當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教案> 有理數(shù)除法教案

有理數(shù)除法教案

時(shí)間:2024-08-21 14:16:10 教案 我要投稿

有理數(shù)除法教案

  作為一位兢兢業(yè)業(yè)的人民教師,總不可避免地需要編寫教案,編寫教案助于積累教學(xué)經(jīng)驗(yàn),不斷提高教學(xué)質(zhì)量。那么你有了解過(guò)教案嗎?以下是小編幫大家整理的有理數(shù)除法教案,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

有理數(shù)除法教案

有理數(shù)除法教案1

  一、教學(xué)目標(biāo):

  1、理解除法是乘法的逆運(yùn)算;

  2、掌握除法法則,會(huì)進(jìn)行有理數(shù)的除法運(yùn)算;

  3、經(jīng)歷利用已有知識(shí)解決新問(wèn)題的探索過(guò)程.

  二、教學(xué)重點(diǎn)和難點(diǎn)

  教學(xué)重點(diǎn):有理數(shù)的除法法則

  教學(xué)難點(diǎn):理解商的符號(hào)及其絕對(duì)值與被除數(shù)和除數(shù)的關(guān)系

  三、教學(xué)過(guò)程

  (一)、學(xué)前準(zhǔn)備

  1、師生活動(dòng)

  1)、小明從家里到學(xué)校,每分鐘走50米,共走了20分鐘.

  問(wèn)小明家離學(xué)校有1000米,列出的算式為50 20=1000 .

  2)放學(xué)時(shí),小明仍然以每分鐘50米的速度回家,應(yīng)該走20分鐘.

  列出的算式為1000 =20

  從上面這個(gè)例子你可以發(fā)現(xiàn),有理數(shù)除法與乘法之間的關(guān)系互為逆運(yùn)算

  (二)、合作交流、探究新知

  1、小組合作完成

  比較大。8(-4) 8(一);

  (-15)3 (-15)

  再相互交流、并與小學(xué)里學(xué)習(xí)的乘除方法進(jìn)行類比與對(duì)比,歸納有理數(shù)的除法法則:1)、除以一個(gè)不等于0的.數(shù),等于乘這個(gè)數(shù)的倒數(shù).

  2)、兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相加減,0除以任何一個(gè)不等于0的數(shù),都得0 .

  2,運(yùn)用法則計(jì)算:

  (1)(-15)(-3); (2)(-12)(一); (3)(-8)(一)

  3,師生共同完成P34例5.

  (三)1、練習(xí):P35

  2、P35例6、例7、

  3、練習(xí):P36第1、2題

  四.課堂小結(jié)

  通過(guò)這節(jié)課的學(xué)習(xí),你的收獲是:

  1)、除以一個(gè)不等于0的數(shù),等于乘這個(gè)數(shù)的倒數(shù).

  2)、兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相加減,0除以任何一個(gè)不等于0的數(shù),都得0 .

  五.作業(yè)布置

  1、計(jì)算

  (1)(+48)(+6); (2) ;

  (3)4(-2); (4)0(-1000).

  2、計(jì)算.

  (1)(-1155)[(-11)(+3)(-5)]; (2)375

  1、P39第1、2、3、4題

  1.4.5有理數(shù)的除法

有理數(shù)除法教案2

  教學(xué)目標(biāo)

  1.理解有理數(shù)除法的意義,熟練掌握有理數(shù)除法法則,會(huì)進(jìn)行運(yùn)算;

  2.了解倒數(shù)概念,會(huì)求給定有理數(shù)的倒數(shù);

  3.通過(guò)將除法運(yùn)算轉(zhuǎn)化為乘法運(yùn)算,培養(yǎng)學(xué)生的轉(zhuǎn)化的思想;通過(guò)運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力。

  教學(xué)建議

 。ㄒ唬┲攸c(diǎn)、難點(diǎn)分析

  本節(jié)教學(xué)的重點(diǎn)是熟練進(jìn)行運(yùn)算,教學(xué)難點(diǎn) 是理解法則。

  1.有理數(shù)除法有兩種法則。法則1:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù)。是把除法轉(zhuǎn)化為乘法來(lái)解決問(wèn)題。法則2是把有理數(shù)除法納入有理數(shù)運(yùn)算的統(tǒng)一程序:一確定符號(hào);二計(jì)算絕對(duì)值。如:按法則1計(jì)算:原式;按法則2計(jì)算:原式。

  2.對(duì)于除法的兩個(gè)法則,在計(jì)算時(shí)可根據(jù)具體的情況選用,一般在不能整除的情況下應(yīng)用第一法則。如;在有整除的情況下,應(yīng)用第二個(gè)法則比較方便,如;在能整除的情況下,應(yīng)用第二個(gè)法則比較方便,如,如寫成就麻煩了。

  (二)知識(shí)結(jié)構(gòu)

 。ㄈ┙谭ńㄗh

  1.學(xué)生實(shí)際運(yùn)算時(shí),老師要強(qiáng)調(diào)先確定商的符號(hào),然后在根據(jù)不同情況采取適當(dāng)?shù)姆椒ㄇ笊痰慕^對(duì)值,求商的絕對(duì)值時(shí),可以直接除,也可以乘以除數(shù)的倒數(shù)。

  2.關(guān)于0不能做除數(shù)的問(wèn)題,讓學(xué)生結(jié)合小學(xué)的知識(shí)接受這一認(rèn)識(shí)就可以了,不必具體講述0為什么不能做除數(shù)的理由。

  3.理解倒數(shù)的概念

 。1)根據(jù)定義乘積為1的兩個(gè)數(shù)互為倒數(shù),即:,則互為倒數(shù)。如:,則2與,-2與互為倒數(shù)。

 。2)由倒數(shù)的定義,我們可以得到求已知數(shù)倒數(shù)的一種基本方法:即用1除以已知數(shù),所得商就是已知數(shù)的倒數(shù)。如:求的倒數(shù):計(jì)算,-2就是的倒數(shù)。一般我們求已知數(shù)的倒數(shù)很少用這種方法,實(shí)際應(yīng)用時(shí)我們常把已知數(shù)看作分?jǐn)?shù)形式,然后把分子、分母顛倒位置,所得新數(shù)就是原數(shù)的'倒數(shù)。如-2可以看作,分子、分母顛倒位置后為,就是的倒數(shù)。

 。3)倒數(shù)與相反數(shù)這兩個(gè)概念很容易混淆。要注意區(qū)分。首先倒數(shù)是指乘積為1的兩個(gè)數(shù),而相反數(shù)是指和為0的兩個(gè)數(shù)。如:,2與互為倒數(shù),2與-2互為相反數(shù)。其次互為倒數(shù)的兩個(gè)數(shù)符號(hào)相同,而互為相反數(shù)符號(hào)相反。如:-2的倒數(shù)是,-2的相反數(shù)是+2;另外0沒(méi)有倒數(shù),而0的相反數(shù)是0。

  4.關(guān)于倒數(shù)的求法要注意:

 。1)求分?jǐn)?shù)的倒數(shù),只要把這個(gè)分?jǐn)?shù)的分子、分母顛倒位置即可.

 。2)正數(shù)的倒數(shù)是正數(shù),負(fù)數(shù)的倒數(shù)仍是負(fù)數(shù).

 。3)負(fù)倒數(shù)的定義:乘積是-1的兩個(gè)數(shù)互為負(fù)倒數(shù).

  教學(xué)設(shè)計(jì)示例

  一、素質(zhì)教育目標(biāo)

 。ㄒ唬┲R(shí)教學(xué)點(diǎn)

  1.了解有理數(shù)除法的定義.

  2.理解倒數(shù)的意義.

  3.掌握有理數(shù)除法法則,會(huì)進(jìn)行運(yùn)算.

  (二)能力訓(xùn)練點(diǎn)

  1.通過(guò)有理數(shù)除法法則的導(dǎo)出及運(yùn)算,讓學(xué)生體會(huì)轉(zhuǎn)化思想.

  2.培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)思想指導(dǎo)思維活動(dòng)的能力.

 。ㄈ┑掠凉B透點(diǎn)

  通過(guò)學(xué)習(xí)有理數(shù)除法運(yùn)算、感知數(shù)學(xué)知識(shí)具有普遍聯(lián)系性、相互轉(zhuǎn)化性.

 。ㄋ模┟烙凉B透點(diǎn)

  把小學(xué)算術(shù)里的乘法法則推廣到有理數(shù)范圍內(nèi),體現(xiàn)了知識(shí)體系的完整美.

  二、學(xué)法引導(dǎo)

  1.教學(xué)方法:遵循啟發(fā)式教學(xué)原則,注意創(chuàng)設(shè)問(wèn)題情境,精心構(gòu)思啟發(fā)導(dǎo)語(yǔ) 并及時(shí)點(diǎn)撥,使學(xué)生主動(dòng)發(fā)展思維和能力.

  2.學(xué)生學(xué)法:通過(guò)練習(xí)探索新知→歸納除法法則→鞏固練習(xí)

  三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法

  1.重點(diǎn):除法法則的靈活運(yùn)用和倒數(shù)的概念.

  2.難點(diǎn):有理數(shù)除法確定商的符號(hào)后,怎樣根據(jù)不同的情況來(lái)取適當(dāng)?shù)姆椒ㄇ笊痰慕^對(duì)值.

  3.疑點(diǎn):對(duì)零不能作除數(shù)與零沒(méi)有倒數(shù)的理解.

  四、課時(shí)安排

  1課時(shí)

  五、教具學(xué)具準(zhǔn)備

  投影儀、自制膠片、彩粉筆.

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  教師出示探索性練習(xí),學(xué)生討論歸納除法法則,教師出示鞏固性練習(xí),學(xué)生以多種形式完成.

  七、教學(xué)步驟

  (一)創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入

  師:以上我們學(xué)習(xí)了有理數(shù)的乘法,這節(jié)我們應(yīng)該學(xué)習(xí),板書課題.

  【教法說(shuō)明】同小學(xué)算術(shù)中除法一樣—除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù),所以必須以學(xué)好求一個(gè)有理數(shù)的倒數(shù)為基礎(chǔ)學(xué)習(xí).

  (二)探索新知,講授新課

  1.倒數(shù).

 。ǔ鍪就队1)

  4×( )=1; ×( )=1; 0.5×( )=1;

  0×( )=1; -4×( )=1; ×( )=1.

  學(xué)生活動(dòng):口答以上題目.

