當前位置:育文網(wǎng)>教學文檔>教案> 《有理數(shù)的加法》教案

《有理數(shù)的加法》教案

時間:2024-06-18 00:40:45 教案 我要投稿

《有理數(shù)的加法》教案

  在教學工作者開展教學活動前,往往需要進行教案編寫工作,借助教案可以讓教學工作更科學化。那么教案應該怎么寫才合適呢?下面是小編幫大家整理的《有理數(shù)的加法》教案,歡迎大家借鑒與參考,希望對大家有所幫助。

《有理數(shù)的加法》教案

《有理數(shù)的加法》教案1

  教師在備課時,應充分估計學生在學習時可能提出的問題,確定好重點,難點,疑點,和關鍵。根據(jù)學生的實際改變原先的教學計劃和方法,滿腔熱忱地啟發(fā)學生的思維,針對疑點積極引導。

  非常高興,能有機會和同學們共同學習

  昨天,老師在七年級三班上課時,把他們分成七個小組,每個小組回答問題的情況以搶答賽的形式記分。你們看(出示投影)這是七年級三班七個小組回答問題的表現(xiàn)情況。答對一題得一分,記作+1分;答錯一題扣一分,記作1分。第幾組最棒?老師還沒來得及計算出每個小組的最后得分,咱們班哪位同學能幫老師算出最后結果?(學生在教師引導下回答)

  我們已得出了每個小組的最后分數(shù),那么哪個小組是優(yōu)勝小組?(第一小組),回去以后,老師就把小獎品發(fā)給他們,相信他們一定會很高興。

  同學們,這節(jié)課你們愿不愿意也分成幾個小組,看一看那個小組的同學表現(xiàn)得最出色?(原意)那么老師就按座次給同學們分組,每一豎排為一組。老師把組號寫在黑板上,以便記分。

  希望各組同學積極思考、踴躍發(fā)言。同學們有沒有信心得到老師的小獎品?(有)同學們加油!

  我們已得到了這7個小組的最后得分,那位同學能試著用算式表示?(學生在教師指導下列算式)

  以上這些算是都是什么運算?(加法),兩個加數(shù)都是什么數(shù)?(有理數(shù)),這就是我們這節(jié)課要學習的有理數(shù)的加法(板書課題)。

  剛才老師說要給七年級三班的優(yōu)勝組發(fā)獎品,老師手里有12本作業(yè)本,優(yōu)勝組共6人,老師將送出的作業(yè)本數(shù)占總數(shù)的幾分之幾?(二分之一)分數(shù)最低的一組共7人,他們每人交給老師一個作業(yè)本,占總數(shù)的幾分之幾?(十二分之七)如果,老師得到的作業(yè)本記為正數(shù),送出的作業(yè)本記為負數(shù),則老師手里的作業(yè)本增加或減少幾分之幾?同學們能列出算式嗎?(學生列式)對于這個算式,同學們還能輕易的感知出結果嗎?(不能)

  對于有理數(shù)的加法,有的同學們能直接感知得到結果,有的靠感知是不夠的,這就需要我們共同探索規(guī)律!(出示投影),觀察這7個算式,每一個算式都是怎樣的兩個有理數(shù)相加?(引導學生回答)你們還能舉出不同以上情況的'算式嗎?(不能),這說明這幾個算式概括了有理數(shù)加法的不同情況。

  前兩個算式的加數(shù)在符號上有什么共同點?(相同),那么我們就可以說這是什么樣的兩數(shù)相加?(同號兩數(shù)相加)同學們還能觀察出那幾個算式可歸為一類嗎?(3、4、5、異號兩數(shù)相加,6、7一個數(shù)同0相加)

  同學們已把這7個算式分成了三種情況,下面我們分別探討規(guī)律。

  (1) 同號兩數(shù)相加,其和有何規(guī)律可循呢?大家觀察這兩個式子,回答兩個問題。(師引導觀察,得出答案),那位同學能填好這個空?

  (2) 異號兩數(shù)相加,其和有何規(guī)律呢?大家觀察這三個式子回答問題。(引導學生分成兩類,容易得到絕對值相同情況的結論。再引導學生觀察絕對值不相同的情況,回答問題)哪位同學能概括一下這個規(guī)律?(引導學生得出)

  (3) 一個數(shù)同0相加,其和有什么規(guī)律呢?(易得出結論)

  同學們經(jīng)過積極思考,探索出了解決有理數(shù)加法的規(guī)律,顧一下(出哪位同學能帶領大家共同回顧一下?(出示投影,學生大聲朗讀)我們把這個規(guī)律稱為有理數(shù)的加法法則。

  同學們都很聰明,積極參與探索規(guī)律,每個組都有不錯的成績。個別落后的組不要氣餒,繼續(xù)努力,下面老師就給大家一個得分的機會,看哪一組能[出題制勝]!(出示)

  (活動過程1后評價、加分;教師以其中一題為例,講解題格式及過程;活動過程2后:讓每組第三排同學評價加分)

  同學們已經(jīng)基本掌握了有理數(shù)的加法法則,并會運用它,但七年級三班有幾位同學對這一內(nèi)容掌握的不是太好,以致在作業(yè)中出了毛病,他們?yōu)榇撕芸鄲馈OM蹅兺瑢W能幫幫他們,看哪位同學能像妙手回春的神醫(yī)華佗一樣藥到病 除!(師生共同治病)

  看來同學們對有理數(shù)的加法已經(jīng)掌握得很好了,大家還記得前面那個難倒我們的有理數(shù)的加法題呢?那位同學能解決這個問題呢?(學生口述 師板書)。在大家的努力下,我們終于攻破了這個難關。

  通過這節(jié)課的學習,大家有什么收獲?(學生回答)同學們都有很多收獲,老師認為收獲最多的是優(yōu)勝組的同學,因為他們能得到老師的小獎品,大家趕緊看看那一組獲勝?歡迎優(yōu)勝組上臺領獎,大家掌聲鼓勵!

  同學們,希望你們在未來的學習和生活中都能積極進取,獲得一個又一個的勝利。

《有理數(shù)的加法》教案2

  今天我說課的題目是“有理數(shù)的加法(一)"。本節(jié)課選自華東師范大學出版社出版的〈義務教育課程標準實驗教科書〉七年級(上),。這一節(jié)課是本冊書第二章第六節(jié)第一課時的內(nèi)容。下面我就從以下四個方面一一教材分析、教材處理、教學方法和教學手段、教學過程的設計向大家介紹一下我對本節(jié)課的理解與設計。

  一、教材分析

  分析本節(jié)課在教材中的地位和作用,以及在分析數(shù)學大綱的基礎上確定本節(jié)課的教學目標、重點和難點。首先來看一下本節(jié)課在教材中的地位和作用。

  1、 有理數(shù)的加法在整個知識系統(tǒng)中的地位和作用是很重要的。初中階段要培養(yǎng)學生的運算能力、邏輯思維能力和空間想象能力以及讓學生根據(jù)一些現(xiàn)實模型,把它轉化成數(shù)學問題,從而培養(yǎng)學生的數(shù)學意識,增強學生對數(shù)學的理解和解決實際問題的能力。運算能力的培養(yǎng)主要是在初一階段完成。有理數(shù)的加法作為有理數(shù)的運算的一種,它是有理數(shù)運算的重要基礎之一,它是整個初中代數(shù)的一個基礎,它直接關系到有理數(shù)運算、實數(shù)運算、代數(shù)式運算、解方程、、研究函數(shù)等內(nèi)容的學習。

  2、 就第二章而言,有理數(shù)的加法是本章的一個重點。有理數(shù)這一章分為兩大部分一-有理數(shù)的意義和有理數(shù)的運算,有理數(shù)的意義是有理數(shù)運算的基礎,有理數(shù)的混合運算是這一章的難點,但混合運算是以各種基本運算為基礎的。在有理數(shù)范圍內(nèi)進行的各種運算:加、減法可以統(tǒng)一成為加法,乘法、除法和乘方可以統(tǒng)一成乘法,因此加法和乘法的運算是本章的關鍵,而加法又是學生接觸的第一種有理數(shù)運算,學生能否接受和形成在有理數(shù)范圍內(nèi)進行的各種運算的思考方式(確定結果的符合和絕對值),關鍵是這一節(jié)的學習。

  從以上兩點不難看出它的地位和作用都是很重要的。

  接下來,介紹本節(jié)課的教學目標、重點和難點。(結合微機顯示)

