  4.例:(-4)+(-5)

  (2)異向情況:

  1.情景:

  探究3:一條狗先向右運動5米,再向左運動3米,那么兩次運動后的總結果是什么?

初一數(shù)學有理數(shù)教案11

  教學目標

  1, 掌握有理數(shù)的概念,會對有理數(shù)按照一定的標準進行分類,培養(yǎng)分類能力;

  2, 了解分類的標準與分類結果的相關性,初步了解“集合”的含義;

  3, 體驗分類是數(shù)學上的常用處理問題的方法。

  教學難點 正確理解分類的標準和按照一定的標準進行分類

  知識重點 正確理解有理數(shù)的概念

  教學過程(師生活動) 設計理念

  探索新知 在前兩個學段,我們已經學習了很多不同類型的數(shù),通過上兩節(jié)課的學習,又知道了現(xiàn)在的數(shù)包括了負數(shù),現(xiàn)在請同學們在草稿紙上任意寫出3個數(shù)(同時請3個同學在黑板上寫出).

  問題1:觀察黑板上的9個數(shù),并給它們進行分類.

  學生思考討論和交流分類的情況.

  學生可能只給出很粗略的分類,如只分為“正數(shù)”和“負數(shù)”或“零”三類,此時,教師應給予引導和鼓勵.

  例如,對于數(shù)5,可這樣問:5和 1有相同的類型嗎?5可以表示5個人,而 1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個的數(shù),我們就稱它為“正整數(shù)”,而 1不是整個的數(shù),稱為“正分數(shù),.??…(由于小數(shù)可化為分數(shù),以后把小數(shù)和分數(shù)都稱為分數(shù))

  通過教師的引導、鼓勵和不斷完善,以及學生自己的概括,最后歸納出我們已經學過的5類不同的數(shù),它們分別是“正整數(shù),零,負整數(shù),正分數(shù),負分數(shù),’.

  按照書本的說法,得出“整數(shù)”“分數(shù)”和“有理數(shù)”的概念.

  看書了解有理數(shù)名稱的由來.

  “統(tǒng)稱”是指“合起來總的名稱”的意思.

  試一試:按照以上的分類,你能作出一張有理數(shù)的分類表嗎?你能說出以上有理數(shù)的分類是以什么為標準的嗎?(是按照整數(shù)和分數(shù)來劃分的) 分類是數(shù)學中解決問題的常用手段,這個引入具有開放的.特點,學生樂于參與

  學生自己嘗試分類時,可能會很粗略,教師給予引導和鼓勵,劃分數(shù)的類型要從文字所表示的意義上去引導,這樣學生易于理解。

  有理數(shù)的分類表要在黑板或媒體上展示,分類的標準要引導學生去體會

  練一練 1,任意寫出三個有理數(shù),并說出是什么類型的數(shù),與同伴進行交流.

  2,教科書第10頁練習.

  此練習中出現(xiàn)了集合的概念,可向學生作如下的說明.

  把一些數(shù)放在一起,就組成了一個數(shù)的集合,簡稱“數(shù)集”,所有有理數(shù)組成的數(shù)集叫做有理數(shù)集.類似地,所有整數(shù)組成的數(shù)集叫做整數(shù)集,所有負數(shù)組成的數(shù)集叫做負數(shù)集……;

  數(shù)集一般用圓圈或大括號表示,因為集合中的數(shù)是無限的,而本題中只填了所給的幾個數(shù),所以應該加上省略號.

  思考:上面練習中的四個集合合并在一起就是全體有理數(shù)的集合嗎?

  也可以教師說出一些數(shù),讓學生進行判斷。

  集合的概念不必深入展開。

  創(chuàng)新探究 問題2:有理數(shù)可分為正數(shù)和負數(shù)兩大類,對嗎?為什么?