  【教法說(shuō)明】在有理數(shù)乘法的基礎(chǔ)礎(chǔ)上,學(xué)生很容易地做出這幾個(gè)題目,在題目的選擇上,注意了數(shù)的全面性,即有正數(shù)、0、負(fù)數(shù),又有整數(shù)、分?jǐn)?shù),在數(shù)的變化中,讓學(xué)生回憶、體會(huì)出求各種數(shù)的倒數(shù)的方法.

  師問(wèn):兩個(gè)數(shù)乘積是1,這兩個(gè)數(shù)有什么關(guān)系?

  學(xué)生活動(dòng):乘積是1的兩個(gè)數(shù)互為倒數(shù).(板書)

  師問(wèn):0有倒數(shù)嗎?為什么?

  學(xué)生活動(dòng):通過(guò)題目0×( )=1得出0乘以任何數(shù)都不得1,0沒(méi)有倒數(shù).

  師:引入負(fù)數(shù)后,乘積是1的兩個(gè)負(fù)數(shù)也互為倒數(shù),如-4與,與互為倒數(shù),即的倒數(shù)是.

  提出問(wèn)題:根據(jù)以上題目,怎樣求整數(shù)、分?jǐn)?shù)、小數(shù)的倒數(shù)?

  【教法說(shuō)明】教師注意創(chuàng)設(shè)問(wèn)題情境,讓學(xué)生參與思考,循序漸進(jìn)地引出,對(duì)于有理數(shù)也有倒數(shù)是.對(duì)于怎樣求整數(shù)、分?jǐn)?shù)、小數(shù)的倒數(shù),學(xué)生還很難總結(jié)出方法,提出這個(gè)問(wèn)題是讓學(xué)生帶著問(wèn)題來(lái)做下組練習(xí).

 。ǔ鍪就队2)

  求下列各數(shù)的倒數(shù):

  (1); (2); (3);

  (4); (5)-5; (6)1.

  學(xué)生活動(dòng):通過(guò)思考口答這6小題,討論后得出,求整數(shù)的倒數(shù)是用1除以它,求分?jǐn)?shù)的倒數(shù)是分子分母顛倒位置;求小數(shù)的倒數(shù)必須先化成分?jǐn)?shù)再求.

  2.

  計(jì)算:8÷(-4).

  計(jì)算:8×()=? (-2)

  ∴8÷(-4)=8×().

  再嘗試:-16÷(-2)=? -16×()=?

  師:根據(jù)以上題目,你能說(shuō)出怎樣計(jì)算嗎?能用含字母的式子表示嗎?

  學(xué)生活動(dòng):同桌互相討論.(一個(gè)學(xué)生回答)

  師強(qiáng)調(diào)后板書:

 。郯鍟

  【教法說(shuō)明】通過(guò)學(xué)生親自演算和教師的引導(dǎo),對(duì)有理數(shù)除法法則及字母表示有了非常清楚的認(rèn)識(shí),教師放手讓學(xué)生總結(jié)法則,尤其是字母表示,訓(xùn)練學(xué)生的歸納及口頭表達(dá)能力.

 。ㄈ﹪L試反饋,鞏固練習(xí)

  師在黑板上出示例題.

  計(jì)算(1)(-36)÷9, (2)()÷().

  學(xué)生嘗試做此題目.

 。ǔ鍪就队3)

  1.計(jì)算:

  (1)(-18)÷6; (2)(-63)÷(-7); (3)(-36)÷6;

 。4)1÷(-9); (5)0÷(-8); (6)16÷(-3).

  2.計(jì)算:

 。1)()÷(); (2)(-6.5)÷0.13;

 。3)()÷(); (4)÷(-1).

  學(xué)生活動(dòng):1題讓學(xué)生搶答,教師用復(fù)合膠片顯示結(jié)果.2題在練習(xí)本上演示,兩個(gè)同學(xué)板演(教師訂正).

  【教法說(shuō)明】此組練習(xí)中兩個(gè)題目都是對(duì)的直接應(yīng)用.1題是整數(shù),利用口答形式訓(xùn)練學(xué)生速算能力.2題是小數(shù)、分?jǐn)?shù)略有難度,要求學(xué)生自行演算,加強(qiáng)運(yùn)算的準(zhǔn)確性,2題(2)小題必須把小數(shù)都化成分?jǐn)?shù)再轉(zhuǎn)化成乘法來(lái)計(jì)算.

  提出問(wèn)題:(1)兩數(shù)相除,商的符號(hào)怎樣確定,商的絕對(duì)值呢?(2)0不能做除數(shù),0做被除數(shù)時(shí)商是多少?

  學(xué)生活動(dòng):分組討論,1—2個(gè)同學(xué)回答.

 。郯鍟

  2.兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除.

  0除以任何不等于0的數(shù),都得0.

  【教法說(shuō)明】通過(guò)上組練習(xí)的結(jié)果,不難看出與有理數(shù)乘法有類似的法則,這個(gè)法則的得出為計(jì)算有理數(shù)除法又添了一種方法,這時(shí)教師要及時(shí)指出,在做有理數(shù)除法的題目時(shí),要根據(jù)具體情況,靈活運(yùn)用這兩種方法.

 。ㄋ模┳兪接(xùn)練,培養(yǎng)能力

  回顧例1 計(jì)算:(1)(-36)÷9; (2)()÷().

  提出問(wèn)題:每個(gè)題目你想采用哪種法則計(jì)算更簡(jiǎn)單?

  學(xué)生活動(dòng):(1)題采用兩數(shù)相除,異號(hào)得負(fù)并把絕對(duì)值相除的方法較簡(jiǎn)單.

 。2)題仍用除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù)較簡(jiǎn)單.

  提出問(wèn)題:-36:9=?;:()=?它們都屬于除法運(yùn)算嗎?

  學(xué)生活動(dòng):口答出答案.

 。ǔ鍪就队4)

  例2 化簡(jiǎn)下列分?jǐn)?shù)

 。1); (2); (3)或3:(-36)

 。4); (5).

  例3 計(jì)算

  (1)()÷(-6); (2)-3.5÷×();

 。3)(-6)÷(-4)×().

  學(xué)生活動(dòng):例2讓學(xué)生口答,例3全體同學(xué)獨(dú)立計(jì)算,三個(gè)學(xué)生板演.

  【教法說(shuō)明】例2是檢查學(xué)生對(duì)有理數(shù)除法法則的靈活運(yùn)用能力,并滲透了除法、分?jǐn)?shù)、比可互相轉(zhuǎn)化,并且通過(guò)這種轉(zhuǎn)化,常?赡芎(jiǎn)化計(jì)算.例3培養(yǎng)學(xué)生分析問(wèn)題的能力,優(yōu)化學(xué)生思維品質(zhì):

  如在(1)()÷(-6)中.

  根據(jù)方法①()÷(-6)=×()=.

  根據(jù)方法②()÷(-6)=(24+)×=4+=.

  讓學(xué)生區(qū)分方法的差異,點(diǎn)明方法②非常簡(jiǎn)便,肯定當(dāng)除法轉(zhuǎn)化成乘法時(shí),可以利用有理數(shù)乘法運(yùn)算律簡(jiǎn)化運(yùn)算.(2)(3)小題也是如此.

 。ㄎ澹w納小結(jié)

  師:今天我們學(xué)習(xí)了及倒數(shù)的概念,回答問(wèn)題:

  1.的倒數(shù)是__________________();

  2.;

  3.若、同號(hào),則;

  若、異號(hào),則;

  若,時(shí),則;

  學(xué)生活動(dòng):分組討論,三個(gè)學(xué)生口答.

有理數(shù)除法教案3

  一、課題 §2.9有理數(shù)的除法

  二、教學(xué)目標(biāo)

  1.使學(xué)生理解有理數(shù)倒數(shù)的意義;

  2.使學(xué)生掌握有理數(shù)的除法法則,能夠熟練地進(jìn)行除法運(yùn)算;

  3.培養(yǎng)學(xué)生觀察、歸納、概括及運(yùn)算能力.

  三、教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):有理數(shù)除法法則.

  難點(diǎn):(1)商的符號(hào)的確定.

  (2)0不能作除數(shù)的理解.

  四、教學(xué)手段

  現(xiàn)代課堂教學(xué)手段

  五、教學(xué)方法

  啟發(fā)式教學(xué)

  六、教學(xué)過(guò)程

 。ㄒ唬、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問(wèn)題

  1.?dāng)⑹鲇欣頂?shù)乘法法則.

  2.?dāng)⑹鲇欣頂?shù)乘法的運(yùn)算律.

  3.計(jì)算:

  (1)3×(-2); (2)-3×5; (3)(-2)×(-5).

 。ǘ、導(dǎo)入新課

  因?yàn)?×(-2)=-6,所以3x=-6時(shí),可以解得x=-2;

  同樣-3×5=-15,解簡(jiǎn)易方程-3x=-15,得x=5.

  在找x的值時(shí),就是求一個(gè)數(shù)乘以3等于-6;或者是找一個(gè)數(shù),使它乘以-3等于-15.已知一個(gè)因數(shù)的積,求另一個(gè)因數(shù),就是在小學(xué)學(xué)過(guò)的除法,除法是乘法的逆運(yùn)算.

  三、講授新課

  1.有埋數(shù)的倒數(shù)

  0沒(méi)有倒數(shù),(0不能作除數(shù),分母是0沒(méi)有意義等概念在小學(xué)里是反復(fù)強(qiáng)調(diào)的.)

  提問(wèn):怎樣求一個(gè)數(shù)的倒數(shù)?

  答:整數(shù)可以看成分母是1的分?jǐn)?shù),求分?jǐn)?shù)的倒數(shù)是把這個(gè)數(shù)的分母與分子顛倒一下即可;求一個(gè)小數(shù)的倒數(shù),可以先把這個(gè)小數(shù)化成分

  數(shù)再求倒數(shù).

  什么性質(zhì)

  所以我們說(shuō):乘積為1的兩個(gè)數(shù)互為倒數(shù),這個(gè)定義對(duì)有理數(shù)仍然適用.

  這里a≠0,同小學(xué)一樣,在有理數(shù)范圍內(nèi),0不能作除數(shù),或者說(shuō)0為分母時(shí)分?jǐn)?shù)無(wú)意義.

  2.有理數(shù)除法法則

  利用有理數(shù)倒數(shù)的概念,我們進(jìn)一步學(xué)習(xí)有理數(shù)除法.

  因?yàn)?-2)×(-4)=8,所以8÷(-4)=-2.

  由此,我們可以看出小學(xué)學(xué)過(guò)的除法法則仍適用于有理數(shù)除法,即

  除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù).

  0不能作除數(shù).