  教學大綱是我們確定教學目標,重點和難點的依據(jù)。教學大鋼規(guī)定,在有理數(shù)的加法的第一節(jié)要使學生理解有理數(shù)加法的意義,理解有理數(shù)的加法法則,并運用法則進行準確運算。因此根據(jù)教學大綱的要求,確定了本節(jié)課的教學目標。1、知識目標是:“(1)理解有理數(shù)加法的意義;(2)理解并掌握有理數(shù)加法的法則;(3)應用有理數(shù)加法法則進行準確運算;(4)滲透數(shù)形結合的思想。2能力目標是:(1)培養(yǎng)學生準確運算的能力;(2)培養(yǎng)學生歸納總結知識的能力;3、德育目標是;(1)滲透由特殊到一般的辯證唯物主義思想:(2)培養(yǎng)學生嚴謹?shù)乃季S品質。有理數(shù)加法的意義與小學學習的在正有理數(shù)和零的范圍內(nèi)進行的加法運算的意義相同,讓學生理解即可,有理數(shù)的加法法則的理解與運用是本節(jié)的重點內(nèi)容。因此本節(jié)課的重點是:有理數(shù)加法法則的理解與運用。由于本階段的學生很難把握住事物主要特征:如異號兩數(shù)、絕對值不相等的異號兩數(shù)和互為相反數(shù)之間的關系,這就對法則的理解造成困難。因此我確定本節(jié)課的難,是是;有理數(shù)加法法則的理解。

  二、教材處理

  本節(jié)課是在前面學習了有理數(shù)的意義的基礎上進行的,學生已經(jīng)很牢固地掌握了正數(shù)、負數(shù)、數(shù)軸、相反數(shù)、絕對值等概念,因此我沒有把時間過多地放在復習這些舊知識上,而是利用學生的好奇心,采用生動形象的事例,讓學生充當指揮官的角色,親身參加探索發(fā)現(xiàn),從而獲取知識。在法則的得出過程當中,我引進了現(xiàn)代化的教學工具微機,讓學生在微機演示的一種動態(tài)變化中自己發(fā)現(xiàn)規(guī)律歸納總結,這不但增加了課堂的趣味性提高了學生的能力。而且直接地向學生滲透了數(shù)形結合的思想。在法則的應用這一環(huán)節(jié)我又選配了一些變式練習,通過書上的基本練習達到訓練雙基的目的,通過變式練習達到發(fā)展智力、提高能力的目的。這些我將在教學過程的設計簾具體體現(xiàn)。而且在做練習的過程當中讓學生互相提問,使課堂在學生的參與下積極有序的進行。

  三、教學方法和數(shù)學孚段

  在教學過程中,我注重體現(xiàn)教師的導向作用和學生的主體地位,。本節(jié)是新課內(nèi)容的學習,。教學過程中盡力引導學生成為知識的`發(fā)現(xiàn)者,把教師的點撥和學生解決問題結合起來,為學生創(chuàng)設情境,從而不斷激發(fā)學生的求知欲望和學習興趣,使學生輕松愉快地學習不斷克服學生學習中的被動情況,使其在教學過程中在掌握知識同時、發(fā)展智力、受到教育。

  四、教學過程的設計

  1, 引入:再課堂的引入上,開始我本打算選擇教材上的例子,但是它過于簡單。并且不宜于引起學生的注意,所以我選擇了學生們感興趣的軍事問題,讓學生在充當指揮官的同時,有一種解決問題的成就感,從而使學生積極主動的學習,并且營造了良好的學習氛圍。

  2, 探索規(guī)律:法則的得出重要體現(xiàn)知識的發(fā)生,發(fā)展,形成過程。我通過了一個小人在坐標軸上來回的移動,使學生在小人的移動過程當中體會兩個數(shù)相加的變化規(guī)律。由于采用了形式活潑的教學手段,學生能夠全副身心的投入到思考問題中去,讓學生親身參加了探索發(fā)現(xiàn),獲取知識和技能的全過程。最后由學生對規(guī)律進行歸納總結補充,從而得出有理數(shù)的加法法則。

  3, 鞏固練習:再習題的配備上,我注意了學生的思維是一個循序漸進的過程,所以習題的配備由難而易,使學生在練習的過程當中能夠逐步的提高能力,得到發(fā)展。并且采用男生出題,女生回答;女生出題,男生回答,活躍課堂氣氛,充分調動學生的積極性。使學生在一種比較活躍的氛圍中,解決各種問題。

  4, 歸納總結:歸納總結由學生完成,并且做適當?shù)难a充。最后教師對本節(jié)的課進行說明。

  以上是我對本節(jié)課的理解和設計。希望各位老師批評指正,以達到提高個人教學能力的目的。

  要的。初中階段要培養(yǎng)學生的運算能力、邏輯思維能力和空間想象能力以及讓學生根據(jù)一些現(xiàn)實模型,把它轉化成數(shù)學問題,從而培養(yǎng)學生的數(shù)學意識,增強學生對數(shù)學的理解和解決實際問題的能力。運算能力的培養(yǎng)主要是在初一階段完成。有理數(shù)的加法作為有理數(shù)的運算的一種,它是有理數(shù)運算的重要基礎之一,它是整個初中代數(shù)的一個基礎,它直接關系到有理數(shù)運算、實數(shù)運算、代數(shù)式運算、解方程、、研究函數(shù)等內(nèi)容的學習。

  2、 就第一章而言,有理數(shù)的加法是本章的一個重點。有理數(shù)這一章分為兩大部分一-有理數(shù)的意義和有理數(shù)的運算,有理數(shù)的意義是有理數(shù)運算的基礎,有理數(shù)的混合運算是這一章的難點,但混合運算是以各種基本運算為基礎的。在有理數(shù)范圍內(nèi)進行的各種運算:加、減法可以統(tǒng)一成為加法,乘法、除法和乘方可以統(tǒng)一成乘法,因此加法和乘法的運算是本章的關鍵,而加法又是學生接觸的第一種有理數(shù)運算,學生能否接受和形成在有理數(shù)范圍內(nèi)進行的各種運算的思考方式(確定結果的符合和絕對值),關鍵是這一節(jié)的學習。

  從以上兩點不難看出它的地位和作用都是很重要的。

  接下來,介紹本節(jié)課的教學目標、重點和難點。

  教學大綱是我們確定教學目標,重點和難點的依據(jù)。教學大綱規(guī)定,在有理數(shù)的加法的第一節(jié)要使學生理解有理數(shù)加法的意義,理解有理數(shù)的加法法則,并運用法則進行準確運算。因此根據(jù)教學大綱的要求,確定了本節(jié)課的教學目標。1、知識目標是:“(1)理解有理數(shù)加法的意義;(2)理解并掌握有理數(shù)加法的法則;(3)應用有理數(shù)加法法則進行準確運算;(4)滲透數(shù)形結合的思想。2能力目標是:(1)培養(yǎng)學生準確運算的能力;(2)培養(yǎng)學生歸納總結知識的能力;3、德育目標是;(1)滲透由特殊到一般的辯證唯物主義思想:(2)培養(yǎng)學生嚴謹?shù)乃季S品質。有理數(shù)加法的意義與小學學習的在正有理數(shù)和零的范圍內(nèi)進行的加法運算的意義相同,讓學生理解即可,有理數(shù)的加法法則的理解與運用是本節(jié)的重點內(nèi)容。因此本節(jié)課的重點是:有理數(shù)加法法則的理解與運用。由于本階段的學生很難把握住事物主要特征:如異號兩數(shù)、絕對值不相等的異號兩數(shù)和互為相反數(shù)之間的關系,這就對法則的理解造成困難。因此我確定本節(jié)課的難,是有理數(shù)加法法則的理解。

  以上是我對本節(jié)課的理解和設計。希望各位老師批評指正,以達到提高個人教學能力的目的。

《有理數(shù)的加法》教案3

  教學目標:

  1. 知識與技能:使學生理解加減法統(tǒng)一成加法的意義,能準確、熟練地進行加減混合運算,能自覺地運用加法的運算律簡化運算,

  2. 過程與方法:經(jīng)歷加減法統(tǒng)一成加法的過程,體會加法的運算律在運算中的應用

  3. 情感、態(tài)度與價值觀:滲透用轉化的思想看問題以及解決問題,鼓勵學生依據(jù)法則簡化運算

  教學重點:能準確、熟練地進行加減混合運算,能自覺地運用加法的'運算律簡化運算,

  教學難點:準確、熟練地進行加減混合運算

  教學過程

  一、課前預習

  1、有理數(shù)的加法法則是什么? 2、有理數(shù)的減法法則是什么? 3、有理數(shù)的加法有什么運算律?具體內(nèi)容是什么? 4、計算下列各題 (1)(-5)+(-8) (2)(-5)-(-8) (3)(-5)-8 (4)3-12