  教學時,要讓學生總結已經學過的數(shù),鼓勵學生概括,通過交流和討論,教師作適當?shù)闹笇,逐步得到如下的分類表?/p>

  有理數(shù) 這個分類可視學生的程度確定是否有必要教學。

  應使學生了解分類的標準不一樣時,分類的結果也是不同的,所以分類的標準要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等

  小結與作業(yè)

  課堂小結 到現(xiàn)在為止我們學過的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標準進行分類,標準不同,分類的結果也不同。

  本課作業(yè)

  1, 必做題:教科書第18頁習題第1題

  2, 教師自行準備

  本課教育評注(課堂設計理念,實際教學效果及改進設想)

  1,本課在引人了負數(shù)后對所學過的數(shù)按照一定的標準進行分類,提出了有理數(shù)的概

  念.分類是數(shù)學中解決問題的常用手段,通過本節(jié)課的學習使學生了解分類的思想并進

  行簡單的分類是數(shù)學能力的體現(xiàn),教師在教學中應引起足夠的重視.關于分類標準與分

  類結果的關系,分類標準的確定可向學生作適當?shù)臐B透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不要過多展開。

  2,本課具有開放性的特點,給學生提供了較大的思維空間,能促進學生積極主動地參加學習,親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現(xiàn)合作學習、交流、探究提高的特點,對學生分類能力的養(yǎng)成有很好的作用。

  3,兩種分類方法,應以第一種方法為主,第二種方法可視學生的情況進行。

初一數(shù)學有理數(shù)教案12

  教學目標:

  知識與技能:

  1.進一步熟練掌握有理數(shù)加法的法則。

  2.掌握有理數(shù)加法的運算律,并能運用加法運算律簡化運算。

  過程與方法:

  啟發(fā)引導式教學,能夠由特殊到一般、由一般到特殊,體會研究數(shù)學的一些基本方法。

  情感、態(tài)度與價值觀:

  1.培養(yǎng)學生的分類與歸納能力。

  2.強化學生的數(shù)形結合思想。

  3.提高學生的自學以及理解能力,激發(fā)學生學習數(shù)學的興趣。

  教學重點:

加法運算律的靈活運用,解決實際問題。

  教學難點:

能運用加法運算律簡化運算,加法在實際中的應用。

  教學方法:

采取啟發(fā)式教學法及情感教學,引導學生主動思考,主動探索。用大量的實例讓學生得出規(guī)律。

  教學準備:

  1.復習有理數(shù)的加法法則:

  (1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。

  (2)異號兩數(shù)相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。

  (3)一個數(shù)同0相加,仍得這個數(shù)。

  2.口算:7+(-5) (-5)+(-4) (-10)+0 (-8)+8

  教學過程:

  (一)情境引入,提出問題:

  鼓勵學生通過自己的探索,交流、歸納,自主得出有理數(shù)加法的運算律。

  1.敘述有理數(shù)的加法法則.

  2.小學學過的加法的運算律是不是也可以擴充到有理數(shù)范圍?

  3.計算下列各組數(shù)的值,并觀察尋找規(guī)律。

  (1) (-7)+(-5) (-5)+(-7)

  (2) [8+(-5)]+(-4) 8+[(-5)+(-4)]

  (3) [(-7)+(-10)]+(-11); (-7)+[(-10)+(-11)]

  結論:在有理數(shù)運算中,加法交換律、結合律仍然成立。

  (二)活動探究,猜想結論:

  交換律——兩個有理數(shù)相加,交換加數(shù)的位置,和不變.

  用代數(shù)式表示:a+b=b+a

  運算律式子中的字母a、b表示任意的一個有理數(shù),可以是正數(shù),也可以是負數(shù)或者零.

  在同一個式子中,同一個字母表示同一個數(shù).

  結合律——三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變.

  用代數(shù)式表示:(a+b)+c=a+(b+c)

  這里a、b、c表示任意三個有理數(shù).

  (三)驗證結論:

  例1計算16+(-25)+24+(-32)

  (引導學生發(fā)現(xiàn),在本例中,把正數(shù)與負數(shù)分別結合在一起再相加,計算就比較簡便)

  解:16+(-25)+24+(-32)

  =[16+24]+[(-25)+(-32)] (加法結合律)

  =40+(-57) (同號相加法則)

  =-17 (異號相加法則)

  例2計算:31+(-28)+28+69

  (引導學生發(fā)現(xiàn),在本例中,把互為相反數(shù)的`兩個數(shù)相加得0,計算比較簡便)

  解:31+(-28)+28+69

  =31+69+[(-28)+28]