  例1 計(jì)算:

  課堂練習(xí)

  (1)寫出下列各數(shù)的倒數(shù):

  (2)計(jì)算:

  3.有理數(shù)除法的.符號(hào)法則

  觀察上面的練習(xí),引導(dǎo)學(xué)生總結(jié)出有理數(shù)除法的商的符號(hào)法則:

  兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù).

  掌握符號(hào)法則,有的題就不必再將除數(shù)化成倒數(shù)再去乘了,可以確定符號(hào)后直接相除,這就是第二個(gè)有理數(shù)除法法則:

  兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除.

  0除以任何一個(gè)不為0的數(shù),都得0.

  ≠0).利用除法法則可以化簡(jiǎn)分?jǐn)?shù).

  例2 化簡(jiǎn)下列分?jǐn)?shù):

  例3 計(jì)算:

  (4)(-7)÷3-20÷3(-7-20)÷3=(-27)÷3=-9.

 。ㄋ模、小結(jié)

  1.指導(dǎo)學(xué)生看書,重點(diǎn)是除法法則.

  2.引導(dǎo)學(xué)生歸納有理數(shù)除法的一般步驟:(1)確定商的符號(hào);(2)把除數(shù)化為它的倒數(shù);(3)利用乘法計(jì)算結(jié)果.

  七、練習(xí)設(shè)計(jì)

  習(xí)題2.12 1、2、3、4、5、6題

  八、板書設(shè)計(jì)

  §2.9有理數(shù)的除法

 。ㄒ唬┲R(shí)回顧 (三)例題解析 (五)課堂小結(jié)

  例1、例2

 。ǘ┯^察發(fā)現(xiàn) (四)課堂練習(xí) 練習(xí)設(shè)計(jì)

  ,七年級(jí)數(shù)學(xué)上冊(cè)北師大版2.9有理數(shù)的除法教案

有理數(shù)除法教案4

  一、知識(shí)與技能

  掌握有理數(shù)除法法則,會(huì)進(jìn)行有理數(shù)的除法運(yùn)算以及分?jǐn)?shù)的化簡(jiǎn)。

  二、過(guò)程與方法

  通過(guò)學(xué)習(xí)有理數(shù)除法法則,體會(huì)轉(zhuǎn)化思想,會(huì)將乘除混合運(yùn)算統(tǒng)一為乘法運(yùn)算。

  三、情感態(tài)度與價(jià)值觀

  培養(yǎng)學(xué)生勇于探索積極思考的良好學(xué)習(xí)習(xí)慣。

  四、教學(xué)重、難點(diǎn)與關(guān)鍵

  1.重點(diǎn):正確應(yīng)用法則進(jìn)行有理數(shù)的'除法運(yùn)算。

  2.難點(diǎn):靈活運(yùn)用有理數(shù)除法的兩種法則。

  3.關(guān)鍵:會(huì)將有理數(shù)的除法轉(zhuǎn)化為乘法。

  五、教學(xué)過(guò)程,課堂引入

  1.小學(xué)里,除法的意義是什么?它與乘法有什么關(guān)系?

  已知兩數(shù)的積與一個(gè)因數(shù),求另一個(gè)因數(shù)。用除法,乘法與除法互為逆運(yùn)算除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù)。

  2.求下列各數(shù)的倒數(shù):

  (1)-; (2)-0.125; (3)-1.

  六、新授w

  引入負(fù)數(shù)后,如何計(jì)算有理數(shù)的除法呢?

  例如8(-4)。

  根據(jù)除法意義,這就是要求一個(gè)數(shù),使它與-4相乘得8.

  因?yàn)?(-2)(-4)=8

  所以 8(-4)=-2 ①

  另外,我們知道,8(-)=-2 ②

  由①、②得 8(-4)=8(-) ③

 、凼奖砻,一個(gè)數(shù)除以-4可以轉(zhuǎn)化為乘以-來(lái)進(jìn)行,即一個(gè)數(shù)除以-4,等于乘以-4的倒數(shù)-.

  探索:換其他數(shù)的除法進(jìn)行類似討論,是否仍有除以a(a0)可以轉(zhuǎn)化為乘以呢?[例如(-10)(-4)]

  從而得出有理數(shù)除法法則:

  除以一個(gè)不等于0的數(shù),等于乘以這個(gè)數(shù)的倒數(shù)。

  這個(gè)法則也可以表示成:

有理數(shù)除法教案5

  學(xué)習(xí)目標(biāo):

  1、要熟記有理數(shù)除法的法則,會(huì)進(jìn)行有理數(shù)除法的運(yùn)算。

  2、掌握求有理數(shù)倒數(shù)的方法,并能熟練地求出一個(gè)給定的有理數(shù)的倒數(shù)。

  3、能熟練地進(jìn)行簡(jiǎn)單的有理數(shù)的加減乘除混合運(yùn)算。

  4、體會(huì)比較、轉(zhuǎn)化、分類的思想方法,在探索有理數(shù)除法法則時(shí)的應(yīng)有

  學(xué)習(xí)重點(diǎn):有理數(shù)除法的法則及應(yīng)用;求一個(gè)有理數(shù)的倒數(shù)。

  學(xué)習(xí)難點(diǎn):在進(jìn)行有理數(shù)除法運(yùn)算時(shí),能根據(jù)題目特點(diǎn),恰當(dāng)?shù)剡x擇有理數(shù)的除法法則。

  學(xué)習(xí)過(guò)程:

  一 前置復(fù)習(xí) :

  1、有理數(shù)的乘法法則是:

  舉例說(shuō)明。

  2、多個(gè)有理數(shù)乘法:(1)幾個(gè)不等于0的有理數(shù)相乘,積的符號(hào)由 決定,當(dāng) 時(shí)積為正;當(dāng) 時(shí)積為負(fù)。

  (2)幾個(gè)有理數(shù)相乘, ,積就為零。

  二 探究新知:(教師寄語(yǔ): 現(xiàn)實(shí)世界中的事物都是既相互聯(lián)系又可以相互轉(zhuǎn)化的,在數(shù)學(xué)上加與減,乘與除也是可以相互轉(zhuǎn)化的`.)

  自學(xué)課本58頁(yè)至59頁(yè)例4之前的內(nèi)容,并且認(rèn)真體會(huì)在探索除法與乘法的關(guān)系時(shí),用到的比較、轉(zhuǎn)化、分類的思想方法。,一定要熟記:

  (1) 有理數(shù)除法運(yùn)算轉(zhuǎn)化為乘法運(yùn)算的法則:除以一個(gè)數(shù),________________________。

  ____________________。

  (2) 有理數(shù)的除法法則:兩數(shù)相除,_____________,_____________,_____________。

  0除以任何_______________________________。

  (3) 與以前學(xué)過(guò)的倒數(shù)的概念一樣,___________兩個(gè)有理數(shù)互為倒數(shù)。

  如,3與____互為倒數(shù),-6與_____互為倒數(shù),2.25是____的倒數(shù),___是 的倒數(shù)。

  三 新知應(yīng)用:

  例1、獨(dú)立完成課本58頁(yè)例4,然后對(duì)比課本上的解答,思考交流:在兩個(gè)________數(shù)相除時(shí),可選擇法則(1),在兩個(gè)_______數(shù)相除時(shí),可選擇法則(2)

  學(xué)以致用 計(jì)算:

  (1) (42)7 (2) ( )( )

  例2、計(jì)算(1) ( )( )( ) (2) ( )( )

  (溫馨提示:1、 有理數(shù)的乘除混合運(yùn)算,應(yīng)把除以一個(gè)數(shù)轉(zhuǎn)化成乘這個(gè)數(shù)的倒數(shù),然后統(tǒng)一成乘法來(lái)進(jìn)行計(jì)算。2、 加減乘除混合運(yùn)算的運(yùn)算順序和小學(xué)一樣。)

  四 課堂練習(xí):獨(dú)立完成課本P59練習(xí)2,3題。(將完整的計(jì)算過(guò)程寫在下面空白處)

  五 達(dá)標(biāo)測(cè)試:(獨(dú)立完成)

  1 填空:(1)2 的倒數(shù)與 的相反數(shù)的積是_______。

  (2)(1)(3)( )=______。

  (3)兩個(gè)數(shù)的商為正數(shù),那么這兩個(gè)數(shù)一定是_________。

  (4)一個(gè)數(shù)的倒數(shù)是它本身,則這個(gè)數(shù)是____________。

  2、計(jì)算:(1) (2)

  (3)、 (4) ( + )

  六 總結(jié)反思:

  1、說(shuō)一說(shuō):

  本節(jié)課我學(xué)會(huì)了 ;

  使我感觸最深的是 ;

  我感到最困難的是 ;

  我想進(jìn)一步探究的問(wèn)題是 。

  2、:評(píng)一評(píng)

  自我評(píng)價(jià) 小組評(píng)價(jià) 教師評(píng)價(jià)

  七 布置作業(yè)

  1(必做題) 課本60頁(yè)習(xí)題A組3,4題。(要求:做在作業(yè)本上)

  2(選做題) 課本60頁(yè)習(xí)題B組1,2題。(要求:將答案直接寫在課本上,明天課堂上用5分鐘時(shí)間討論交流)

有理數(shù)除法教案6

  學(xué)習(xí)目標(biāo):

  1、學(xué)會(huì)用計(jì)算器進(jìn)行有理數(shù)的除法運(yùn)算.

  2、掌握有理數(shù)的混合運(yùn)算順序.

  3、通過(guò)探究、練習(xí),養(yǎng)成良好的學(xué)習(xí)習(xí)慣

  學(xué)習(xí)重點(diǎn):有理數(shù)的混合運(yùn)算

  學(xué)習(xí)難點(diǎn):運(yùn)算順序的確定與性質(zhì)符號(hào)的處理

  教學(xué)方法:觀察、類比、對(duì)比、歸納

  教學(xué)過(guò)程

  一、學(xué)前準(zhǔn)備

  1、計(jì)算

  1)(—0.0318)÷(—1.4)2)2+(—8)÷2

  二、探究新知

  1、由上面的問(wèn)題1,計(jì)算方便嗎?想過(guò)別的方法嗎?

  2、由上面的問(wèn)題2,你的計(jì)算方法是先算法,再算法。

  3、結(jié)合問(wèn)題1,閱讀課本P36—P37頁(yè)內(nèi)容(帶計(jì)算器的同學(xué)跟著操作、練習(xí))

  4、結(jié)合問(wèn)題2,你先猜想,有理數(shù)的混合運(yùn)算順序應(yīng)該是?