  二、自主探索

  根據(jù)有理數(shù)減法法則,有理數(shù)的加減混合運算可以統(tǒng)一為加法運算

  例1、計算 (1)14-(-12)+(-25)-17 (2)2+5-8 (3)7-(-4)+(-5) (4)-7.2+4.7-(-8.9)+(-6) (5) - +(- )-(- )-(+ ) 解: (1) 14-(-12)+(-25)-17 =14+12+(-25)+(-17)---------------------------統(tǒng)一為加法 = 26+(-42)---------------------------------------運用運算律 =-16 (2) (3)(4) (5)

  算式(-6)-(-13)+(-5)-(+3)+(+6)是有理數(shù)的加減混合運算,我們還可以按下列步驟進行計算: 解:(-6)-(-13)+(-5)-(+3)+(+6)

  =(-6)+(+13)+(-5)+(-3)+(+6)------------統(tǒng)一加號 =-6+13-5-3+6----------------------------------------省略加號 =-6-5-3+13+6-----------------------------------------運用運算律=-14+19=5 說明: 省略加號的形式-6+13-5-3+6 表示-6,+13,-5 ,-3,+6這五個數(shù)的和。

  例2.計算:

  (1) -3-5+4 (2)-26+43-24+13-46

  解:(1) (2)

  例4、若a=-2,b=3,c=-4,求值

  (1)a+b-c (2)-a+b-|c| (3)a-b+c (4)-a-b-c

  解:(1)a+b-c=-2+3-(-4)=-2+3+4=5 ---------- [ 數(shù)據(jù)代入時,注意括號的運用]

  (2) (3)(4)

  例5、在伊拉克的戰(zhàn)爭中,謀生化小組沿東西方向路進行檢查, 約定向東為正,某天從A地到B地結束時行走記錄為(單位:km)

  +15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5 問:(1)B地在A地何方,相距多少千米?

  (2)這小組這一天共走了多少千米

  三、學習小結

  這節(jié)課你學會了哪幾種運算?

  四、隨堂練習

  A類

  1、計算: (1)(-30)-(+24)-(-20)+(-32)-(-32)(2) (-2.1)+(-3.2)-(-2.4)-(-4.3)

  (3)(+ )-(- )+(- )-(+ ) (4) -7.52+ -1.48

  (5)21-12+33+12-67 (6)-3.2+5.8-8.6+12

  2 計算

  (1) 1+2-3-4+5+6-7-8++97+98-99-100

  (2) 66-12+11.3-7.4+8.1-2.5

  (6)-2.7-[3-(-0.6+1.3)]

  B類

  3. 計算 (1) + + ++ (2) + + ++

《有理數(shù)的加法》教案4

  教學目標:

  1、使學生掌握有理數(shù)加法的運算律,并能運用加法運算律簡化運算。

  2、培養(yǎng)學生觀察、比較、歸納及運算能力。

  重點:有理數(shù)加法運算律及其運用。

  重點:靈活運用運算律

  教學過程:

  一、創(chuàng)設情境,引入新課

  1、小學時已學過的加法運算律有哪幾條?

  2、猜一猜:在有理數(shù)的加法中,這兩條運算律仍然適用嗎?

  3、(1)計算30+(-20)=__________=______,-20+30=___________=_____;

  (2)[8+(-5)]+(-4)=_______=______, 8+[(-5)+(-4)]=_______=______。

  二、講授新課

  教師:你會用文字表述加法的兩條運算律嗎?你會用字母表示加法的這兩條運算律嗎?

  (學生回答省略)

  師生共同歸納:加法交換律:兩個數(shù)相加,交換加數(shù)的位置,和不變。 即:a+b=b+a

  加法結合律:三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。即(a+b)+c=a+(b+c)

  講解例3

  教師:例3中是怎樣使計算簡化的?這樣做的根據(jù)是什么?(請兩位同學起來回答)

  三、鞏固知識

  教師:例4中用了兩種方法,比較兩種解法,哪種方法比較好?解法2中使用了哪些運算律?

  師生共同得出:解法2比較好,因為它的運算量比較小。解法2中使用了加法交換律和加法結合律。

  四、總結

  本節(jié)課主要學習有理數(shù)加法運算律及其運用,主要用到的思想方法是類比思想,需要注意的是:有理數(shù)的加法運算律與小學學習的`運算律相同,運用加法運算律的目的為了簡化運算。解題技巧是將正數(shù)分別相加,再把負數(shù)分別相加,然后再把它們的和相加。

  五、布置作業(yè)

《有理數(shù)的加法》教案5

  教學目標

  1、理解掌握有理數(shù)的減法法則,會將有理數(shù)的減法運算轉化為加法運算;

  2、通過把減法運算轉化為加法運算,向學生滲透轉化思想,通過有理數(shù)的減法運算,培養(yǎng)學生的運算能力。

  3、通過揭示有理數(shù)的減法法則,滲透事物間普遍聯(lián)系、相互轉化的辯證唯物主義思想。

  教學建議

  (一)重點、難點分析

  本節(jié)重點是運用有理數(shù)的減法法則熟練進行減法運算。解有理數(shù)減法的計算題需嚴格掌握兩個步驟:首先將減法運算轉化為加法運算,然后依據(jù)有理數(shù)加法法則確定所求結果的符號和絕對值。理解有理數(shù)的減法法則是難點,突破的關鍵是轉化,變減為加。學習中要注意體會:小學遇到的小數(shù)減大數(shù)不會減的問題解決了,小數(shù)減大數(shù)的差是負數(shù),在有理數(shù)范圍內(nèi),減法總可以實施。

 。ǘ┲R結構

 。ㄈ┙谭ńㄗh

  1、教師指導學生閱讀教材后強調指出:由于把減數(shù)變?yōu)樗南喾磾?shù),從而減法轉化為加法。有理數(shù)的加法和減法,當引進負數(shù)后就可以統(tǒng)一用加法來解決。

  2、不論減數(shù)是正數(shù)、負數(shù)或是零,都符合有理數(shù)減法法則。在使用法則時,注意被減數(shù)是永不變的。

  3、因為任何減法運算都可以統(tǒng)一成加法運算,所以我們沒有必要再規(guī)定幾個帶有減法的運算律,這樣有利于知識的鞏固和記憶。

  4、注意引入負數(shù)后,小的數(shù)減去大的數(shù)就可以進行了,其差可用負數(shù)表示。

  教學設計示例:

  有理數(shù)的減法

  一、素質教育目標

 。ㄒ唬┲R教學點

  1、掌握有理數(shù)的減法法則。

  2、進行有理數(shù)的減法運算。

  (二)能力訓練點

  1、通過把減法運算轉化為加法運算,向學生滲透轉化思想。

  2、通過有理數(shù)減法法則的推導,發(fā)展學生的邏輯思維能力。

  3、通過有理數(shù)的減法運算,培養(yǎng)學生的運算能力。

  (三)德育滲透點

  通過揭示有理數(shù)的減法法則,滲透事物間普遍聯(lián)系、相互轉化的辯證唯物主義思想。

 。ㄋ模┟烙凉B透點

  在小學算術里減法不能永遠實施,學習了本節(jié)課知道減法在有理數(shù)范圍內(nèi)可以永遠實施,體現(xiàn)了知識體系的完整美。

  二、學法引導

  1、教學方法:教師盡量引導學生分析、歸納總結,以學生為主體,師生共同參與教學活動。

  2、學生學法:探索新知→歸納結論→練習鞏固。

  三、重點、難點、疑點及解決辦法

  1、重點:有理數(shù)減法法則和運算。

  2、難點:有理數(shù)減法法則的推導。

  四、課時安排

  1課時

  五、教具學具準備

  電腦、投影儀、自制膠片。

  六、師生互動活動設計

  教師提出實際問題,學生積極參與探索新知,教師出示練習題,學生以多種方式討論解決。

  七、教學步驟

 。ㄒ唬﹦(chuàng)設情境,引入新課

  1、計算(口答)(1);(2)-3+(-7);

  (3)-10+(+3);(4)+10+(-3)。

  2、由實物投影顯示課本第42頁本章引言中的畫面,這是北京冬季里的一天,白天的.最高氣溫是10℃,夜晚的最低氣溫是-5℃。這一天的最高氣溫比最低氣溫高多少?

