當前位置:育文網(wǎng)>教學文檔>教案> 圓的面積教案

圓的面積教案

時間:2022-02-06 18:27:52 教案 我要投稿

精選圓的面積教案4篇

  作為一名辛苦耕耘的教育工作者,就有可能用到教案,教案是教材及大綱與課堂教學的紐帶和橋梁。快來參考教案是怎么寫的吧!以下是小編為大家收集的圓的面積教案4篇,歡迎大家分享。

精選圓的面積教案4篇

圓的面積教案 篇1

  教材分析

  教材首先通過圓形草坪的實際情景提出圓面積的概念,使學生在舊知識的基礎上理解“圓的面積就是它所占平面的大小”。其次教材直接提出問題:能不能把圓轉化成已學過的圖形來計算面積?由于讓學生完全自主的探索如何把圓轉化成長方形是有很大難度,但是教材給出了提示,讓學生利用學具進行操作,在此基礎上讓學生發(fā)現(xiàn)院的面積與拼成的長方形面積的關系,圓的周長,半徑和長方形的長,寬的關系并推導出圓的面積計算公式,最后教材安排了例題,應用面積計算公式解決實際問題,已知直徑,先求出半徑,再求出面積。

  學情分析:

  1. 充分利用已學過的數(shù)學知識和教學思想方法進行教學。如,教學圓的面積的含義時,可以先讓學生回憶已學過的圖形面積的含義,并進行分析對比,使學生認識到它們的共同點都是指圖形所占平面的大小。

  2. 要充分利用直觀教具,讓學生在動手操作中自主探索,例如,教學圓面積計算公式的推導過程時,可以先讓學生把教材后面所附的圓形做成學具,在教師指導下,可以通過小組合作的方式,自行決定等分成多少份,自由的分一分,剪一剪,拼一拼。最后把拼成的加以比較,使學生看到。分的份數(shù)越多,每一份就會越細,拼成的圖形就會越近似于長方形。

  教學目標

  1.了解圓的面積的.含義,經(jīng)歷圓面積計算公式的推導過程,掌握圓的面積計算公式。

  2.能正確運用圓的面積公式計算圓的面積,并能運用圓面積的知識解決一些簡單的實際問題。

  3.在估一估和探究圓面積公式的活動中,體會“化曲為直”的思想,初步感受極限思想。

  教學重點和難點

  教學重點: 圓的面積公式的推導及應用公式計算

  教學難點:探究圓的面積公式的推導過程

圓的面積教案 篇2

  教學目標:

  1、使學生學會已知圓的周長求圓的面積的解題思路與方法,理解并學會環(huán)形面積。

  2、培養(yǎng)學生靈活、綜合運用知識的能力,運用所學的知識解決簡單的實際問題。

  3、培養(yǎng)學生的邏輯思維能力。

  教學重點:培養(yǎng)綜合運用知識的能力。

  教學難點:培養(yǎng)綜合運用知識的能力。

  教學過程:

  一、復習。

  1、口算:

  3242528292202

  267

  2、思考:

 。1)圓的周長和面積分別怎樣計算?二者有何區(qū)別?

 。2)求圓的'面積需要知道什么條件?

 。3)知道圓的周長能夠求它的面積嗎?

  二、新課。

  1、教學練習十六第3題

  小剛量得一棵樹干的周長是125.6cm,這棵樹干的橫截面積是多少?

  已知:c=125.6厘米s=r2

  r:125.6(23.14)3.14202

  =125.66.28=3.14400

  =20(厘米)=1256(平方厘米)

  答:這棵樹干的橫截面積1256平方厘米。

  3、教學環(huán)形面積。

 。1)例2光盤的銀色部分是個圓環(huán),內圓半徑是2cm,外圓半徑是6cm。它的面積是多少?

  已知:R=6厘米r=2厘米求:s=?

  3.14623.1422

  =3.1436=3.144

  =113.04(平方厘米)=12.56(平方厘米)

  113.04-12.56=100.48(平方厘米)

  第二種解法:3.14(62-22)=100.48(平方厘米)

 。2)小結:環(huán)形的面積計算公式:

  S=R2-r2或S=(R2-r2)

  (3)完成做一做:一個圓形環(huán)島的直徑是50m,中間是一個直徑為10m的圓形花壇,其他地方是草坪。草坪的占地面積是多少?

  三、鞏固練習。

  1、學校有個圓形花壇,周長是18.84米,花壇的面積是多少?

  選擇正確算式

  A、(18.843.142)23.14

  B、(18.843.14)23.14

  C、18.8423.14

  2、環(huán)形鐵片,外圈直徑20分米,內圓半徑7分米,環(huán)形鐵片的面積是多少?

  3、課堂小結。

 。1)這節(jié)課的學習內容是什么?

  (2)求圓的面積時題中給出的已知條件有幾種情況?怎樣求出圓面積?