  5、閱讀P36,并動(dòng)手做做

  三、新知應(yīng)用

  1、計(jì)算

  1)、18—6÷(—2)×2)11+(—22)—3×(—11)

  3)(—0.1)÷×(—100)

  2、師生小結(jié)

  四、回顧與反思

  請(qǐng)你回顧本節(jié)課所學(xué)習(xí)的主要內(nèi)容

  3頁(yè)

  五、自我檢測(cè)

  1、選擇題

  1)若兩個(gè)有理數(shù)的和與它們的積都是正數(shù),則這兩個(gè)數(shù)()

  A.都是正數(shù)B.是符號(hào)相同的'非零數(shù)C.都是負(fù)數(shù)D.都是非負(fù)數(shù)

  2)下列說(shuō)法正確的是()

  A.負(fù)數(shù)沒(méi)有倒數(shù)B.正數(shù)的倒數(shù)比自身小

  C.任何有理數(shù)都有倒數(shù)D.-1的倒數(shù)是-1

  3)關(guān)于0,下列說(shuō)法不正確的是()

  A.0有相反數(shù)B.0有絕對(duì)值

  C.0有倒數(shù)D.0是絕對(duì)值和相反數(shù)都相等的數(shù)

  4)下列運(yùn)算結(jié)果不一定為負(fù)數(shù)的是()

  A.異號(hào)兩數(shù)相乘B.異號(hào)兩數(shù)相除

  C.異號(hào)兩數(shù)相加D.奇數(shù)個(gè)負(fù)因數(shù)的乘積

  5)下列運(yùn)算有錯(cuò)誤的是()

  A.÷(-3)=3×(-3)B.

  C.8-(-2)=8+2D.2-7=(+2)+(-7)

  6)下列運(yùn)算正確的是()

  A.;B.0-2=-2;C.;D.(-2)÷(-4)=2

  2、計(jì)算

  1)6—(—12)÷(—3)2)3×(—4)+(—28)÷7

  3)(—48)÷8—(—25)×(—6)4)

  六、作業(yè)

  1、P39第7題(4、5、7、8)、第8題

  2、選做題:P39第10、11、12、1314、15題

有理數(shù)除法教案7

  一、學(xué)習(xí)目標(biāo):

  1. 熟練掌握有理數(shù)的乘法法 則

  2. 會(huì)運(yùn)用乘法運(yùn)算率簡(jiǎn)化乘法運(yùn)算.

  3. 了解互為倒數(shù)的意義,并會(huì)求一個(gè)非零有理數(shù)的倒數(shù)

  二、學(xué)習(xí)重點(diǎn):探索有 理數(shù)乘法運(yùn)算律

  學(xué)習(xí)難點(diǎn):運(yùn)用乘法運(yùn)算律簡(jiǎn)化計(jì)算

  三、學(xué)習(xí)過(guò)程:

  (一)、情境引入:

  1、復(fù)習(xí)有理數(shù)的乘法法則(兩個(gè)因數(shù)、兩個(gè)以上的因數(shù)),并舉例說(shuō)明。

  2、在含有負(fù)數(shù)的乘法運(yùn)算中,乘法交換律,結(jié)合律和分配律還成立嗎?

  觀察 下列各有理數(shù)乘法,從中可得到怎樣的結(jié)論?

  (1)(-6)(-7)= (-7)(-6)=

  (2)[( -3)(-5)]2 = (-3)[(-5)2]=

  (3)(-4)(- 3+5)= (-4 )(-3)+(-4)5=

  3、請(qǐng)?jiān)倥e幾組數(shù)試一試,看上面所得的'結(jié)論是否成立?

  (二)、新課講解:

  有理數(shù)乘法運(yùn)算律

  交換律 ab =ba

  結(jié)合律 ( ab)c=a(bc)

  分配律 a(b+c)=ab+ac

  例1.計(jì)算:

  (1)8(- )(-0.125) (2)

  (3)( )(-36) (4)

  例2.計(jì)算

  (1)8 (2)(4)( ) (3)( )( )

  觀察例2中的三個(gè)運(yùn)算, 兩個(gè)因數(shù)有什么 特點(diǎn)?它們的乘積呢?你能夠得到什么結(jié)論?

  (三)、鞏固練習(xí):

  1.運(yùn)用運(yùn)算律填空.

  (1)-2-3=-3(_____).

  (2)[-32](-4)=-3[(______)(______)].

  (3)-5[-2 +-3]=-5(_____)+(_____)-3

  2.選擇題

  (1)若a0 ,必有 ( )

  A a0 B a0 C a,b同號(hào) D a,b異號(hào)

  (2)利用分配律計(jì)算 時(shí),正確的方案可以是 ( )

  A B

  C D

  3.運(yùn)用運(yùn)算律計(jì)算:

  (1)(-25)(-85)(-4) (2) 14-12-1816

  (3)6037-6017+6057 (4)18-23+1323-423

  (5)(-4)(-18.36) (6)(- )0.125(-2 )

  (7)(- + - - )(-20); (8)(-7.33)(42.07)+(-2.07)(-7.33)

  四、課堂小結(jié):

  通過(guò)本節(jié)課你學(xué)到了哪些知識(shí)?你 達(dá)成學(xué)習(xí)目標(biāo)了嗎?

  五、作業(yè)布置:

  課本第42頁(yè)習(xí)題2.5 第3題

  數(shù)學(xué)評(píng)價(jià)手冊(cè)

  六 、學(xué)后記/教后記

有理數(shù)除法教案8

  學(xué)習(xí)目標(biāo):

  理解有理數(shù)除法的意義,掌握有理數(shù)除法法則,會(huì)進(jìn)行有理數(shù)除法運(yùn)算.

  學(xué)習(xí)重點(diǎn):正確運(yùn)用有理數(shù)除法法則進(jìn)行有理數(shù)除法運(yùn)算.

  學(xué)習(xí)難點(diǎn):尋找有理數(shù)除法轉(zhuǎn)化為有理數(shù)乘法的方法和條件.

  教學(xué)方法:引導(dǎo)、探究、歸納與練習(xí)相結(jié)合

  教學(xué)過(guò)程

  活動(dòng)一探討有理數(shù)除法法則:

  獨(dú)立完成——合作交流——展示成果

  閱讀課本P35例5以上的內(nèi)容,談?wù)動(dòng)欣頂?shù)除法法則是如何得出的?換其他數(shù)的除法進(jìn)行類似討論,是否任有除

  目標(biāo)導(dǎo)行:

  1.理解除法的意義、除法是乘法的逆運(yùn)算.(重點(diǎn))

  2.理解和掌握有理數(shù)除法的兩個(gè)法則,會(huì)正確地進(jìn)行有理數(shù)的除法運(yùn)算.(重點(diǎn)、難點(diǎn))

  思維診斷:

  (打“√”或“×”)

  (1)0除以任何一個(gè)數(shù),都得0.( )

  (2)1除以一個(gè)非零數(shù)就等于乘這個(gè)數(shù)的倒數(shù).( )

  (3)兩數(shù)相除,商一定小于被除數(shù).( )

  (4)兩數(shù)相除商為正數(shù),則這兩個(gè)數(shù)均為正數(shù).( )

  (5)一個(gè)不等于0的有理數(shù)除以它的相反數(shù)等于-1.( )

  【總結(jié)提升】有理數(shù)相除的方法

  1.0除以任何一個(gè)不等于0的數(shù),都得0;但0不能作除數(shù).

  2.在進(jìn)行除法運(yùn)算時(shí),若能整除,則用“兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除”;若不能整除,則用“除以一個(gè)不等于0的數(shù),等于乘這個(gè)數(shù)的倒數(shù)”.

  3.除法算式中的.小數(shù);煞?jǐn)?shù),帶分?jǐn)?shù)化成假分?jǐn)?shù),便于轉(zhuǎn)化為乘法時(shí)約分.

  【總結(jié)提升】分?jǐn)?shù)化簡(jiǎn)的方法

  1.把分?jǐn)?shù)轉(zhuǎn)化為除法,利用有理數(shù)的除法法則進(jìn)行化簡(jiǎn).

  2.利用分?jǐn)?shù)的基本性質(zhì),分子和分母都乘以同一個(gè)數(shù)或都除以同一個(gè)不為0的數(shù)結(jié)果不變進(jìn)行化簡(jiǎn).

  6.某自行車廠一周計(jì)劃每日生產(chǎn)400輛自行車,由于人數(shù)和操作原因,每日實(shí)際生產(chǎn)量分別為405輛、393輛、397輛、410輛、391輛、385輛、405輛.

  (1)用正負(fù)數(shù)表示每日實(shí)際生產(chǎn)量與計(jì)劃量的增減情況.

  (2)該自行車廠本周實(shí)際共生產(chǎn)多少輛自行車?平均每日實(shí)際生產(chǎn)多少輛自行車?

  【歸納整合】符號(hào)移動(dòng)法

  化簡(jiǎn)分?jǐn)?shù)仍遵循“同號(hào)得正,異號(hào)得負(fù)”的符號(hào)法則,因此可得符號(hào)移動(dòng)法則:分子、分母、分?jǐn)?shù)前面的符號(hào),三者有一個(gè)或三個(gè)為負(fù),結(jié)果為負(fù),有兩個(gè)為負(fù),結(jié)果為正.