  =100+0

  =100

  《2.4.1有理數(shù)的加法法則》同步練習

  3.若兩個有理數(shù)的和為負數(shù),那么這兩個有理數(shù)(  )

  A.一定都是負數(shù)B.一正一負,且負數(shù)的絕對值大

  C.一個為零,另一個為負數(shù)D.至少有一個是負數(shù)

  4.兩個有理數(shù)的和(  )

  A.一定大于其中的一個加數(shù)

  B.一定小于其中的一個加數(shù)

  C.和的大小由兩個加數(shù)的符號而定

  D.和的大小由兩個加數(shù)的符號與絕對值而定

  5.如果a,b是有理數(shù),那么下列各式中成立的是(  )

  A.如果a<0,b<0,那么a+b>0

  B.如果a>0,b<0,那么a+b>0

  C.如果a>0,b<0,那么a+b<0

  D.如果a>0,b<0,且|a|>|b|,那么a+b>0

  《2.4.2有理數(shù)的加法運算律》測試

  7.張大伯共有7塊麥田,今年的收成與去年相比(增產為正,減產為負)情況如下(單位:kg):+320,-170,-320,+130,+150,+40,-150.則今年小麥的總產量與去年相比(  )

  A.增產20 kg B.減產20 kg C.增長120 kg D.持平

  8.一口井水面比井口低3米,一只蝸牛從水面沿著井壁往井口爬,第一次往上爬了0.5米,往下滑了0.1米;第二次往上爬了0.42米,卻又下滑了0.15米;第三次往上爬了0.7米,卻又下滑了0.15米;第四次往上爬了0.75米,卻又下滑了0.2米;第五次往上爬了0.55米,沒有下滑;第六次往上爬了0.48米,此時蝸牛有沒有爬出井口?請通過列式計算加以說明

初一數(shù)學有理數(shù)教案13

  一、知識要點

  本章的主要內容可以概括為有理數(shù)的概念與有理數(shù)的運算兩部分。有理數(shù)的概念可以利用數(shù)軸來認識、理解,同時,利用數(shù)軸又可以把這些概念串在一起。有理數(shù)的運算是全章的重點。在具體運算時,要注意四個方面,一是運算法則,二是運算律,三是運算順序,四是近似計算。

  基礎知識:

  1、大于0的數(shù)叫做正數(shù)。

  2、在正數(shù)前面加上負號“-”的數(shù)叫做負數(shù)。

  3、0既不是正數(shù)也不是負數(shù)。

  4、有理數(shù)(rationalnumber):正整數(shù)、負整數(shù)、0、正分數(shù)、負分數(shù)都可以寫成分數(shù)的形式,這樣的數(shù)稱為有理數(shù)。

  5、數(shù)軸(numberaxis):通常,用一條直線上的點表示數(shù),這條直線叫做數(shù)軸。

  數(shù)軸滿足以下要求:

  (1)在直線上任取一個點表示數(shù)0,這個點叫做原點(origin);

  (2)通常規(guī)定直線上從原點向右(或上)為正方向,從原點向左(或下)為負方向;

  (3)選取適當?shù)拈L度為單位長度。

  6、相反數(shù)(oppositenumber):絕對值相等,只有負號不同的兩個數(shù)叫做互為相反數(shù)。

  7、絕對值(absolutevalue)一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值。記做|a|。

  由絕對值的定義可得:|a-b|表示數(shù)軸上a點到b點的距離。

  一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0.

  正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù);兩個負數(shù),絕對值大的反而小。

  8、有理數(shù)加法法則

  (1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。

  (2)絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;橄喾磾(shù)的兩個數(shù)相加得0.

  (3)一個數(shù)同0相加,仍得這個數(shù)。

  加法交換律:有理數(shù)的加法中,兩個數(shù)相加,交換加數(shù)的位置,和不變。表達式:a+b=b+a。

  加法結合律:有理數(shù)的加法中,三個數(shù)相加,先把前兩個數(shù)相加或者先把后兩個數(shù)相加,和不變。

  表達式:(a+b)+c=a+(b+c)

  9、有理數(shù)減法法則

  減去一個數(shù),等于加這個數(shù)的相反數(shù)。表達式:a-b=a+(-b)

  10、有理數(shù)乘法法則

  兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。

  任何數(shù)同0相乘,都得0.