  教師引導學生觀察:

  生:10℃比-5℃高15℃。

  師:能不能列出算式計算呢?

  生:10-(-5)。

  師:如何計算呢?

  教師總結:這就是我們今天要學的內(nèi)容。(引入新課,板書課題)

  【教法說明】

  1、題目既復習鞏固有理數(shù)加法法則,同時為進行有理數(shù)減法運算打基礎。2題是一個具體實例,教師創(chuàng)設問題情境,激發(fā)學生的認知興趣,把具體實例抽象成數(shù)學問題,從而點明本節(jié)課課題—有理數(shù)的減法。

 。ǘ┨剿餍轮,講授新課

  師:大家知道10-3=7。誰能把10-3=7這個式子中的性質符號補出來呢?

  生:(+10)-(+3)=+7。

  師:計算:(+10)+(-3)得多少呢?

  生:(+10)+(-3)=+7。

  師:讓學生觀察兩式結果,由此得到:

  師:通過上述題,同學們觀察減法是否可以轉化為加法計算呢?生:可以。

  師:是如何轉化的呢?

  生:減去一個正數(shù)(+3),等于加上它的相反數(shù)(-3)。

  【教法說明】

  教師發(fā)揮主導作用,注重學生的參與意識,充分發(fā)展學生的思維能力,讓學生通過嘗試,自己認識減法可以轉化為加法計算。

  2、再看一題,計算(-10)-(-3)。

  教師啟發(fā):要解決這個問題,根據(jù)有理數(shù)減法的意義,這就是要求一個數(shù)使它與(-3)相加會得到-10,那么這個數(shù)是誰呢?

  生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7。教師給另外一個問題:計算(-10)+(+3)。

  生:(-10)+(+3)=-7。

  教師引導、學生觀察上述兩題結果,由此得到:

  教師進一步引導學生觀察(2)式;你能得到什么結論呢?

  生:減去一個負數(shù)(-3)等于加上它的相反數(shù)(+3)。

  教師總結:由(1)、(2)兩式可以看出減法運算可以轉化成加法運算。

《有理數(shù)的加法》教案6

  教學目標

  1.了解有理數(shù)加法的意義,理解有理數(shù)加法法則的合理性;

  2.能運用有理數(shù)加法法則,正確進行有理數(shù)加法運算;

  3.經(jīng)歷探索有理數(shù)加法法則的過程,感受數(shù)學學習的方法;

  4.通過積極參與探究性的數(shù)學活動,體驗數(shù)學來源于實踐并為實踐服務的思想,激發(fā)學生的學習興趣,同時培養(yǎng)學生探究性學習的能力.

  教學重點

  能運用有理數(shù)加法法則,正確進行有理數(shù)加法運算.

  教學難點

  經(jīng)歷探索有理數(shù)加法法則的過程,感受數(shù)學學習的.方法.

  教學過程(教師)

  一、創(chuàng)設情境

  小學里,我們學過加法和減法運算,引進負數(shù)后,怎樣進行有理數(shù)的加法和減法運算呢?

  1.試一試

  甲、乙兩隊進行足球比賽.如果甲隊在主場贏了3球,在客場輸了2球,那么兩場比賽后甲隊凈勝1球.

  你能把上面比賽的過程及結果用有理數(shù)的算式表示出來嗎?

  做一做:比賽中勝負難料,兩場比賽的結果還可能有哪些情況呢?動動手填表:

  2.我們知道,求兩次輸贏的總結果,可以用加法來解答,請同學們先個人研究,后小組交流.

  你還能舉出一些應用有理數(shù)加法的實際例子嗎?

  二、探究歸納

  1.把筆尖放在數(shù)軸的原點,沿數(shù)軸先向左移動5個單位長度,再向右移動3個單位長度,這時筆尖停在“”的位置上.

  用數(shù)軸和算式可以將以上過程及結果分別表示為:

  算式:________________________

  2.把筆尖放在數(shù)軸的原點,沿數(shù)軸先向右移動3個單位長度,再向左移動2個單位長度,這時筆尖停在“1”的位置上.

  用數(shù)軸和算式可以將以上過程及結果分別表示為:

  算式:________________________

  3.把筆尖放在數(shù)軸的原點,沿數(shù)軸先向左移動3個單位長度,再向左移動2個單位長度,這時筆尖的位置表示什么數(shù)?

  請用數(shù)軸和算式分別表示以上過程及結果:

  算式:________________________

  仿照上面的做法,請在數(shù)軸上呈現(xiàn)下面的算式所表示的筆尖運動的過程和結果.

  4.觀察、思考、討論、交流并得出有理數(shù)加法法則.

  討論:兩個有理數(shù)相加時,和的符號及絕對值怎樣確定?你能找到有理數(shù)相加的一般方法嗎?

  《2.5有理數(shù)的加法與減法》課時練習

  1.七年級(3)班同學李亮在一次班級運動會上參加三級跳遠比賽,共跳了5次,他第一次跳了6m,第二次比第一次多跳0.1m,第三次比第二次少跳0.3m,第四次比第三次多跳0.5m,第五次比第四次少跳了0.4m.他那一次跳得最遠?成績是多少?

  2.一只小蟲從某點P出發(fā),在一條直線上來回爬行,假定把向右爬行的路程記為正數(shù),向左爬行的路程記為負數(shù),則爬行各段路程(單位:厘米)依次為:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.

  (1)通過計算說明小蟲是否回到起點P.

  (2)如果小蟲爬行的速度為0.5厘米/秒,那么小蟲共爬行了多長時間.

  2.5有理數(shù)的加法與減法:同步練習

  1.高速公路養(yǎng)護小組,乘車沿東西向公路巡視維護,如果約定向東為正,向西為負,當天的行駛記錄如下(單位:km)

  +17,-9,+7,-15,-3,+11,-6,-8,+5,+16

  (1)養(yǎng)護小組最后到達的地方在出發(fā)點的哪個方向?距出發(fā)點多遠?

  (2)養(yǎng)護過程中,最遠外離出發(fā)點有多遠?

  (3)若汽車耗油量為0.09升/km,則這次養(yǎng)護共耗油多少升?

《有理數(shù)的加法》教案7

  【教學目標】

  1.理解有理數(shù)加法的實際意義;

  2.會作簡單的加法計算;

  3.感受到原來用減法算的問題現(xiàn)在也可以用加法算.

  【對話探索設計】

  〖探索1〗

  (1)某倉庫第一天運進300噸化肥,第二天又運進200噸化肥,兩天一共運進多少噸?

  (2)某倉庫第一天運進300噸化肥,第二天運出200噸化肥,兩天總的結果一共運進多少噸?

  (3)某倉庫第一天運進300噸化肥,第二天又運進-200噸化肥,兩天一共運進多少噸?

  (4)把第(3)題的算式列為300+(-200),有道理嗎?

  (5)某倉庫第一天運進a噸化肥,第二天又運進b噸化肥,兩天一共運進多少噸?

  〖探索2〗

  如果物體先向右運動,再向右運動,那么兩次運動后總的結果是什么?

  假設原點為運動起點,用下面的數(shù)軸檢驗你的答案.

  在足球比賽中,通常把進球數(shù)記為正數(shù),失球數(shù)記為負數(shù),它們的'和叫做凈勝球數(shù).若某場比賽紅隊勝黃隊5:2(即紅隊進5個球,失2個球),紅隊凈勝幾個球?

  〖小游戲〗

  (請一位同學到黑板前)前進5步,又前進-3步,那么兩次運動后總的結果是什么?若是后退-1步,又后退3步呢?

  〖練習〗

  1.登山隊員第一天向上攀登,第二天又向上攀登(天氣惡劣!),兩天一共向上攀登多少米?

  2.第一天營業(yè)贏利90元,第二天虧本80元,兩天一共贏利多少元?

  〖補充作業(yè)〗

  1.分別用加法和減法的算式表示下面每小題的結果(能求出得數(shù)最好):

  (1)溫度由下降;(2)倉庫原有化肥200t,又運進-120t;

  (3)標準重量是,超過標準重量;(4)第一天盈利-300元,第二天盈利100元.

  2.借助數(shù)軸用加法計算:

  (1)前進,又前進,那么兩次運動后總的結果是什么?