有理數(shù)除法教案9

  一、目的要求

  1.使學(xué)生了解有理數(shù)除法的意義,掌握有理數(shù)除法法則,會(huì)進(jìn)行有理數(shù)的除法運(yùn)算。

  2.使學(xué)生理解有理數(shù)倒數(shù)的意義,能熟練地進(jìn)行有理數(shù)乘除混合運(yùn)算。

  二、內(nèi)容分析

  有理數(shù)除法的學(xué)習(xí)是學(xué)生在小學(xué)已掌握了倒數(shù)的意義,除法的意義和運(yùn)算法則,乘除的混合運(yùn)算法則,知道0不能作除數(shù)的規(guī)定和在中學(xué)已學(xué)過(guò)有理數(shù)乘法的基礎(chǔ)上進(jìn)行的。因而教材首先根據(jù)除法的意義計(jì)算一個(gè)具體的有理數(shù)除法的實(shí)例,得出有理數(shù)除法可以利用乘法來(lái)進(jìn)行的結(jié)論,進(jìn)而指出有理數(shù)范圍內(nèi)倒數(shù)的定義不變,這樣,就得出了有理數(shù)除法法則。接下來(lái),通過(guò)幾個(gè)實(shí)例說(shuō)明有理數(shù)除法法則,并根據(jù)除法與乘法的關(guān)系,進(jìn)一步得到了與乘法類似的法則。最后,通過(guò)幾個(gè)例題的教學(xué),既說(shuō)明了有理數(shù)除法的另一種形式,也指出了除法與分?jǐn)?shù)互化的關(guān)系,同時(shí),還指出有理數(shù)的除法化成有理數(shù)的乘法以后,可以利用有理數(shù)乘法的運(yùn)算性質(zhì)簡(jiǎn)化運(yùn)算,這樣,就說(shuō)明了有理數(shù)乘除的混合運(yùn)算法則。

  本節(jié)課的重點(diǎn)是除法法則和倒數(shù)概念;難點(diǎn)是對(duì)零不能作除數(shù)與零沒(méi)有倒數(shù)的理解以及乘法與除法的互化,關(guān)鍵是,實(shí)際運(yùn)算時(shí),先確定商的符號(hào),然后再根據(jù)不同情況采取適當(dāng)?shù)姆椒ㄇ笊痰慕^對(duì)值,因而教學(xué)時(shí),要讓學(xué)生通過(guò)實(shí)例理解有理數(shù)除法與小學(xué)除法法則基本相同,只是增加了符號(hào)的變化。

  三、教學(xué)過(guò)程

  復(fù)習(xí)提問(wèn):

  1.小學(xué)學(xué)過(guò)的倒數(shù)意義是什么?4和的倒數(shù)分別是什么?0為什么沒(méi)有倒數(shù)。

  答:乘積是1的兩個(gè)數(shù)互為倒數(shù),4的倒數(shù)是,的.倒數(shù)是,0沒(méi)有倒數(shù)是因?yàn)闆](méi)有一個(gè)數(shù)與0相乘等于1等于。

  2.小學(xué)學(xué)過(guò)的除法的意義是什么?10÷5是什么意思?商是幾?0÷5呢?

  答:除法是已知兩個(gè)因數(shù)的積與其中一個(gè)因數(shù),求另一個(gè)因數(shù)的運(yùn)算,15÷5表示一個(gè)數(shù)與5的積是15,商是3,0÷5表示一個(gè)數(shù)與5的積是0,商是0。

  3.小學(xué)學(xué)過(guò)的除法和乘法的關(guān)系是什么?

  答:除以一個(gè)數(shù)等于乘上這個(gè)數(shù)的倒數(shù)。

  4.5÷0=?0÷0=?

  答:0不能作除數(shù),這兩個(gè)除式?jīng)]有意義。

  新課講解:

  與小學(xué)學(xué)過(guò)的一樣,除法是乘法的逆運(yùn)算,這里與小學(xué)不同的是,被除數(shù)和除數(shù)可以是任意有理數(shù)(零作除數(shù)除外)。

  引例:計(jì)算:8×(-)和8÷(-4)

  8×(-)=-2,

  8÷(-4),由除法的意義,就是要求一個(gè)數(shù),使它與-4相乘,積為8,

  ∵(-4)×(-2)=8,

  ∴8÷(-4)=-2。

  從而,8÷(-4)=8×(-),

  同樣,有(-8)÷4=(-8)×,

  (-8)÷(-4)=(-8)×(-),

  這說(shuō)明,有理數(shù)除法可以利用乘法來(lái)進(jìn)行。

  又(-4)×=-1,4×=1,

  由4和互為倒數(shù),說(shuō)明(-4)和(-)也互為倒數(shù)。

  從而對(duì)于有理數(shù)仍然有:乘積為1的兩個(gè)數(shù)互為倒數(shù)。

  提問(wèn):-2,-,-1的倒數(shù)各是什么?為什么?

  注意:求一個(gè)整數(shù)的倒數(shù),直接寫成這個(gè)數(shù)的數(shù)分之一即可,求一個(gè)分?jǐn)?shù)的倒數(shù),只要把分子分母顛倒一下即可,一般地,a(a≠0)的倒數(shù)是,0沒(méi)有倒數(shù)。

  由上面的引例和倒數(shù)的意義,可得到與小學(xué)一樣的有理數(shù)除法法則,則教科書第101頁(yè)方框里的黑體字,用式子表示,就是a÷b=a·(b≠0)。

  注意:有理數(shù)除法法則也表示了有理數(shù)除法和有理數(shù)乘法可以互相轉(zhuǎn)化的關(guān)系,與小學(xué)一樣,也規(guī)定:0不能作除數(shù)。

  例1計(jì)算。(見(jiàn)教科書第103頁(yè)例1)

  解答過(guò)程見(jiàn)教科書第103頁(yè)例1。

  閱讀教科書第102頁(yè)至第103頁(yè)。

  課堂練習(xí):教科書第104頁(yè)練習(xí)第l,2,3題。

  提問(wèn):l.正數(shù)的倒數(shù)是正數(shù),負(fù)數(shù)的倒數(shù)是負(fù)數(shù),零的倒數(shù)是零,這句話正確嗎?

  (答:略)

  2.兩數(shù)相除,商的符號(hào)如何確定?為什么?商的絕對(duì)值呢?

  答:商的符號(hào)由兩個(gè)數(shù)的符號(hào)確定,因?yàn)槌砸粋(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù),當(dāng)兩個(gè)不等于零的數(shù)互為倒數(shù)時(shí),它們的符號(hào)相同。故兩數(shù)相除,仍是同號(hào)得正,異號(hào)得負(fù),商的絕對(duì)值則可由兩數(shù)的絕對(duì)值相除而得到。

  從上所述,可得到有理數(shù)除法與乘法類似的法則,見(jiàn)教科書第102頁(yè)上的黑體字。

  在進(jìn)行有理數(shù)除法運(yùn)算時(shí),既可以利用乘法(把除數(shù)化為它的倒數(shù)),也可以直接(特別是在能整除時(shí))進(jìn)行,具體利用哪種方式,根據(jù)情況靈活選用。

  例2見(jiàn)教科書第104頁(yè)例2。

  解答過(guò)程見(jiàn)教科書第104頁(yè)例2。

  注意:除法可以表示成分?jǐn)?shù)和比的形式。如84÷(-7)可以寫成或84:(-7);反過(guò)來(lái),分?jǐn)?shù)和比也可以化為除法,如可以寫成(-12)÷3,15:6可以寫成15÷6。這說(shuō)明,除法、分?jǐn)?shù)和比相互可以互相轉(zhuǎn)化,并且通過(guò)這種轉(zhuǎn)化,常?梢院(jiǎn)化計(jì)算。

  例3見(jiàn)教科書第105頁(yè)例3。

  分析:(l)有兩種算法,一是將寫成,然后用除法法則或利用乘法進(jìn)行計(jì)算;二是將寫成24+,然后利用分配律進(jìn)行計(jì)算。

  對(duì)于(2),是乘除混合運(yùn)算,可以接從左到右的順序依次計(jì)算,也可以把除法化為乘法,按乘法法則運(yùn)算。

  解答過(guò)程見(jiàn)教科書第105頁(yè)例3。

  講解教科書例3后的兩個(gè)注意點(diǎn)。

  課堂練習(xí):見(jiàn)教科書第105頁(yè)練習(xí)。

  第1題可直接約分,也可化為除法。

  第2題可先化成乘法,并利用乘法的運(yùn)算律簡(jiǎn)化運(yùn)算。

  課堂小結(jié):

  閱讀教科書第102頁(yè)至第105頁(yè)上的內(nèi)容,理解倒數(shù)的意義,除法法則的兩種形式及教材上的注意點(diǎn)。

  提問(wèn):(l)倒數(shù)的意義是什么?有理數(shù)除法法則是什么?如何進(jìn)行有理數(shù)的除法運(yùn)算?(兩種形式)如何進(jìn)行有理數(shù)乘除混合運(yùn)算?

  (2)0能作除數(shù)嗎?什么數(shù)的倒數(shù)是它本身?的倒數(shù)是什么?(a≠0)

  四、課外作業(yè)

  習(xí)題2.9A組第1,2,3,4,5題的雙數(shù)小題,第6題。

  選作題:習(xí)題2.9B組第1,2,3題雙數(shù)小題。

有理數(shù)除法教案10

  [教學(xué)目標(biāo)]

  1、使學(xué)生理解有理數(shù)除法的意義,掌握有理數(shù)除法法則,會(huì)進(jìn)行有理數(shù)除法運(yùn)算;

  2、運(yùn)用轉(zhuǎn)化思想,理解有理數(shù)除法的意義,培養(yǎng)學(xué)生新舊知識(shí)之間聯(lián)系的思維能力,通過(guò)乘除法之間的`逆運(yùn)算,培養(yǎng)學(xué)生逆向思維的能力,提高學(xué)生的計(jì)算能力,培養(yǎng)轉(zhuǎn)化和全面分析問(wèn)題的能力、

  [教學(xué)重點(diǎn)、難點(diǎn)]

  1、教學(xué)重點(diǎn):正確運(yùn)用有理數(shù)除法法則進(jìn)行有理數(shù)除法運(yùn)算;

  2、教學(xué)難點(diǎn):理解零不能做除數(shù),零沒(méi)有倒數(shù),尋找有理數(shù)除法轉(zhuǎn)化為有理數(shù)乘法的方法和條件;

  3、疑點(diǎn):乘除法運(yùn)算順序、

  [教學(xué)過(guò)程設(shè)計(jì)]

  一、課前復(fù)習(xí)提問(wèn)

  1、有理數(shù)乘法法則;

  2、有理數(shù)乘法的運(yùn)算律:乘法交換律,乘法結(jié)合律,乘法分配律;

  3、倒數(shù)的意義、

  二、講授新課

  (一)有理數(shù)除法法則的推導(dǎo)

  [問(wèn)題]怎樣計(jì)算8(—4)呢?

  [提問(wèn)]小學(xué)學(xué)過(guò)的除法的意義是什么?

  得出 ①8(—4)=—2;又②8( )=—2;

有理數(shù)除法教案11

  1教學(xué)目標(biāo)

  1.使學(xué)生理解有理數(shù)除法的意義,掌握有理數(shù)除法法則,會(huì)進(jìn)行有理數(shù)除法運(yùn)算;

  2.運(yùn)用轉(zhuǎn)化思想,理解有理數(shù)除法的意義,培養(yǎng)學(xué)生新舊知識(shí)之間聯(lián)系的思維能力,通過(guò)乘除法之間的逆運(yùn)算,培養(yǎng)學(xué)生逆向思維的能力,提高學(xué)生的計(jì)算能力,培養(yǎng)轉(zhuǎn)化和全面分析問(wèn)題的能力.