  乘法交換律:一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。表達式:ab=ba

  乘法結合律:三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。表達式:(ab)c=a(bc)

  乘法分配律:一般地,一個數(shù)同兩個的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加。

  表達式:a(b+c)=ab+ac

  11、倒數(shù)

  1除以一個數(shù)(零除外)的商,叫做這個數(shù)的倒數(shù)。如果兩個數(shù)互為倒數(shù),那么這兩個數(shù)的積等于1。

  12、有理數(shù)除法法則:兩數(shù)相除,同號得負,異號得正,并把絕對值相除。0除以任何一個不等于0的數(shù),都得0.

  13、有理數(shù)的乘方:求n個相同因數(shù)的積的運算,叫做乘方,乘方的結果叫做冪(power)。an中,a叫做底數(shù)(basenumber),n叫做指數(shù)(exponent)。

  根據(jù)有理數(shù)的乘法法則可以得出:負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。

  14、有理數(shù)的混合運算順序

  (1)“先乘方,再乘除,最后加減”的順序進行;

  (2)同級運算,從左到右進行;

  (3)如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。

  15、科學技術法:把一個大于10的數(shù)表示成a﹡10n的形式(其中a是整數(shù)數(shù)位只有一位的數(shù)(即0

  16、近似數(shù)(approximatenumber):

  17、有理數(shù)可以寫成m/n(m、n是整數(shù),n≠0)的形式。另一方面,形如m/n(m、n是整數(shù),n≠0)的數(shù)都是有理數(shù)。所以有理數(shù)可以用m/n(m、n是整數(shù),n≠0)表示。

  拓展知識:

  1、數(shù)集:把一些數(shù)放在一起,就組成一個數(shù)的集合,簡稱數(shù)集。

  一、(1)所有有理數(shù)組成的數(shù)集叫做有理數(shù)集;

  二、(2)所有的整數(shù)組成的數(shù)集叫做整數(shù)集。

  2、任何有理數(shù)都可以用數(shù)軸上的一個點來表示,體現(xiàn)了數(shù)形結合的數(shù)學思想。

  3、根據(jù)絕對值的幾何意義知道:|a|≥0,即對任何有理數(shù)a,它的絕對值是非負數(shù)。

  4、比較兩個有理數(shù)大小的方法有:

  (1)根據(jù)有理數(shù)在數(shù)軸上對應的點的位置直接比較;

  (2)根據(jù)規(guī)定進行比較:兩個正數(shù);正數(shù)與零;負數(shù)與零;正數(shù)與負數(shù);兩個負數(shù),體現(xiàn)了分類討論的數(shù)學思想;

  (3)做差法:a-b>0a>b;

  (4)做商法:a/b>1,b>0a>b.

  二、基礎訓練

  選擇題

  1、下列運算中正確的是().

  A.a2a3=a6 B.=2 C.|(3-π)|=-π-3 D.32=-9

  2、下列各判斷句中錯誤的是()

  A.數(shù)軸上原點的位置可以任意選定

  B.數(shù)軸上與原點的距離等于個單位的點有兩個

  C.與原點距離等于-2的點應當用原點左邊第2個單位的點來表示

  D.數(shù)軸上無論怎樣靠近的兩個表示有理數(shù)的點之間,一定還存在著表示有理數(shù)的點。

  3、、是有理數(shù),若>且,下列說法正確的是()

  A.一定是正數(shù)B.一定是負數(shù)C.一定是正數(shù)D.一定是負數(shù)

  4、兩數(shù)相加,如果比每個加數(shù)都小,那么這兩個數(shù)是()

  A.同為正數(shù)B.同為負數(shù)C.一個正數(shù),一個負數(shù)D.0和一個負數(shù)

  5、兩個非零有理數(shù)的和為零,則它們的商是()

  A.0B.-1C.+1D.不能確定

  6、一個數(shù)和它的倒數(shù)相等,則這個數(shù)是()

  A.1B.-1C.±1D.±1和0

  7、如果|a|=-a,下列成立的是()

  A.a>0B.a<0c.a>0或a=0D.a<0或a=0

  8、(-2)11+(-2)10的值是()