  (2)上午8時的氣溫是,下午5時的氣溫比上午8時下降,下午5時的氣溫是多少?

  3.某潛水員先潛入水下,他的位置記為.然后又上升,這時他處在什么位置?

《有理數(shù)的加法》教案8

  【教學目標】

  1.進一步理解有理數(shù)加法的實際意義;

  2.經(jīng)歷探索有理數(shù)加法法則的過程,理解有理數(shù)加法法則;

  3.感受數(shù)學模型的思想;

  4.養(yǎng)成認真計算的習慣.

  【對話探索設計】

  〖探索1

  1.第一天贏利,第二天還贏利,兩天合起來算,是贏利還是虧本?

  2.第一天虧本,第二天還是虧本,兩天合起來算,是贏利還是虧本?

  3.一個物體作左右方向的運動,規(guī)定向右為正.如果物體先向左運動5m,再向左運動3m, 那么兩次運動后總的結果是什么?

  假設原點為運動起點,用數(shù)軸檢驗你的答案.

  〖法則理解

  有理數(shù)加法法則第1條是:同號兩數(shù)相加,取___________,并把絕對值_________.

  這條法則包括兩種情況:

  (1)兩個正數(shù)相加,顯然取正號,并把絕對值相加,例(+3)+(+5)=+8;

  (2)兩個負數(shù)相加,取_____號,并把______相加.例如(-3)+(-5) = -(3+5) = -8.答案-8之所以取-號,是因為______________,8是由_____的絕對值和______的絕對值相______而得.

  〖練習

  1.上午6時的氣溫是-5℃,下午5時的氣溫比上午6時下降3℃, 下午5時的氣溫是多少?

  2.第一場比賽紅隊勝黃隊5:2,第二場比賽藍隊勝黃隊3:1, 兩場比賽黃隊凈勝幾個球?

  3.第一天向北走-30km,第二天又向北走-40km,兩天一共向北走多少km?

  4.仿照(-3)+(-5) = -(3+5)= -8的格式解答:

  (1)-10+(-30)=

  (2)(-100)+(-200) =

  (3)(-188)+(-309)=

  〖探索2

  1.第一天營業(yè)贏利90元,第二天虧本80元,兩天一共贏利多少元?如果第二天虧本120元呢?

  2.第一天贏利,第二天虧本,兩天合起來算,是贏利還是虧本?

  3.正數(shù)和負數(shù)相加,結果是正數(shù)還是負數(shù)?

  〖法則理解

  有理數(shù)加法法則第2條的`前半部分是:絕對值不相等的異號兩數(shù)相加,取_________________的符號,并用_______________減去_________________.

  例如(+6)+(-2) = +(6-2) = +4.答案+4之所以取+號,是因為兩個加數(shù)(+6與-2)中________的絕對值較大;答案+4的絕對值4是由加數(shù)中較大的絕對值______減去較小的絕對值____得到.

  又例,計算(-8)+(+3)時,先取______號,這是因為兩個加數(shù)中,______的絕對值較大.然后再用較大的絕對值____減去較小的絕對值____,得_____,于是最后得到答案是______.計算的過程可以寫成(-8)+(+3) = -(8-3) = -5.

  〖議一議

  有人說,正數(shù)和負數(shù)相加時,實質就是把加法運算轉化為小學的減法運算.他說的對不對?

  〖練習

  1.第一場比賽紅隊勝黃隊5:2,第二場比賽黃隊勝藍隊3:1, 兩場比賽黃隊凈勝幾個球?

  2.如果物體先向右運動5米,再向右運動-8米,那么兩次運動后總的結果是什么?

  3. 檢查3包洗衣粉的重量(單位:克), 把其中超過標準重量的數(shù)量記為正數(shù),不足的數(shù)量記作負數(shù),結果如下:

  -3.5,+1.2,-2.7.

  這3包洗衣粉的重量一共超過標準重量多少?

  4.仿照(-8)+(+3) =-(8-3) = -5的格式解題:

  (1)(-3)+(+8)=

  (2)-5+(+4)=

  (3)(-100)+(+30)=

  (4)(-100)+(+109)=

  〖法則理解

  有理數(shù)加法法則第2條的后半部分是:互為相反數(shù)的兩個數(shù)相加得_____.

  例如(+3)+(-3) = ______,(-108)+(+108) = ______.

  〖例題學習

  P21.例1,例2

  P22.練習2(按例1格式算.)

  〖作業(yè)

  P29.習題 1, P32.習題 8,9,10

  【備選素材】

  用一個□表示+1,用一個■表示-1.顯然□+■=0,

  (1)■■+□□□=(■+□)+(■+□)+ □=_____.

  這表明-2+3=+(3-2)=1.

  想一想:答案為什么是正的?為什么轉化為減法運算?

  (2)計算■■■■■+□□□□□=_____.

  (3)計算■■■■■+□□=(■■+□□)+ ■■■=______.

  這說明-5+(+2)=-(___-___)=_______.

  (4)計算■■■+□□□□□=?

《有理數(shù)的加法》教案9

  第一課時

  三維目標

  一、知識與技能

  理解有理數(shù)加法的意義,掌握有理數(shù)加法法則,并能準確地進行有理數(shù)的加法運算。

  二、過程與方法

  引導學生觀察符號及絕對值與兩個加數(shù)的符號及其他絕對值的關系,培養(yǎng)學生的分類、歸納、概括能力。

  三、情感態(tài)度與價值觀

  培養(yǎng)學生主動探索的良好學習習慣。

  教學重、難點與關鍵

  1.重點:掌握有理數(shù)加法法則,會進行有理數(shù)的加法運算。

  2.難點:異號兩數(shù)相加的法則。

  3.關鍵:培養(yǎng)學生主動探索的良好學習習慣。

  四、教學過程

  一、復習提問,引入新課

  1.有理數(shù)的絕對值是怎樣定義的'?如何計算一個數(shù)的絕對值?

  2.比較下列每對數(shù)的大小。

  (1)-3和-2; (2)│-5│和│5│; (3)-2與│-1│;(4)-(-7)和-│-7│。

  五、新授

  在小學里,我們已學習了加、減、乘、除四則運算,當時學習的運算是在正有理數(shù)和零的范圍內(nèi)。然而實際問題中做加法運算的數(shù)有可能超出正數(shù)范圍,例如,足球循環(huán)賽中,可以把進球數(shù)記為正數(shù),失球數(shù)記為負數(shù),它們的和叫做凈勝球數(shù)。本章前言中,紅隊進4個球,失2個球;藍隊進1個球,失1個球,那么哪個隊的凈勝球多呢?

  要解決這個問題,先要分別求出它們的凈勝球數(shù)。

  紅隊的凈勝球數(shù)為:4+(-2);

  藍隊的凈勝球數(shù)為:1+(-1)。

  這里用到正數(shù)與負數(shù)的加法。

  怎樣計算4+(-2)呢?

  下面借助數(shù)軸來討論有理數(shù)的加法。

  看下面的問題:

  一個物體作左右方向的運動,我們規(guī)定向左為負、向右為正。

  (1)如果物體先向右運動5m,再向右運動3m,那么兩次運動后總的結果是什么?

《有理數(shù)的加法》教案10

  一.教學目標

  1.知識與技能

 。1)通過足球賽中的凈勝球數(shù),使學生掌握有理數(shù)加法法則,并能運用法則進行計算;

 。2)在有理數(shù)加法法則的教學過程中,注意培養(yǎng)學生的運算能力.

  2.過程與方法

  通過觀察,比較,歸納等得出有理數(shù)加法法則。能運用有理數(shù)加法法則解決實際問題。

  3.情感態(tài)度與價值觀

  認識到通過師生合作交流,學生主動叁與探索獲得數(shù)學知識,從而提高學生學習數(shù)學的積極性。

  二、教學重難點及關鍵:

  重點:會用有理數(shù)加法法則進行運算.

  難點:異號兩數(shù)相加的法則.

  關鍵:通過實例引入,循序漸進,加強法則的應用.

  三、教學方法

  發(fā)現(xiàn)法、歸納法、與師生轟動緊密結合.