  2學(xué)情分析

  本節(jié)課是學(xué)生在學(xué)習(xí)了有理數(shù)的基礎(chǔ)上學(xué)習(xí)的,學(xué)生學(xué)起來(lái)比較容易

  3重點(diǎn)難點(diǎn)

  1.教學(xué)重點(diǎn):正確運(yùn)用有理數(shù)除法法則進(jìn)行有理數(shù)除法運(yùn)算;

  2.教學(xué)難點(diǎn):理解零不能做除數(shù),零沒(méi)有倒數(shù),尋找有理數(shù)除法轉(zhuǎn)化為有理數(shù)乘法的方法和條件;

  4教學(xué)過(guò)程

  4.1有理數(shù)的除法

  教學(xué)活動(dòng)

  活動(dòng)1

  有理數(shù)的除法

  一、課前復(fù)習(xí)提問(wèn)

  1.有理數(shù)乘法法則;

  2.有理數(shù)乘法的運(yùn)算律:乘法交換律,乘法結(jié)合律,乘法分配律;

  3.倒數(shù)的意義.

  二、講授新課

 。ㄒ唬┯欣頂(shù)除法法則的推導(dǎo)

  [問(wèn)題]怎樣計(jì)算8÷(-4)呢?

  [提問(wèn)]小學(xué)學(xué)過(guò)的除法的意義是什么?

  得出 ①8÷(-4)=-2;又②8×( )=-2;于是有

 、8÷(-4)=8×( ).

  由此得出有理數(shù)除法法則:

  除以一個(gè)不等于0的數(shù),等于乘以這個(gè)數(shù)的倒數(shù).

  可以表示為:

  a÷b=a· (b≠0) .

  類似于乘法法則可得:

  兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除.零除以任何一個(gè)不等于0的數(shù),都得0.

  對(duì)有理數(shù)除法法則的理解:

 。1)法則所揭示的內(nèi)容告訴我們,有理數(shù)除法與小學(xué)時(shí)學(xué)的除法一樣,它是乘法的`逆運(yùn)算,是借助“倒數(shù)”為媒介,將除法運(yùn)算轉(zhuǎn)化為乘法運(yùn)算進(jìn)行(強(qiáng)調(diào),因?yàn)?沒(méi)有倒數(shù),所以除數(shù)不能為0);

 。2)法則揭示有理數(shù)除法的運(yùn)算步驟:第一步,確定商的符號(hào),第二步,求出商的絕對(duì)值.

 。ǘ┯欣頂(shù)除法法則的運(yùn)用

  例1 計(jì)算:(1)(-36)÷9;

 。2)( )÷( ).

  強(qiáng)調(diào):兩數(shù)相除,先確定商的符號(hào),再確定商的絕對(duì)值.

  例2 化簡(jiǎn)下列分?jǐn)?shù):

 。1) ; (2) .

  強(qiáng)調(diào):(1)符號(hào)法則;(2)一般來(lái)說(shuō),在能整除的情況下,往往采用法則的后一種形式,在確定符號(hào)后,直接除.在不能整除的情況下,則往往將除數(shù)換成倒數(shù),轉(zhuǎn)化為乘法.

  例3 計(jì)算:

  (1)(-125 )÷(-5);

  (2)-2.5÷ ;

  (三)課堂練習(xí)

  1.教材P35練習(xí)

  2.補(bǔ)充練習(xí)

 。1)-1÷( )= ,0÷14 = , ÷(-3)=9.

 。2)倒數(shù)等于本身的數(shù)是 .

 。3)若a、b互為倒數(shù),則-13ab= .

 。4)被除數(shù)是-3 ,除數(shù)比被除數(shù)大1 ,則商是 .

 。5)若ab=1,且a=-1 ,則b .

 。6)計(jì)算:

  1.(-32)+(-2);-(-2 )÷(- );

  2.125÷(-2 ); (-0.009)÷0.03; .

  (7)若有理數(shù)a≠0,b≠0,則 的值為 .

  (8)若a、b、c為有理數(shù),且 =-1,求 的值.

  (四)小結(jié)

  1.通過(guò)小學(xué)除法意義的理解和類比,得出有理數(shù)除法法則,法則一:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù),零不能做除數(shù).法則二:兩數(shù)相除,同號(hào)得正,異好號(hào)得負(fù),并把絕對(duì)值相除;零除以任何一個(gè)不等于零的數(shù)都得零.

  2.有理數(shù)的除法有兩種方法,一般能整除時(shí)用第二種方法.強(qiáng)調(diào)要先確定結(jié)果的符號(hào).

  (五)作業(yè)

  教材P38中4

  (六)教學(xué)反思

  本節(jié)課是學(xué)生在學(xué)習(xí)了有理數(shù)乘法的基礎(chǔ)上學(xué)習(xí)的,在小學(xué)的時(shí)候已經(jīng)學(xué)習(xí)了兩數(shù)的除法法則,所以這節(jié)課的內(nèi)容對(duì)大部分學(xué)生來(lái)說(shuō),不是很難,他們只要會(huì)確定兩數(shù)相除商的符號(hào),然后在求商的絕對(duì)值就可以了。

有理數(shù)除法教案12

  設(shè)計(jì)理念

  1.注意突出學(xué)生的自主探索,通過(guò)一些熟悉的、具體的事物,讓學(xué)生在觀察、思考、探索中體會(huì)有理數(shù)的意義,探索數(shù)量關(guān)系,掌握有理數(shù)的.運(yùn)算。教學(xué)中要注重讓學(xué)生通過(guò)自己的活動(dòng)來(lái)獲取、理解和掌握這些知識(shí)。

  2.本課注意降低了對(duì)運(yùn)算的要求,尤其是刪去了繁難的運(yùn)算。注重使學(xué)生理解運(yùn)算的意義,掌握必要的基本的運(yùn)算技能。

  教學(xué)目標(biāo)知識(shí)與技能:

  1.使學(xué)生理解有理數(shù)倒數(shù)的意義。

  2.使學(xué)生掌握有理數(shù)的除法法則,能夠熟練地進(jìn)行除法運(yùn)算。

  過(guò)程與方法:

  培養(yǎng)學(xué)生觀察、歸納、概括及運(yùn)算能力。

  情感態(tài)度、價(jià)值觀:

  讓學(xué)生感知數(shù)學(xué)來(lái)源于生活,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  重點(diǎn)

  有理數(shù)除法法則。

  難點(diǎn)

  (1)、商的符號(hào)的確定;(2)、0不能作除數(shù)的理解。

  教學(xué)過(guò)程

  一、復(fù)習(xí)引入

  1.敘述有理數(shù)乘法法則

  2.敘述有理數(shù)乘法的運(yùn)算律。

  3.計(jì)算:

 、(―6)

 、

 、(―3)(+7)―9(―6)

 、

  二、自主學(xué)習(xí)計(jì)算:

  8

  嘗試

  8(- )

  1.師生共同研究有理數(shù)除法法則:

 、賳(wèn)題:

  一個(gè)數(shù)與2的乘積是-6,這個(gè)數(shù)是幾?你能否回答?這個(gè)問(wèn)題寫成算式有兩種:

  2( ?)=-6, (乘法算式)

  也就是 (-6)2=( ?) (除法算式)

  由2(-3)=-6,

  我們有(-6)2=-3。另外,我們還知道: (-6) =-3。

  所以,(-6)2=(-6) 。這表明除法可以轉(zhuǎn)化為乘法來(lái)進(jìn)行。

有理數(shù)除法教案13

  一、知識(shí)與技能

  (1)會(huì)用計(jì)算器計(jì)算有理數(shù)的除法運(yùn)算。

  (2)掌握有理數(shù)的加減乘除混合運(yùn)算。

  二、過(guò)程與方法

  通過(guò)本節(jié)課的數(shù)學(xué)活動(dòng),培養(yǎng)學(xué)生分析問(wèn)題,綜合應(yīng)用知識(shí)解決實(shí)際問(wèn)題的能力。

  三、情感態(tài)度與價(jià)值觀

  培養(yǎng)學(xué)生動(dòng)手操作能力,體會(huì)數(shù)學(xué)知識(shí)的應(yīng)用價(jià)值。

  教學(xué)重、難點(diǎn)與關(guān)鍵

  1.重點(diǎn):掌握有理數(shù)的加減乘除混合運(yùn)算。

  2.難點(diǎn):符號(hào)的確定。

  3.關(guān)鍵:掌握運(yùn)算順序以及運(yùn)算法則。

  四、教學(xué)過(guò)程、課堂引入

  1、在小學(xué)里,加減乘除四則運(yùn)算的順序是怎樣的?

  先乘除后加減,同級(jí)運(yùn)算從左往右依次進(jìn)行,有括號(hào)的,先算括號(hào)內(nèi)的,另外還要注意靈活應(yīng)用運(yùn)算律。 有理數(shù)加減、乘除混合運(yùn)算順序與數(shù)的運(yùn)算順序一樣。

  五、新授

  例8.計(jì)算:(1)-8+4(-2);

  (2)(-7)(-5)-90(-15)。

  分析:(1)按運(yùn)算順序,先做除法,再做加法。(2)先算乘、除法,然后做減法。

  解:(1)-8+4(-2)

  =-8+(-2) =-10

  (2)(-7)(-5)-90(-15)

  =35-(-6)=35+6=41

  例9:某公司去年1~3月平均每月虧損1.5萬(wàn)元,4~6月平均每月盈利2萬(wàn)元,7~10月平均每月盈利1.7萬(wàn)元,11~12月平均每月虧損2.3萬(wàn)元,這個(gè)公司去年總的'盈利情況如何?

  分析:盈利與虧損是具有相反意義的量,我們把盈利額記為正數(shù),虧損額記為負(fù)數(shù),那么公司去年全年虧盈額就是去年1~12月的所虧損額和盈利額的和。

有理數(shù)除法教案14

  一、素質(zhì)教育目標(biāo)

 。ㄒ唬┲R(shí)教學(xué)點(diǎn)

  1.了解有理數(shù)除法的定義.

  2.理解倒數(shù)的意義.

  3.掌握有理數(shù)除法法則,會(huì)進(jìn)行有理數(shù)的除法運(yùn)算.

  (二)能力訓(xùn)練點(diǎn)

  1.通過(guò)有理數(shù)除法法則的導(dǎo)出及運(yùn)算,讓學(xué)生體會(huì)轉(zhuǎn)化思想.

  2.培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)思想指導(dǎo)思維活動(dòng)的能力.

  (三)德育滲透點(diǎn)

  通過(guò)學(xué)習(xí)有理數(shù)除法運(yùn)算、感知數(shù)學(xué)知識(shí)具有普遍聯(lián)系性、相互轉(zhuǎn)化性.