  A.-2B.(-2)21C.0D.-210

  9、已知4個礦泉水空瓶可以換礦泉水一瓶,現(xiàn)有16個礦泉水空瓶,若不交錢,最多可以喝礦泉水()

  A.3瓶B.4瓶C.5瓶D.6瓶

  10、在下列說法中,正確的個數(shù)是()

 、湃魏我粋有理數(shù)都可以用數(shù)軸上的一個點來表示

  ⑵數(shù)軸上的每一個點都表示一個有理數(shù)

  ⑶任何有理數(shù)的絕對值都不可能是負數(shù)

 、让總有理數(shù)都有相反數(shù)

  A、1B、2C、3D、4

  11、如果一個數(shù)的相反數(shù)比它本身大,那么這個數(shù)為()

  A、正數(shù)B、負數(shù)

  C、整數(shù)D、不等于零的有理數(shù)

  12、下列說法正確的是()

  A、幾個有理數(shù)相乘,當因數(shù)有奇數(shù)個時,積為負;

  B、幾個有理數(shù)相乘,當正因數(shù)有奇數(shù)個時,積為負;

  C、幾個有理數(shù)相乘,當負因數(shù)有奇數(shù)個時,積為負;

  D、幾個有理數(shù)相乘,當積為負數(shù)時,負因數(shù)有奇數(shù)個;

  填空題

  1、在有理數(shù)-7,,-(-1.43),,0,,-1.7321中,是整數(shù)的有_____________是負分數(shù)的有_______________。

  2、一般地,設a是一個正數(shù),則數(shù)軸上表示數(shù)a的點在原點的____邊,與原點的距離是____個單位長度;表示數(shù)-a的點在原點的____邊,與原點的`距離是____個單位長度。

  3、如果一個數(shù)是6位整數(shù),用科學記數(shù)法表示它時,10的指數(shù)是_____;用科學記數(shù)法表示一個n位整數(shù),其中10的指數(shù)是___________.

  4、實數(shù)a、b、c在數(shù)軸上的位置如圖:化簡|a-b|+|b-c|-|c-a|.

  5、絕對值大于1而小于4的整數(shù)有_____________________________________,其和為___________.

  6、若a、b互為相反數(shù),c、d互為倒數(shù),則(a+b)3-3(cd)4=________.

  7、1-2+3-4+5-6+……+20xx-2002的值是____________.

  8、若(a-1)2+|b+2|=0,那么a+b=_____________________.

  9、平方等于它本身的有理數(shù)是___________,立方等于它本身的有理數(shù)是_____________.

  10、用四舍五入法把3.1415926精確到千分位是,用科學記數(shù)法表示302400,應記為,近似數(shù)3.0×精確到位。

  11、正數(shù)–a的絕對值為__________;負數(shù)–b的絕對值為________

  12、甲乙兩數(shù)的和為-23.4,乙數(shù)為-8.1,甲比乙大

  13、在數(shù)軸上表示兩個數(shù),的數(shù)總比的大。(用“左邊”“右邊”填空)

  14、數(shù)軸上原點右邊4.8厘米處的點表示的有理數(shù)是32,那么,數(shù)軸左邊18厘米處的點表示的有理數(shù)是____________。

  三、強化訓練

  1、計算:1+2+3+…+20xx+2003=__________.

  2、已知:若(a,b均為整數(shù))則a+b=

  3、觀察下列等式,你會發(fā)現(xiàn)什么規(guī)律:,,,。。。請將你發(fā)現(xiàn)的規(guī)律用只含一個字母n(n為正整數(shù))的等式表示出來

  4、已知,則___________

  5、已知是整數(shù),是一個偶數(shù),則a是(奇,偶)

  6、已知1+2+3+…+31+32+33==17×33,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。

  7、在數(shù)1,2,3,…,50前添“+”或“-”,并求它們的和,所得結果的最小非負數(shù)是多少?請列出算式解答。

  8、如果有理數(shù)a,b滿足∣ab-2∣+(1-b)2=0,試求+…+的值。

  9、如果規(guī)定符號“*”的意義是a*b=ab/(a+b),求2*(-3)*4的值。

  10、已知|x+1|=4,(y+2)2=4,求x+y的值。

  11、投資股票是一種很重要的投資方式,但股市的風云變化又牽動了股民的心。

  例:某股民在上星期五買進某種股票500股,每股60元,下表是本周每日該股票的漲跌情況(單位:元):

  星期一二三四五

  每股漲跌+4+4.5-1-2.5-6

  第1章(1)星期三收盤時,每股是多少元?