  已知半徑求面積S=r2

  已知直徑求面積S=()2

  已知周長求面積S=()2

 。3)環(huán)形面積:S=(R2-r2)

  四、作業(yè)

  課本P70第4、6、7題。

  教學追記:

  本堂課,在我?guī)ьI著學生利用教具進行操作,在此基礎上,讓學生自主發(fā)現(xiàn)圓的面積與拼成長方形面積的關系,圓的周長、半徑和長方形的長、寬的關系,并推導出圓的面積計算公式。教學環(huán)形的面積計算時,我充分放手給學生,讓學生通過思考討論領悟出求環(huán)形的面積是用外圓面積減去內圓面積,并引導他們發(fā)現(xiàn)這兩種算法的一致性,同時提醒學生盡量使用簡便算法,減少計算量。

圓的面積教案 篇3

  小學數(shù)學第十一冊第四單元圓練習題

  一、填空。

  (1) 寫出下面各題的最簡整數(shù)比。

 、賵A的半徑和直徑的比是( ),圓的周長和直徑的比是( )。

 、谛A的半徑是4厘米,大圓的半徑是6厘米。小圓直徑和大圓直徑的比是( ),小圓周長和大圓周長的比是( ),小圓面積和大圓面積的比是( )。

  (2)把圓分成若干等份,然后把它剪開,可以拼成一個近似于長方形的圖形,這個長方形的長相當于圓的( ),長方形的寬相當于圓的( )。

  (3)圓的周長是37.68分米,它的面積是( )平方分米。

  (4)圓的半徑擴大3倍,它的面積就擴大()。

  (5)一個圓的周長、直徑和半徑相加的和是9.28厘米,這個圓的直徑是()厘米;面積是()。

  (6)在一個邊長為12厘米的正方形紙板里剪出一個最大的圓,剩下的面積是( )。

  (7)要在底面半徑是10厘米的圓柱形水桶外面打上一個鐵絲箍,接頭部分是6厘米,需用鐵絲( )厘米。

  (8)用圓規(guī)畫一個圓,如果圓規(guī)兩腳之間的距離是6厘米,畫出的這個圓的周長是( )厘米。這個圓的面積是( )平方厘米。

  7、用一根長12.56厘米的鐵絲圍成一個正方形,正方形的面積是()平方厘米;如果用這根鐵絲圍成一個圓,這個圓的面積是()平方厘米。

  二、判斷題。正確的畫“√”,錯的打“×”,并訂正。

  (1)在一個圓里,兩端都在圓上的線段叫做圓的直徑。( )

  (2)小圓半徑是大圓半徑的12 ,那么小圓周長也是大圓周長的12 。( )

  (3)小圓半徑是大圓半徑的12 ,那么小圓面積也是大圓面積的12 。( )

  (4)半圓的周長就是這個圓周長的一半。( )

  (5)求圓的周長,用字母表示就是C=πd或C=2πr。( )

  三、選擇題。將正確答案的序號填在括號里。(8%)

 。1)畫圓時,固定的一點叫()。

  ① 頂點② 圓心 ③ 字母O

 。2)從圓心到圓上任意一點的()叫做半徑。

 、 直線② 射線 ③ 線段

 。3)周長相等的圖形中,面積最大的是()。

 、 圓 ②正方形③長方形

  (4)圓周率表示()

 、 圓的周長②圓的面積與直徑的倍數(shù)關系 ③圓的周長與直徑的倍數(shù)關系

  (5)半徑為r的圓面積等于()。

 、 πr2 ② 2πr2 ③πd

 。6)圓的直徑長度決定圓的()。

 、 位置② 大小 ③ 形狀

 。7)圓的半徑擴大3倍,它的面積就擴大()。

 、 3倍 ② 6倍 ③ 9倍

  (8)已知圓的周長是106.76分米,圓的半徑是()。

 、 17分米②8.5分米 ③ 34分米

  四、應用題。

  (1)一個大廳里掛有一只大鐘,它的分針長40厘米。這根分針的針尖1天轉動多少厘米?

  (2)一個大廳里掛有一只大鐘,它的時針長35厘米。這根時針的針尖1天轉動多少厘米?

  (3)小明騎的自行車車輪直徑是70厘米,每分鐘轉100周,從家到學校有1300米,小明大約要騎幾分鐘?(得數(shù)保留整數(shù))

  (4)一個農(nóng)民新開挖一個圓形水池,水池的周長是50.24米,求水池占地的面積是多少平方米?

  (5)一張長方形紙片,長60厘米,寬40厘米。用這張紙剪下一個盡可能大的圓。剩下的面積是多少平方厘米?

  (6)一個環(huán)形鐵片,內圓半徑是8厘米,外圓半徑是10厘米,這個環(huán)形鐵片的面積是多少?

  (7)公園里有一個圓形花壇,周長50.24米,在它的周圍有一條寬1米的小路,小路的面積是多少平方米?

  (8)學校操場(如左圖,單位:米),操場的周長是多少米?面積是多少平方米?