  (四)美育滲透點(diǎn)

  把小學(xué)算術(shù)里的乘法法則推廣到有理數(shù)范圍內(nèi),體現(xiàn)了知識(shí)體系的完整美.

  二、學(xué)法引導(dǎo)

  1.教學(xué)方法:遵循啟發(fā)式教學(xué)原則,注意創(chuàng)設(shè)問(wèn)題情境,精心構(gòu)思啟發(fā)導(dǎo)語(yǔ)并及時(shí)點(diǎn)撥,使學(xué)生主動(dòng)發(fā)展思維和能力.

  2.學(xué)生學(xué)法:通過(guò)練習(xí)探索新知→歸納除法法則→鞏固練習(xí)

  三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法

  1.重點(diǎn):除法法則的靈活運(yùn)用和倒數(shù)的概念.

  2.難點(diǎn):有理數(shù)除法確定商的符號(hào)后,怎樣根據(jù)不同的情況來(lái)取適當(dāng)?shù)姆椒ㄇ笊痰慕^對(duì)值.

  3.疑點(diǎn):對(duì)零不能作除數(shù)與零沒(méi)有倒數(shù)的理解.

  四、課時(shí)安排

  1課時(shí)

  五、教具學(xué)具準(zhǔn)備

  投影儀、自制膠片、彩粉筆.

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  教師出示探索性練習(xí),學(xué)生討論歸納除法法則,教師出示鞏固性練習(xí),學(xué)生以多種形式完成.

  七、教學(xué)步驟

 。ㄒ唬﹦(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入

  師:以上我們學(xué)習(xí)了有理數(shù)的乘法,這節(jié)我們應(yīng)該學(xué)習(xí)有理數(shù)的除法,板書課題.

  【教法說(shuō)明】有理數(shù)的除法同小學(xué)算術(shù)中除法一樣—除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù),所以必須以學(xué)好求一個(gè)有理數(shù)的倒數(shù)為基礎(chǔ)學(xué)習(xí)有理數(shù)的除法.

 。ǘ┨剿餍轮,講授新課

  1.倒數(shù).

 。ǔ鍪就队1)

  4×()=1!粒ǎ1。0.5×()=1

  0×()=1。-4×()=1!粒ǎ1

  學(xué)生活動(dòng):口答以上題目.

  【教法說(shuō)明】在有理數(shù)乘法的基礎(chǔ)上,學(xué)生很容易地做出這幾個(gè)題目,在題目的'選擇上,注意了數(shù)的全面性,即有正數(shù)、0、負(fù)數(shù),又有整數(shù)、分?jǐn)?shù),在數(shù)的變化中,讓學(xué)生回憶、體會(huì)出求各種數(shù)的倒數(shù)的方法.

  師問(wèn):兩個(gè)數(shù)乘積是1,這兩個(gè)數(shù)有什么關(guān)系?

  學(xué)生活動(dòng):乘積是1的兩個(gè)數(shù)互為倒數(shù).(板書)

  師問(wèn):0有倒數(shù)嗎?為什么?

  學(xué)生活動(dòng):通過(guò)題目0×()=1得出0乘以任何數(shù)都不得1,0沒(méi)有倒數(shù).

  師:引入負(fù)數(shù)后,乘積是1的兩個(gè)負(fù)數(shù)也互為倒數(shù),如-4與,與互為倒數(shù),即的倒數(shù)是.

  提出問(wèn)題:根據(jù)以上題目,怎樣求整數(shù)、分?jǐn)?shù)、小數(shù)的倒數(shù)?

  【教法說(shuō)明】 教師注意創(chuàng)設(shè)問(wèn)題情境,讓學(xué)生參與思考,循序漸進(jìn)地引出,對(duì)于有理數(shù)也有倒數(shù)是.對(duì)于怎樣求整數(shù)、分?jǐn)?shù)、小數(shù)的倒數(shù),學(xué)生還很難總結(jié)出方法,提出這個(gè)問(wèn)題是讓學(xué)生帶著問(wèn)題來(lái)做下組練習(xí).

 。ǔ鍪就队2)

  求下列各數(shù)的倒數(shù):

 。1)。(2)。(3)。

 。4)。(5)-5。(6)1.

  學(xué)生活動(dòng):通過(guò)思考口答這6小題,討論后得出,求整數(shù)的倒數(shù)是用1除以它,求分?jǐn)?shù)的倒數(shù)是分子分母顛倒位置。求小數(shù)的倒數(shù)必須先化成分?jǐn)?shù)再求.

  2.有理數(shù)的除法

  計(jì)算:8÷(-4).

  計(jì)算:8×()=?(-2)

  ∴8÷(-4)=8×().

  再嘗試:-16÷(-2)=?-16×()=?

  師:根據(jù)以上題目,你能說(shuō)出怎樣計(jì)算有理數(shù)的除法嗎?能用含字母的式子表示嗎?

  學(xué)生活動(dòng):同桌互相討論.(一個(gè)學(xué)生回答)

  師強(qiáng)調(diào)后板書:

 。郯鍟

  【教法說(shuō)明】通過(guò)學(xué)生親自演算和教師的引導(dǎo),對(duì)有理數(shù)除法法則及字母表示有了非常清楚的認(rèn)識(shí),教師放手讓學(xué)生總結(jié)法則,尤其是字母表示,訓(xùn)練學(xué)生的歸納及口頭表達(dá)能力.

 。ㄈ﹪L試反饋,鞏固練習(xí)

  師在黑板上出示例題.

  計(jì)算(1)(-36)÷9,(2)()÷().

  學(xué)生嘗試做此題目.

  (出示投影3)

  1.計(jì)算:

 。1)(-18)÷6。(2)(-63)÷(-7)。(3)(-36)÷6。

 。4)1÷(-9)。(5)0÷(-8)。(6)16÷(-3).

  2.計(jì)算:

 。1)()÷()。(2)(-6.5)÷0.13。

  (3)()÷()。(4)÷(-1).

  學(xué)生活動(dòng):1題讓學(xué)生搶答,教師用復(fù)合膠片顯示結(jié)果.2題在練習(xí)本上演示,兩個(gè)同學(xué)板演(教師訂正).

  【教法說(shuō)明】此組練習(xí)中兩個(gè)題目都是對(duì)的直接應(yīng)用.1題是整數(shù),利用口答形式訓(xùn)練學(xué)生速算能力.2題是小數(shù)、分?jǐn)?shù)略有難度,要求學(xué)生自行演算,加強(qiáng)運(yùn)算的準(zhǔn)確性,2題(2)小題必須把小數(shù)都化成分?jǐn)?shù)再轉(zhuǎn)化成乘法來(lái)計(jì)算.

  提出問(wèn)題:(1)兩數(shù)相除,商的符號(hào)怎樣確定,商的絕對(duì)值呢?(2)0不能做除數(shù),0做被除數(shù)時(shí)商是多少?

  學(xué)生活動(dòng):分組討論,1—2個(gè)同學(xué)回答.

 。郯鍟

  2.兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除.

  0除以任何不等于0的數(shù),都得0.

  【教法說(shuō)明】通過(guò)上組練習(xí)的結(jié)果,不難看出有理數(shù)的除法與有理數(shù)乘法有類似的法則,這個(gè)法則的得出為計(jì)算有理數(shù)除法又添了一種方法,這時(shí)教師要及時(shí)指出,在做有理數(shù)除法的題目時(shí),要根據(jù)具體情況,靈活運(yùn)用這兩種方法.

 。ㄋ模┳兪接(xùn)練,培養(yǎng)能力

  回顧例1??計(jì)算:(1)(-36)÷9。(2)()÷().

  提出問(wèn)題:每個(gè)題目你想采用哪種法則計(jì)算更簡(jiǎn)單?

  學(xué)生活動(dòng):(1)題采用兩數(shù)相除,異號(hào)得負(fù)并把絕對(duì)值相除的方法較簡(jiǎn)單.

 。2)題仍用除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù)較簡(jiǎn)單.

  提出問(wèn)題:-36:9=?。:()=?它們都屬于除法運(yùn)算嗎?

  學(xué)生活動(dòng):口答出答案.

 。ǔ鍪就队4)

  例2?化簡(jiǎn)下列分?jǐn)?shù)

  (1)。(2)。(3)或3:(-36)

 。4)。(5).

  例3?計(jì)算

 。1)()÷(-6)。(2)-3.5÷×()。

 。3)(-6)÷(-4)×().

  學(xué)生活動(dòng):例2讓學(xué)生口答,例3全體同學(xué)獨(dú)立計(jì)算,三個(gè)學(xué)生板演.

  【教法說(shuō)明】例2是檢查學(xué)生對(duì)有理數(shù)除法法則的靈活運(yùn)用能力,并滲透了除法、分?jǐn)?shù)、比可互相轉(zhuǎn)化,并且通過(guò)這種轉(zhuǎn)化,常?赡芎(jiǎn)化計(jì)算.例3培養(yǎng)學(xué)生分析問(wèn)題的能力,優(yōu)化學(xué)生思維品質(zhì):

  如在(1)()÷(-6)中.

  根據(jù)方法①()÷(-6)=×()=.

  根據(jù)方法②()÷(-6)=(24+)×=4+=.

  讓學(xué)生區(qū)分方法的差異,點(diǎn)明方法②非常簡(jiǎn)便,肯定當(dāng)除法轉(zhuǎn)化成乘法時(shí),可以利用有理數(shù)乘法運(yùn)算律簡(jiǎn)化運(yùn)算.(2)(3)小題也是如此.

  (五)歸納小結(jié)

  師:今天我們學(xué)習(xí)了有理數(shù)的除法及倒數(shù)的概念,回答問(wèn)題:

  1.的倒數(shù)是__________________()。

  2.。

  3.若、同號(hào),則。

  若、異號(hào),則。

  若,時(shí),則。

  學(xué)生活動(dòng):分組討論,三個(gè)學(xué)生口答.

  【教法說(shuō)明】對(duì)這節(jié)課全部知識(shí)點(diǎn)的回顧不是教師單純地總結(jié),而是讓學(xué)生在思考回答的過(guò)程中自己把整節(jié)內(nèi)容進(jìn)行了梳理,并且上升到了用字母表示的數(shù)學(xué)式子,逐步培養(yǎng)學(xué)生用數(shù)學(xué)語(yǔ)言表達(dá)數(shù)學(xué)規(guī)律的能力.