  第2章(2)本周內最高價是每股多少元?最低價是多少元?

  第3章(3)已知買進股票是付了1.5‰的手續(xù)費,賣出時需付成交額1.5‰的手續(xù)費和1‰的交易費,如果在星期五收盤前將全部股票一次性地賣出,他的收益情況如何?

  第4章(4)以買進的股價為0點,用折線統(tǒng)計圖表示本周該股的股價情況。

  四、競賽訓練:

  1、最小的非負有理數(shù)與最大的非正有理數(shù)的和是

  2、乘積=

  3、比較大。篈=,B=,則A B

  4、滿足不等式104≤A≤105的整數(shù)A的個數(shù)是x×104+1,則x的值是( )

  A、9 B、8 C、7 D、6

  5、最小的一位數(shù)的質數(shù)與最小的兩位數(shù)的質數(shù)的積是( )

  A、11 B、22 C、26 D、33

  6、比較

  7、計算:

  8、計算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).xkb1.com

  9、計算:

  10、計算

  11、計算1+3+5+7+…+1997+1999的值

  12、計算1+5+52+53+…+599+5100的值.

  13、有理數(shù)均不為0,且設試求代數(shù)式20xx之值。

  14、已知a、b、c為實數(shù),且,求的值。

  15、已知:。

  16、解方程組。

  17、若a、b、c為整數(shù),且,求的值。

  1.2.1有理數(shù)

  七年級上(1.1正數(shù)和負數(shù),1.2有理數(shù))

  1.2有理數(shù)

初一數(shù)學有理數(shù)教案14

  《1.2有理數(shù)》教學設計

  【學習目標】:

  1、掌握有理數(shù)的 概念,會對有理數(shù)按一定標準進行分類,培養(yǎng)分類能力;

  2、了解分類的標準 與集合的含義;

  3、體驗分類是數(shù)學上常用的處理問題方法;

  【學習重點】:正確理解有理數(shù)的概念

  【學習難點】:正確理解分類的`標準和按照一定標準分類

  《1.2.1有理數(shù)》同步練習含答案

  5.對-3.14,下面說法正確的是(B)

  A.是負數(shù),不是分數(shù)

  B.是負數(shù),也是分數(shù)

  C.是分數(shù),不是有理數(shù)

  D.不是分數(shù),是有理數(shù)

  《1.2有理數(shù)》同步練習含答案解析

  8.如果a與1互為相反數(shù),則|a|=( )

  A.2 B.﹣2 C.1 D.﹣1

  【考點】絕對值;相反數(shù).

  【分析】根據(jù)互為相反數(shù)的定義,知a=﹣1,從而求解.

  互為相反數(shù)的定義:只有符號不同的兩個數(shù)叫互為相反數(shù).

  【解答】解:根據(jù)a與1互為相反數(shù),得

  a=﹣1.

  所以|a|=1.

  故選C.

  【點評】此題主要是考查了相反數(shù)的概念和絕對值的性質.

  9.若|1﹣a|=a﹣1,則a的取值范圍是( )

  A.a>1 B.a≥1 C.a<1 D.a≤1

  【考點】絕對值.

  【分析】根據(jù)|1﹣a|=a﹣1得到1﹣a≤0,從而求得答案.

  【解答】解:∵|1﹣a|=a﹣1,

  ∴1﹣a≤0,

  ∴a≥1,

  故選B.

  【點評】本題考查了絕對值的求法,解題的關鍵是了解非正數(shù)的絕對值是它的相反數(shù),難度不大.