  四、教材分析

  “有理數(shù)的加法”是人教版七年級數(shù)學上冊第一章有理數(shù)的第三節(jié)內(nèi)容,本節(jié)內(nèi)容安排四個課時,本課時是本節(jié)內(nèi)容的第一課時,本課設計主要是通過球賽中凈勝球數(shù)的實例來明確有理數(shù)加法的意義,引入有理數(shù)加法的法則,為今后學習“有理數(shù)的減法”做鋪墊。

  五、教學過程

 。ㄒ唬﹩栴}與情境

  我們已經(jīng)熟悉正數(shù)的運算,然而實際問題中做加法運算的數(shù)有可能超出正數(shù)范圍。例如,足球循環(huán)賽中,通常把進球數(shù)記為正數(shù),失球數(shù)記為負數(shù),它們的和叫作凈勝球數(shù)。章前言中,紅隊進4個球,失2個球;藍隊進1個球,失1個球。于是紅隊的凈勝球為4+(-2),黃隊的凈勝球為1+(-1),這里用到正數(shù)與負數(shù)的加法。

 。ǘ⿴熒餐骄坑欣頂(shù)加法法則

  前面我們學習了有關有理數(shù)的一些基礎知識,從今天起開始學習有理數(shù)的運算.這節(jié)課我們來研究兩個有理數(shù)的加法.兩個有理數(shù)相加,有多少種不同的情形?為此,我們來看一個大家熟悉的實際問題:

  足球比賽中贏球個數(shù)與輸球個數(shù)是相反意義的量.若我們規(guī)定贏球為“正”,輸球為“負”,打平為“0”.比如,贏3球記為+3,輸1球記為-1.學校足球隊在一場比賽中的勝負可能有以下各種不同的情形:

  (1)上半場贏了3球,下半場贏了1球,那么全場共贏了4球.也就是

  (+3)+(+1)=+4.

  (2)上半場輸了2球,下半場輸了1球,那么全場共輸了3球.也就是

  (-2)+(-1)=-3.

  現(xiàn)在,請同學們說出其他可能的情形.

  答:上半場贏了3球,下半場輸了2球,全場贏了1球,也就是

  (+3)+(-2)=+1;

  上半場輸了3球,下半場贏了2球,全場輸了1球,也就是

  (-3)+(+2)=-1;

  上半場贏了3球下半場不輸不贏,全場仍贏3球,也就是

  (+3)+0=+3;

  上半場輸了2球,下半場兩隊都沒有進球,全場仍輸2球,也就是

  (-2)+0=-2;

  上半場打平,下半場也打平,全場仍是平局,也就是

  0+0=0.

  上面我們列出了兩個有理數(shù)相加的7種不同情形,并根據(jù)它們的具體意義得出了它們相加的和.但是,要計算兩個有理數(shù)相加所得的和,我們總不能一直用這種方法.現(xiàn)在請同學們仔細觀察比較這7個算式,你能從中發(fā)現(xiàn)有理數(shù)加法的運算法則嗎?也就是結果的符號怎么定?絕對值怎么算?

  這里,先讓學生思考,師生交流,再由學生自己歸納出有理數(shù)加法法則:

  1.同號兩數(shù)相加,取相同的符號,并把絕對值相加;

  2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0;

  3.一個數(shù)同0相加,仍得這個數(shù).

 。ㄈ⿷门e例 變式練習&&</p>

  例1 口答下列算式的結果

  (1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);

  (5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);(8)0+0.

  學生逐題口答后,師生共同得出:進行有理數(shù)加法,先要判斷兩個加數(shù)是同號還是異號,有一個加數(shù)是否為零;再根據(jù)兩個加數(shù)符號的.具體情況,選用某一條加法法則.進行計算時,通常應該先確定“和”的符號,再計算“和”的絕對值.

  例2(教科書的例1)

  解:(1)(-3)+(-9) (兩個加數(shù)同號,用加法法則的第1條計算)

  =-(3+9) (和取負號,把絕對值相加)

  =-12.

  (2)(-4.7)+3.9 (兩個加數(shù)異號,用加法法則的第2條計算)

  =-(4.7-3.9) (和取負號,把大的絕對值減去小的絕對值)

  =-0.8

  例3(教科書的例2)教師在算出紅隊的凈勝球數(shù)后,學生自己算黃隊和藍隊的凈勝球數(shù)

  下面請同學們計算下列各題以及教科書第23頁練習第1與第2題

  (1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);

  學生書面練習,四位學生板演,教師巡視指導,學生交流,師生評價。

 。ㄋ模┬〗Y

  1.本節(jié)課你學到了什么?

  2.本節(jié)課你有什么感受?(由學生自己小結)

 。ㄎ澹┳鳂I(yè)設計

  1.計算:

  (1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);(4)(+6)+(+9);

  (5)67+(-73);(6)(-84)+(-59);(7)-33+48;(8)(-56)+37.

  2.計算:

  (1)(-0.9)+(-2.7); (2)3.8+(-8.4);(3)(-0.5)+3;(4)3.29+1.78;

  (5)7+(-3.04);(6)(-2.9)+(-0.31)(7)(-9.18)+6.18; (8)(-0.78)+0.

  3.用“>”或“<”號填空:

  (1)如果a>0,b>0,那么a+b ______0;

  (2)如果a<0,b<0,那么a+b ______0;

  (3)如果a>0,b<0,|a|>|b|,那么a+b ______0;

  (4)如果a<0,b>0,|a|>|b|,那么a+b ______0

 。┌鍟O計

  1.3.1有理數(shù)加法

  一、加法法則二、例1例2例3

《有理數(shù)的加法》教案11

  教學目標

  1,在現(xiàn)實背景中理解有理數(shù)加法的意義。

  2,經(jīng)歷探索有理數(shù)加法法則的過程,理解有理數(shù)的加法法則。

  3,能積極地參與探究有理數(shù)加法法則的活動,并學會與他人交流合作。

  4,能較為熟練地進行有理數(shù)的加法運算,并能解決簡單的實際間題。

  5,在教學中適當滲透分類討論思想

  教學難點

  異號兩數(shù)相加

  知識重點

  和的符號的確定

  教學過程

 。◣熒顒樱┰O計理念

  設置情境

  引入課題回顧用正負數(shù)表示數(shù)量的實際例子;

  在足球比賽中,如果把進球數(shù)記為正數(shù),失球數(shù)記為負數(shù),它們的和叫做凈勝球數(shù)。若紅隊進4個球,失2個球,則紅隊的勝球數(shù),可以怎樣表示?藍隊的勝球數(shù)呢?

  師:如何進行類似的有理數(shù)的加法運算呢?這就是我們這節(jié)課一起與大家探討的問題。

 。ǔ鍪菊n題)讓學生感受到在實際問題中做加法運算的數(shù)可能超出正數(shù)的范圍,體會學習有理數(shù)加法的必要性,激發(fā)學生探究新知的興趣。

  分析問題

  探究新知如果是球隊在某場比賽中上半場失了兩個球,下

  半場失了3個球,那么它的`得勝球是幾個呢?算式應該

  怎么列?若這支球隊上半場進了2個球,下半場失了3個球,又如何列出算式,求它的得勝球呢?

 。▽W生思考回答)

  思考:請同學們想想,這支球隊在這場比賽中還可

  能出現(xiàn)其他的什么情況?你能列出算式嗎?與同伴交流。

  學生相互交流后,教師進一步引導學生可以把兩個有理數(shù)相加歸納為同號兩數(shù)相加、異號兩數(shù)相加、一個數(shù)同零相加這三種情況。

  2,借助數(shù)軸來討論有理數(shù)的加法。I

  一個物體向左右方向運動,我們規(guī)定向左運動為負,向右為正,向右運動5m,記作5m,向左運動5m,記作—5m。

 。1)(小組合作)把我們已經(jīng)得出的幾種有理數(shù)相加的情況在數(shù)軸上用運動的方向表示出來,并求出結果,解釋它的意義。

 。2)交流匯報。(對學習小組的匯報結果,數(shù)軸用實物投影儀展示,算式由教師寫在黑板上)

 。3)說一說有理數(shù)相加應注意什么?(符號,絕對值)能用自己的語言歸納如何相加嗎?