  小學數(shù)學六年級(上冊)圓測試題 (上)

  一、填空

  1、( )決定圓的.大小,( )決定圓的位置。

  2、圓是( )圖形,它有( )條對稱軸,( )是圓的對稱軸,

  3、( )是圓中最長的線段。

  4、一個圓周長擴大4倍,半徑擴大( )倍,直徑擴大()倍,面積擴大()倍。

  5、大圓的半徑等于小圓的直徑,那么大圓的面積是小圓面積的( )倍。

  6、圓的周長公式是( )或( ),圓的面積公式是( ),半圓形的周長公式( ),圓周長的一半公式是( )

  7、周長相等的長方形,正方形,圓。( )的面積最大,()的面積最小。

  8、π,3.14,3.1414,0.314,31.4,從小到大排列是()。

  9、圓的周長總是直徑()倍,是半徑的( )倍。

  10、畫出一個圓的周長是18.84厘米,那么圓規(guī)兩腳間的距離是( )。

  11、在同一個圓里,直徑和半徑的關系用字母表示是()。

  12、一個半圓,半徑是r,它的周長是( )。

  二、判斷

  1、直徑是半徑的2倍。

  2、兩端都在圓上的線段,叫半徑。

  3、半徑是2厘米的圓周長和面積相等。

  4、將一個圓通過切拼,轉化成一個長方形,面積和周長沒有變化。

  5、如果圓的直徑是d,它的面積是 πd2 。

  6、圓周率就是3.14

  7、半圓形的周長就是圓周長的一半。

  8、直徑是圓的對稱軸。

  9、一個圓的面積和一個正方形的面積相等,它們的周長也相等

  10、半圓形的面積就是圓面積的一半

  三、應用

  1、 一個圓形水池,直徑是20米,在水池周圍圍一圈柵欄,再在水池外圍修一條寬4米的環(huán)形小路。

  (1)、柵欄的長度是多少?

 。2)、這條小路的面積是多少?

  2、 一根12.96 米的繩子,繞樹10圈還長0.4米,樹干橫截面的面積是多少?

  3、一輛自行車輪胎外直徑是80厘米,如果平均每分鐘轉動200圈,它要通過一座長1500米的橋,大約需要多少分鐘?(得數(shù)保留整數(shù))

  4、一張長方形紙片,長4厘米,寬2厘米,要用它剪一個最大的半圓,這個半圓面積是多少,周長是多少,剩下的紙片的周長是多少?面積是多少?

  5、 一個圓的周長是6280米,半徑增加1厘米,面積增加了多少平米?

  6、 一只掛鐘的時針長8厘米,針尖一晝夜走過的路程是多少厘米?

  7、 一只掛鐘的分針長8厘米,針尖一晝夜走過的路程是多少厘米?掃過的面積是多少?

  8、 一只掛鐘的分針長8厘米,經(jīng)過15分鐘分針走過的路程是多少?掃過的面積是多少?

  9、 一只掛鐘的分針長8厘米,從2時到5時,分針尖端走過的路程是多少?

  10一個半圓的周長是10.28厘米,這個半圓的半徑是多少,面積是多少?

  11、 一臺壓路機前輪直徑是10分米,長是15分米,這臺壓路機的前輪滾動一圈,壓過的路長是多少?壓過路面的面積是多少米?

  12、一座圓形游泳池,劉星沿著游泳池走了一圈,一共是628步,他每步的長約是0.6米。這個游泳池占地面積是多少?

圓的面積教案 篇4

  【教學內容】

  《義務教育課程標準實驗教科書·數(shù)學》六年級上冊第69~71例1、例2。

  【教學目標】

  1.學生通過觀察、操作、分析和討論,推導出圓的面積公式。

  2.能夠利用公式進行簡單的面積計算。

  3.滲透轉化思想,初步了解極限思想,培養(yǎng)學生的觀察能力和動手操作能力。

  【教、學具準備】

  1.CAI課件;

  2.把圓8等分、16等分和32等分的硬紙板若干個;

  3.剪刀若干把。

  【教學過程】

  一、嘗試轉化,推導公式

  1.確定“轉化”的策略。

  師:同學們,你們想一想,當我們還不會計算平行四邊形的面積的時候,是利用什么方法推導出了平行四邊形的面積計算公式呢?

  預設:

  引導學生明確:我們是用“割補法”將平行四邊形轉化成長方形的方法推導出了平行四邊形的面積計算公式。

  師:同學們再想想,我們又是怎樣推導出三角形的面積計算公式的呢?

  師:對了,我們將平行四邊形、三角形“轉化”成其它圖形的`方法來推導出它們的面積計算公式。

  2.嘗試“轉化”。

  師:那么,怎樣才能把圓形轉化為我們已學過的其它圖形呢?(板書課題:圓的面積)

  請大家看屏幕(利用課件演示),老師先給大家一點提示。

【圓的面積教案】相關文章:

圓的面積教案03-23

《圓的面積》教案03-06

圓的面積教案09-20

數(shù)學圓的面積教案02-16

人教版圓的面積教案02-19

【熱】圓的面積教案03-31

圓的面積教案10篇01-24

圓的面積教案六篇02-12

圓的面積教案三篇01-20

《圓的面積》數(shù)學教案03-18