  八、隨堂練習(xí)

  1.填空題

 。1)的倒數(shù)為_(kāi)_________,相反數(shù)為_(kāi)___________,絕對(duì)值為_(kāi)__________

 。2)(-18)÷(-9)=_____________。

 。3)÷(-2.5)=_____________。

 。4)。

 。5)若,是。

 。6)若、互為倒數(shù),則。

  (7)或、互為相反數(shù)且,則,。

 。8)當(dāng)時(shí),有意義。

 。9)當(dāng)時(shí),。

 。10)若,,則,和符號(hào)是_________,___________.

  2.計(jì)算

 。1)-4.5÷()×。

 。2)(-12)÷〔(-3)+(-15)〕÷(+5).

  九、布置作業(yè)

 。ㄒ唬┍刈鲱}:1.仿照例1、例2自編2道題,同桌交換解答.

  2.計(jì)算:(1)()×()÷()。

  (2)-6÷(-0.25)×.

  3.當(dāng),,時(shí)求的值.

  (二)選做題:1.填空:用“>”“<”“=”號(hào)填空

 。1)如果,則,。

 。2)如果,則,。

 。3)如果,則,。

 。4)如果,則,。

  2.判斷:正確的打“√”錯(cuò)的打“×”

 。1)()。

 。2)().

  3.(1)倒數(shù)等于它本身的數(shù)是______________.

 。2)互為相反數(shù)的數(shù)(0除外)商是________________.

  【教法說(shuō)明】必做題為本節(jié)的重點(diǎn)內(nèi)容,首先在這節(jié)課學(xué)習(xí)的基礎(chǔ)上讓同學(xué)仿照例題編題,學(xué)生也有這方面的能力,極大調(diào)動(dòng)了學(xué)生積極性,提高了學(xué)生運(yùn)用知識(shí)的能力.

  選作題是對(duì)這節(jié)課重點(diǎn)內(nèi)容的進(jìn)一步理解和運(yùn)用,為學(xué)有余力的學(xué)生提供了展示自己的機(jī)會(huì).

有理數(shù)除法教案15

  教學(xué)目標(biāo):

  知識(shí)與技能:理解倒數(shù)的意義,會(huì)求有理數(shù)的倒數(shù)。了解有理數(shù)除法的意義,理解有理數(shù)除法的法則,會(huì)進(jìn)行有理數(shù)的除法運(yùn)算.

  過(guò)程與方法:通過(guò)有理數(shù)除 法的法則的導(dǎo)出及運(yùn)用,學(xué)生能體會(huì)轉(zhuǎn)化的思想。

  感知數(shù)學(xué)知識(shí)具有普遍聯(lián)系性、相互轉(zhuǎn)化性。

  情感與態(tài)度:通過(guò)有理數(shù)乘法運(yùn)算的推廣,體會(huì)知識(shí)系統(tǒng)的完整性。

  體會(huì)在解決問(wèn)題的過(guò)程中與他人合作的重要性。通過(guò)對(duì)解決問(wèn)題的過(guò)程的反思,獲得解決問(wèn)題的經(jīng)驗(yàn)。

  教學(xué)重點(diǎn):有理數(shù)的除法法則及其運(yùn)用

  教學(xué)難點(diǎn):(1)商的符號(hào)的確定。(2)0不能作除數(shù)的理解。

  教材分析: 乘法與除法互為逆運(yùn)算,小學(xué)已經(jīng)學(xué)過(guò)。通過(guò)實(shí)例引入,說(shuō)明它在有理數(shù)的范圍內(nèi)也成立。本節(jié)內(nèi)容在學(xué)生已有有理數(shù)乘法知識(shí)的基礎(chǔ)上 ,通過(guò)學(xué)生經(jīng)歷從具體情景中抽象出法則的過(guò)程,使他們發(fā)現(xiàn)其中的規(guī)律,掌握必要的運(yùn)算技能,使學(xué)生在有理數(shù)運(yùn)算的學(xué)習(xí)中繼續(xù)發(fā)展數(shù)感,在符號(hào)法則的學(xué)習(xí)中增強(qiáng)符號(hào)感。

  教具: 多媒體課件

  教學(xué)方法 :引導(dǎo)發(fā)現(xiàn)法 類比歸納法

  課 時(shí)安排:一課時(shí)

  創(chuàng)設(shè)情境

  問(wèn)題:有四名同學(xué)參加數(shù)學(xué)測(cè)驗(yàn),以90分為標(biāo)準(zhǔn),超過(guò)得分?jǐn)?shù)記為正數(shù),不足的分?jǐn)?shù)記為負(fù)數(shù),評(píng)分記錄 如下:+5、-20。-19。-14。求:這四名同學(xué)的平均成績(jī)是超過(guò)80 分或不足80分? 學(xué)生在教師的激情 互動(dòng)中,思考列式(+5-20-19-14)÷4

  化簡(jiǎn):(-48)÷4=?(但不知如何計(jì)算)

  揭示課題

  從實(shí)際生活引入,體現(xiàn)數(shù)學(xué)知識(shí)源于生活及數(shù)學(xué)的現(xiàn)實(shí)意義。

  復(fù)習(xí)回顧 前置補(bǔ)償

  求下列各數(shù)的倒數(shù):

 。1)- ;(2)4 ;(3)0.2(4)-0.25;(5)-1

  學(xué)生對(duì)老師的提問(wèn)進(jìn)行搶答 為學(xué)習(xí)今天的有理數(shù)除法先復(fù)習(xí)小學(xué)倒數(shù)概念

  探究活動(dòng)一 課件出示練習(xí)題

  填空:

 、 8÷(-2)=8×( );

 、 6÷(-3)=6×( );

 、 -6÷( )=-6× ;

  ④ -6÷( )=-6× 。

  教師強(qiáng)調(diào)0沒(méi)有倒數(shù)。 學(xué)生填空后試著得出互為倒數(shù)的.概念(乘積是1的兩個(gè)數(shù)互為倒數(shù))

  培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題總結(jié)問(wèn)題的能力

  探究活動(dòng)二 引例1 計(jì)算:(-6)÷2

  根據(jù)除法是乘法的逆運(yùn)算,引導(dǎo)學(xué)生 將有理數(shù)的除法運(yùn)算轉(zhuǎn)化為學(xué)生已知的乘法運(yùn)算。

  強(qiáng)調(diào)0不能作除數(shù)。(舉例強(qiáng)化已導(dǎo)出的法則) 學(xué)生自主探究有理數(shù)的除法運(yùn)算轉(zhuǎn)化為學(xué)生一致的乘法運(yùn)算

  學(xué)生歸納導(dǎo)出法則(一):除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù)

  小組合作交流探究發(fā)現(xiàn)結(jié)果

  探究活動(dòng)三

 。ㄅe例強(qiáng)化已導(dǎo)出的法則)

  例1計(jì)算(1)(-105)÷7[

 。2)6÷(-0.25)

  (3)(-0.09)÷(-0.3)

  教師強(qiáng)調(diào)(1)除法法則與乘法法則相近,只是“乘”“除”二字不同,很容易記。.(2)此法則是有理數(shù)的除法運(yùn)算的又一種 方法。

  學(xué)生自己觀察回憶,進(jìn)行自主學(xué)習(xí)和合作交流, 得出有理數(shù)的除法法則(兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘。0除以任何不等于0的數(shù)都得0)

  激發(fā)學(xué)生學(xué)習(xí)的積極性和主動(dòng)性滿足學(xué)生的表現(xiàn)欲和探究欲)

  強(qiáng)化練習(xí) 課本 例2計(jì)算 :

  (1)(- )÷(-6)÷(- )

 。2)( - )÷(- )

  學(xué)生試著獨(dú)立完成 有理數(shù)的除法法則的靈活應(yīng)用,并滲透了除法、分?jǐn)?shù)、比可互相轉(zhuǎn)化。

  反饋矯正

  課本69—70頁(yè)第1、2、3題 學(xué)生獨(dú)立完成并小組互評(píng) 鞏固法則,調(diào)動(dòng)學(xué)生積極性

  歸納小節(jié) 1、 學(xué)習(xí)內(nèi)容:倒數(shù)的概念及求法;有理數(shù)的除法

  2、 通過(guò)本節(jié)的學(xué)習(xí),你有哪些體會(huì)?請(qǐng)與同學(xué)交流。

  同學(xué)之間進(jìn)行交 流,小結(jié)本節(jié)內(nèi)容 培養(yǎng)了學(xué)生總結(jié)問(wèn)題的能力

  作業(yè)布置 必做題:課本70頁(yè)第1,3,4題

  選做題:若ab≠0,則 可能的取值是_______. 綜合考查,學(xué)以致用。 不同的學(xué)生得到不同的發(fā)展

  附:板書設(shè)計(jì)

  2.9 有理數(shù)的除法

  例1計(jì)算: 練習(xí)處:

  例2 計(jì)算:

  教學(xué)反思:

  《有理數(shù)的除法》一課是傳統(tǒng)內(nèi)容,在設(shè)計(jì)理念上,我努力體現(xiàn)“以學(xué)生為主”的思想,從學(xué)生已有的知識(shí)經(jīng)驗(yàn)出發(fā),展開(kāi)教學(xué),使學(xué)生自然進(jìn)入狀態(tài),一切都很順暢,達(dá)到了課前設(shè)計(jì)的構(gòu)想。在教學(xué)中,突出了學(xué)生在教學(xué)學(xué)習(xí)過(guò)程的主體地位,突出了 探索式學(xué)習(xí)方式,讓學(xué)生經(jīng)歷了觀察、實(shí)踐、猜測(cè)、推理、交流、反思等活力,既應(yīng)用了基本概念、基礎(chǔ)知識(shí)又鍛煉了學(xué)生能力 。

  在這節(jié)課中,本人認(rèn)為也有不足之處,由于學(xué)生的層次各異,在總結(jié)問(wèn)題時(shí),中等以下和學(xué)習(xí)有困難的學(xué)生明顯信心不足,要注意和他們交流、幫助他們把復(fù)雜的問(wèn)題化為簡(jiǎn)單的問(wèn)題。

【有理數(shù)除法教案】相關(guān)文章:

有理數(shù)的除法教案01-23

有理數(shù)乘法與除法的教案02-25

有理數(shù)的除法教案優(yōu)秀10-26

有理數(shù)的除法教案14篇03-21

有理數(shù)的除法教案(14篇)03-21

有理數(shù)除法說(shuō)課稿06-09

有理數(shù)的除法教學(xué)反思04-11

有理數(shù)除法說(shuō)課稿通用(5篇)06-09

《有理數(shù)的加法》教案02-25

《有理數(shù)的乘法》教案02-26