 。4)在學生歸納的基礎上,教師出示有理數(shù)加法法則。

  有理數(shù)加法法則:

  1,同號兩數(shù)相加,取相同的符號,并把絕對值相加。

  2,絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0。

  3,一個數(shù)同。相加,仍得這個數(shù)。再次創(chuàng)設足球比賽情境,一方面與引題相呼應,聯(lián)系密切,另一方面讓學生在此情境中感受到有理數(shù)相加的幾種不同情形,并能將它分類,滲透分類討論思想。

  估計學生能順利地得到(+)+(+),(+)+(一),(一)+(+),(一)十(—),0+(+),0+(一)。

  但不能把它歸的為同號異號等三類,所以此處需教師。點拔、指扎,體現(xiàn)教師的引導者作用。

 、偌僭O原點0為第一次運動起點,第二次運動的起點是第一次運動的終點。②若學生在學習小組內(nèi)不能很好地參與探究,也可以讓其參照教科書第21頁的“探究”自主進行。③讓學生感受“數(shù)學模型”的思想。④學會與同伴交流,并在交流中獲益。培養(yǎng)學生的語言表達能力和歸納能力,也許學生說得不夠嚴謹,但這并不重要,重要的足能用自己的語言表達自己所發(fā)現(xiàn)的規(guī)律

  解決問題解決問題

  例1計算:

 。1)(—3)+(—9);(2)(—5)+13;

  (3)0十(—7);(4)(—4。7)+3。9。

  教師板演,讓學生說出每一步運算所依據(jù)的法則。

  請同學們比較,有理數(shù)的加法運算與小學時候學的加法有什么異同?(如:有理數(shù)加法計算中要注意符號,和不一定大于加數(shù)等等)

  例2足球循環(huán)賽中,紅隊4:1勝黃隊,黃隊1:0勝藍隊藍隊1:0勝紅隊,計算各隊的凈勝球數(shù)。

  (讓學生讀數(shù),理解題意,思考解決方案,然后由學生口述,教師板書)

  學生活動:請學生說一說在生活中用到有理數(shù)加法的例子。注意點:(1)下先確定是哪種類型的加法再定符號,最后算絕對位。(2)教教師板演的例通要完整體現(xiàn)過程,并要求學生在剛開始學的時候要把中間的過

  程寫完整。(3)體現(xiàn)化歸思想。(4)這里增加了兩道題目,要是讓學生能較為熟練地運用法則進行計算。

  拓寬學生視野,讓學

  生體會到數(shù)學與生活的密切聯(lián)系。

  課堂練習教科書第23頁練習

  小結與作業(yè)

  課堂小結通過這節(jié)課的學習,你有哪些收獲,學生自己總結。

  本課作業(yè)必做題:閱讀教科書第20~22頁,教科書第31習題1。3第1、12、第13題。

  本課教育評注(課堂設計理念,實際教學效果及改進設想)

  1,在本節(jié)課的設計中,注重引導學生參與探究、歸納(用自己的語言敘迷)有理數(shù)加法法則的過程。

  2,注意滲透數(shù)學思想方法。數(shù)學思想方法的滲透不可能立即見效,也不可能靠一朝一夕讓學生理解、掌握,所以,本節(jié)課在這一方面主要是讓學生感知研究數(shù)學問題的一般方法(分類、辯析、歸納、化歸等)。如在探究加法法則時,有意識地把各種情況先分為三類(同號、異號,一個數(shù)同0相加);在運用法則時,當和的符號確定以后,有理數(shù)的加法就轉化為算術的加減法。

  3,注意學生合作學習的學習方式,讓學生在與他人合作中受益,學會交流,學會傾聽

  別人的意見和建議。

  附板書:1。3。1有理數(shù)的加法(一)

《有理數(shù)的加法》教案12

  一、教學內(nèi)容分析

  本節(jié)課是有理數(shù)加法的法則推導和計算,在此基礎上,學生已經(jīng)學過了正數(shù)和負數(shù)的認識及實際表示的意義和有理數(shù)的大小比較。本節(jié)課將在此基礎上授導學生學習有理數(shù)的加法法則,解決同號、異號兩數(shù)相加的計算。

  二、學習者分析

  七年級的學生,其思維已經(jīng)明顯地具備了邏輯思維性,并且學生已經(jīng)在我的要求下,學會了預習、初步養(yǎng)成了預習的習慣,逐漸養(yǎng)成了合作交流的習慣。只要我們教師通過具體的問題的指引、學生小組間的.合作和交流,是可以完成本節(jié)課的教學目標的。

  三、教學目標

  1、使學生掌握有理數(shù)加法法則,并能運用法則進行計算;

  2、讓學生親身經(jīng)歷探究有理數(shù)加法法則的過程,深刻感受分類討論、數(shù)形結合的思想,感受由具體到抽象、由特殊到一般的認知規(guī)律;

  3、讓學生通過研討、分類、比較等方法的學習,培養(yǎng)歸納總結知識的能力。

  四、信息技術應用分析

  由于本節(jié)課的知識點是探究有理數(shù)加法法則,要求學生掌握并會運用,所以為了節(jié)省時間和極大的提高學生的學習興趣,選用了多媒體進行教學,把所有的內(nèi)容用電子的白板展示出來。

  五、教學過程

  1、復習提問,引入新知

  通過對小學加法及數(shù)軸知識的應用的復習,讓學生既鞏固了原來所學的知識,又可以引出新課。

  2、出示問題情境、解決新知

  在解決新知的過程中,由于學生利用已有的知識及題目提示,運用學生互相合作交流,并且由各個小組進行展示答案。

  3、探索發(fā)現(xiàn),歸納新知

  利用學生展示的答案,學生分組進行歸納總結,得出有理數(shù)運算法則。

  學生通過合作交流,養(yǎng)成在日常生活中和別人交流合作的好習慣。,通過展示成果培養(yǎng)了學生的自信心。

  4、展示例題、應用新知

  此環(huán)節(jié)鞏固了所學知識,并且通過本環(huán)節(jié)讓學生體會小組合作的樂趣,體會利用法則解決實際問題的方法。

  5、達標訓練,鞏固新知

  本環(huán)節(jié)進一步鞏固了所學的知識,在互動回答是采用哪個小組舉手多、舉得早,讓哪個小組來回答;讓學生養(yǎng)成一種競爭意識,合作交流意識。

  6、規(guī)律總結,升華新知

  本環(huán)節(jié)著重總結有關有理數(shù)加法法則,讓學生進行小結,逐步養(yǎng)成學生在解決問題時隨時總結規(guī)律的習慣,并對本節(jié)課的知識進行梳理、加深和鞏固。

  7、作業(yè)和運用,拓展新知

  通過作業(yè)學生進一步鞏固所學知識,強化對知識的理解和應用,通過挑戰(zhàn)自我來拓展學生知識面,發(fā)展學生的認識。

《有理數(shù)的加法》教案13

  教學目標:

  1通過學生身邊可以嘗試、探索的場景,經(jīng)歷有理數(shù)加法法則得出的過程,理解有理數(shù)加法法則的合理性。2能進行簡單的有理數(shù)加法運算。3發(fā)展觀察、歸納、猜測驗證等能力。

  重點難點:

  重點:有理數(shù)加法法則的得出,和的符號的確定;難點:異號兩數(shù)相加

  教學過程

  一激情引趣,導入新課

  1我們早知道正有理數(shù)和零可以做加法運算,所有的有理數(shù)是否都可以進行加法運算呢?這就是我們這節(jié)課要研究的問題,先來分析一下,所有的有理數(shù)相加的時候有哪些情況呢?請你想一想

  2從前有一個文盲記錄家里的收入和支出的時候是這樣的,用一顆紅豆代表收入一文錢,用一顆黑豆代表支出一文錢,有一個月他發(fā)現(xiàn)記賬的盒子里有10顆紅豆6顆黑豆,他發(fā)現(xiàn)紅豆比黑豆多了4顆,于是他不僅知道了這個月結余了4文錢還知道了自己這個月的收入和支出情況。我們可以用一個圖形來表示他這種記賬方式!啊稹,“●”分別表紅豆和黑豆。

  ,這個圖形其實就是一個有理數(shù)的加法算式:(+10)+(-6)=+4下面我們借助數(shù)軸來理解有理數(shù)的加法運算。

  二合作交流,探究新知

  以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負方向,一個單位代表1千米

  1同號兩數(shù)相加

  小亮從O點出發(fā),先向西移動2個千米休息一會兒,再向西移動3個千米,兩次走路的總效果等于從點O出發(fā)向_____走了_______千米,用式子表示為_______________.

  從上,你發(fā)現(xiàn)了嗎,同號兩數(shù)相加結果的符號怎么確定?結果的絕對值怎么確定?請把你的發(fā)現(xiàn)填在下面的框里。

  同號兩數(shù)相加,取__________的符號,并把它們的_____________相加。

  2異號兩數(shù)相加

  (1)小明先從點O出發(fā),先向東走4千米,發(fā)現(xiàn)口袋里的'鑰匙丟了,急急忙忙掉頭向西走了1千米,找到了掉在路邊的鑰匙,小明這兩次走路的效果總等于從點O出發(fā)向___走了____千米,用式子表示為_________________________.