初一數(shù)學有理數(shù)教案15

  一、學情分析:

  在此之前,本班學生已有探索有理數(shù)加法法則的經驗,多數(shù)學生能在教師指導下探索問題。由于學生已了解利用數(shù)軸表示加法運算過程,不太熟悉水位變化,故改為用數(shù)軸表示乘法運算過程。

  二、課前準備

  把學生按組間同質、組內異質分為10個小組,以便組內合作學習、組間競爭學習,形成良好的學習氣氛。

  三、教學目標

  1、知識與技能目標

  掌握有理數(shù)乘法法則,能利用乘法法則正確進行有理數(shù)乘法運算。

  2、能力與過程目標

  經歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學生觀察、歸納、猜測、驗證等能力。

  3、情感與態(tài)度目標

  通過學生自己探索出法則,讓學生獲得成功的喜悅。

  四、教學重點、難點

  重點:運用有理數(shù)乘法法則正確進行計算。

  難點:有理數(shù)乘法法則的探索過程,符號法則及對法則的理解。

  五、教學過程

  1、創(chuàng)設問題情景,激發(fā)學生的求知欲望,導入新課。

  教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?

  學生:26米。

  教師:能寫出算式嗎?

  學生:……

  教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題(教師板書課題)

  2、小組探索、歸納法則

  (1)教師出示以下問題,學生以組為單位探索。

  以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負方向。

  a.2×3

  2看作向東運動2米,×3看作向原方向運動3次。

  結果:向 運動 米

  2×3=

  b.-2×3

  -2看作向西運動2米,×3看作向原方向運動3次。

  結果:向 運動 米

  -2×3=

  c.2×(-3)

  2看作向東運動2米,×(-3)看作向反方向運動3次。

  結果:向 運動 米

  2×(-3)=

  d.(-2)×(-3)

  -2看作向西運動2米,×(-3)看作向反方向運動3次。

  結果:向 運動 米

  (-2)×(-3)=

  e.被乘數(shù)是零或乘數(shù)是零,結果是人仍在原處。

  (2)學生歸納法則

  a.符號:在上述4個式子中,我們只看符號,有什么規(guī)律?

  (+)×(+)=同號得

  (-)×(+)=異號得

  (+)×(-)=異號得

  (-)×(-)=同號得

  b.積的絕對值等于 。

  c.任何數(shù)與零相乘,積仍為 。

  (3)師生共同用文字敘述有理數(shù)乘法法則。

  3、運用法則計算,鞏固法則。

  (1)教師按課本P75例1板書,要求學生述說每一步理由。

  (2)引導學生觀察、分析例1中(3)(4)小題兩因數(shù)的關系,得出兩個有理數(shù)互為倒數(shù),它們的積為 。

  (3)學生做P76練習1(1)(3),教師評析。

  (4)教師引導學生做P75例2,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結出多因數(shù)相乘的符號法則。多個因數(shù)相乘,積的'符號由 決定,當負因數(shù)個數(shù)有 ,積為 ;當負因數(shù)個數(shù)有 ,積為 ;只要有一個因數(shù)為零,積就為 。

  4、討論對比,使學生知識系統(tǒng)化。

  有理數(shù)乘法有理數(shù)加法

  同號得正取相同的符號

  把絕對值相乘

  (-2)×(-3)=6把絕對值相加

  (-2)+(-3)=-5

  異號得負取絕對值大的加數(shù)的符號

  把絕對值相乘

  (-2)×3=-6(-2)+3=1

  用較大的絕對值減小的絕對值

  任何數(shù)與零得零得任何數(shù)

  5、分層作業(yè),鞏固提高。

  六、教學反思:

  本節(jié)課由情景引入,使學生迅速進入角色,很快投入到探究有理數(shù)乘法法則上來,提高了本節(jié)課的教學效率。在本節(jié)課的教學實施中自始至終引導學生探索、歸納,真正體現(xiàn)了以學生為主體的教學理念。本節(jié)課特別注重過程教學,有利于培養(yǎng)學生的分析歸納能力。教學效果令人比較滿意。如果是在法則運用時,編制一些訓練符號法則的口算題,把例2放在下一課時處理,效果可能更好。

【初一數(shù)學有理數(shù)教案】相關文章:

初一上冊數(shù)學《有理數(shù)》教案03-01

初中數(shù)學有理數(shù)教案02-23

初一上冊數(shù)學《有理數(shù)》教案15篇03-01

有理數(shù)教案范文09-21

有理數(shù)的除法教案01-23

有理數(shù)的乘方教案02-14

《有理數(shù)的加法》教案02-25

有理數(shù)的加法教案07-09

有理數(shù)除法教案08-21