  (2)小李先從點O出發(fā),先向東走了1米,突然想起今天家里有事,趕緊掉頭向西往家里走,走了3千米到達家中,小李兩次走路的總效果等于等于吃哦從點O出發(fā),向___走了

  _____千米。用式子表達為_______________________.

  從上面例子,你發(fā)現(xiàn)了異號兩數(shù)怎么做嗎?把你的結論填在下框中。

  異號兩數(shù)相加,絕對值不相等時,取__________________的符號,并用_________的絕對值

  減去_______________的絕對值。

  3一個數(shù)和零相加,以及互為相反數(shù)相加

  (1)某個人第一批貨獲得利潤3萬元,第二批貨物保本,這兩批貨物總的利潤是多少萬元?

  (2)某人第一批貨物的利潤是5萬元,第二批貨物虧損5萬元,這兩批貨物總的利潤是多少?

  從上問題,你發(fā)現(xiàn)了什么?把你的結論寫在下框中,

  互為相反數(shù)的兩個相加得_______,一個數(shù)和零相加,任得____________________.

  三應用遷移,拓展提高

  例1計算(1)(-8)+(-12)(2)(-3.75)+(-0.25)

  (3)(-5)+9(4)(–10)+7

  例2計算(1)(-3)+(2)(-)+(-)

  例3填空

  (1)-7+____=0(2)(+)+______=-(3)____+(-)=(4)__+=

  四課堂練習,鞏固提高

  P21

  五反思小結鞏固提高

  有理數(shù)的加法法則有哪些?請你把它們寫在下面:

  1

  2

  3

  4

  六作業(yè)p24-25A組1-4B1

《有理數(shù)的加法》教案14

  學習過程:

  一、自主學習不動筆墨不讀書!請拿出你的筆和你的激情,探究新知:

  1.小學學過的加法運算律有哪些?舉例說明運用運算律有何好處?

  2.加法的交換律:

  兩個數(shù)相加,交換xx的'位置,和不變.用式子表示:a+b=。

  3.加法的結合律:

  《1.3.1有理數(shù)的加法》同步練習含答案

  在進行兩個異號有理數(shù)的加法運算時,其計算步驟如下:

 、賹⒔^對值較大的有理數(shù)的符號作為結果的符號并記住;

 、趯⒂涀〉姆柡徒^對值的差一起作為最終的計算結果;

 、塾幂^大的絕對值減去較小的絕對值;

  ④求兩個有理數(shù)的絕對值;⑤比較兩個絕對值的大小.其中操作順序正確的是( )

  A.①②③④⑤B.④⑤③②①C.①⑤③④②D.④⑤①③②

  《1.3.1有理數(shù)的加法》同步練習題(含答案)

  10.小蟲從某點A出發(fā)在一直線上來回爬行,假定向右爬行的路程記為正數(shù),向左爬行的路程記為負數(shù),爬行的各段路程依次為(單位:cm):+5,-3,+10,-8,-6,+12,-10。

  (1)小蟲最后是否回到出發(fā)點A?

  (2)在爬行過程中,如果每爬行1cm獎勵一粒芝麻,那么小蟲一共得到多少粒芝麻?

  解析(1)是.(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=[(+5)+(+10)+(+12)]+[(-3)+(-8)+(-6)+(-10)]=27-27=0,

  所以小蟲最后回到出發(fā)點A。

  (2)小蟲爬行的總路程為|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm)。

  所以小蟲一共得到54粒芝麻。

《有理數(shù)的加法》教案15

  教學目的:

  經(jīng)歷探索有理數(shù)加法法則,理解有理數(shù)加法的意義。初步掌握有理數(shù)加法法則,并能準確地進行有理數(shù)加法運算。

  教學重點:

  有理數(shù)的加法法則

  教學難點:

  異號兩數(shù)相加的法則

  教學教程:

  一、復習提問:

  1、如果向東走5米記作+5米,那么向

  西走3米記作__.

  2、已知a=-5,b=+3,

  ︱a︳+︱b︱=_

  已知a=-5,b=+3,

  ︱a︱-︱b︱=__

  -1012345678

  二、授新課

  小明在一條東西向的跑道上,先走了5米,又走了3米,能否確定他現(xiàn)在位于原來位置的哪個方向?與原來相距多少米?規(guī)定向東的方向為正方向

  提問:這題有幾種情況?

  小結:有以下四種情況

  (1)兩次都向東走,

  (2)兩次都向西走

 。3)先向東走,再向西走

 。4)先向西走,再向東走

  根據(jù)小結,我們再分析每一種情況:

 。1)向東走5米,再向東走3米,一共向東走了多少米?

  +5+3(+5)+(+3)=+8

  (2)向西走-5米,再向西走-3米,一共向東走了多少米?

  -5-3(-3)+(-5)=-8

 。ǎ常┫认驏|走5米,再向西走3米,兩次一共向東走了多少米?

 。常担ǎ担ǎ常剑

  (4)先向西走5米,再向東走3米,兩次一共向東走了多少米?

 。担常ǎ担ǎ常剑

  下面再看兩種特殊情況:

 。ǎ担┫驏|走5米,再向西走5米,兩次一共向東走了多少米

  -5+5(+5)+(-5)=0

 。ǎ叮┫蛭髯撸得祝傧驏|走0米,兩次一共向東走了多少米?

  -5(-5)+0=-5

  小結:總結前的六種情況:

  同號兩數(shù)相加:(+5)+(+3)=+8

  (-5)+(-3)=-8

  異號兩數(shù)相加:(+5)+(-3)=2

 。ǎ担ǎ常剑

  (+5)+(-5)=0

  一數(shù)與零相加:(-5)+0=-5

  得出結論:有理數(shù)加法法則

  1、同號兩數(shù)相加,取相同的符號,并把絕對值相加

  2、絕對值不等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的'絕對值;橄喾磾(shù)的兩個數(shù)相加得零

  3、一個數(shù)與零相加,仍得這個數(shù)

  例如:

  (-4)+(-5)(同號兩數(shù)相加)

  解:=-()(取相同的符號)

 。剑梗ú呀^對值相加)

 。ǎ玻ǎ叮ń^對值不等的異號兩數(shù)相加)

  解:=+()(取絕對值較大的符號)

 。剑矗ㄓ幂^大的絕對值減去較小的絕對值)

  練習:

  口答:

  1、(-15)+(-32)=

 。、(+10)+(-4)=

  3、7+(-4)=

  4、4+(-4)=

  5、9+(-2)=

  6、(-0.5)+4.4=

 。、(-9)+0=

 。浮ⅲ埃ǎ常

  計算:

 。1)(-3)+(-9)(2)(-1/2)+(+1/3)

  解略

  練習:

  (1)15+(-22)=

 。2)(-13)+(-8)=

 。3)(-0·9)+1·5=

 。4)2·7+(-3·5)=

 。5)1/2+(-2/3)=

 。6)(-1/4)+(-1/3)=

  練習三:

  1、填空:

 。1)+11=27(2)7+=4

 。3)(-9)+=9(4)12+=0

  (5)(-8)+=-15(6)+(-13)=-6

  2、用“<”或“>”號填空:

  (1)如果a>0,b>0,那么a+b0;

  (2)如果a<0,b<0,那么a+b0;

  (3)如果a>0,b<0,|a|>|b|,那么a+b0;

  (4)如果a<0,b>0,|a|>|b|,那么a+b0

  小結:

  1、掌握有理數(shù)的加法法則,正確地進

  行加法運算。

  2、兩個有理數(shù)相加,首先判斷加法類

  型,再確定和的符號,最后確定和的絕對值。

  作業(yè):課本第38頁2、3

  第40頁1、2

【《有理數(shù)的加法》教案】相關文章:

有理數(shù)的加法教案07-09

《有理數(shù)的加法》教案09-06

有理數(shù)的加法教案范文06-29

有理數(shù)的加法教案(薦)08-08

《有理數(shù)的加法》教案優(yōu)秀12-26

【精華】有理數(shù)的加法教案07-31

《有理數(shù)的加法》說課稿05-28

有理數(shù)加法的說課稿06-17

有理數(shù)的加法說課稿07-02