當前位置:育文網(wǎng)>教學文檔>教案> 因式分解教案

因式分解教案

時間:2022-02-19 03:56:31 教案 我要投稿

關于因式分解教案7篇

  在教學工作者實際的教學活動中,常常需要準備教案,借助教案可以恰當?shù)剡x擇和運用教學方法,調(diào)動學生學習的積極性。那么優(yōu)秀的教案是什么樣的呢?下面是小編為大家收集的因式分解教案7篇,希望能夠幫助到大家。

關于因式分解教案7篇

因式分解教案 篇1

  教學目標:

  1、進一步鞏固因式分解的概念;

  2、鞏固因式分解常用的三種方法

  3、選擇恰當?shù)姆椒ㄟM行因式分解4、應用因式分解來解決一些實際問題

  5、體驗應用知識解決問題的樂趣

  教學重點:靈活運用因式分解解決問題

  教學難點:靈活運用恰當?shù)囊蚴椒纸獾姆椒,拓展練?、3

  教學過程:

  一、創(chuàng)設情景:若a=101,b=99,求a2—b2的值

  利用因式分解往往能將一些復雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

  二、知識回顧

  1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式。

  判斷下列各式哪些是因式分解?(讓學生先思考,教師提問講解,讓學生明確因式分解的概念以及與乘法的關系)

  (1)、x2—4y2=(x+2y)(x—2y)因式分解(2)。2x(x—3y)=2x2—6xy整式乘法

  (3)、(5a—1)2=25a2—10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解

  (5)、(a—3)(a+3)=a2—9整式乘法(6)。m2—4=(m+4)(m—4)因式分解

  (7)、2πR+2πr=2π(R+r)因式分解

  2、規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程。

  分解因式要注意以下幾點:

 。1)。分解的對象必須是多項式。

  (2)。分解的結(jié)果一定是幾個整式的乘積的形式。

 。3)。要分解到不能分解為止。

  3、因式分解的方法

  提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法

  公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2

  4、強化訓練

  教學引入

  師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形,F(xiàn)在請同學們拿出一個長方形紙條,按動畫所示進行折疊處理。

  動畫演示:

  場景一:正方形折疊演示

  師:這就是我們得到的正方形。下面請同學們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對角線之間的關系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。

  [學生活動:各自測量。]

  鼓勵學生將測量結(jié)果與鄰近同學進行比較,找出共同點。

  講授新課

  找一兩個學生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。

  動畫演示:

  場景二:正方形的性質(zhì)

  師:這些性質(zhì)里那些是矩形的性質(zhì)?

  [學生活動:尋找矩形性質(zhì)。]

  動畫演示:

  場景三:矩形的性質(zhì)

  師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。

  [學生活動;尋找菱形性質(zhì)。]

  動畫演示:

  場景四:菱形的性質(zhì)

  師:這說明正方形具有矩形和菱形的全部性質(zhì)。

  及時提出問題,引導學生進行思考。

  師:根據(jù)這些性質(zhì),我們能不能給正方形下一個定義?怎么樣給正方形下一個準確的定義?

  [學生活動:積極思考,有同學做躍躍欲試狀。]

  師:請同學們回想矩形與菱形的.定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。

  學生應能夠向出十種左右的定義方式,其余作相應鼓勵,把以下三種板書:

  “有一組鄰邊相等的矩形叫做正方形!

  “有一個角是直角的菱形叫做正方形。”

  “有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形!

  [學生活動:討論這三個定義正確不正確?三個定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]

  師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關系梳理一下。

  試一試把下列各式因式分解:

 。1)。1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2

 。3)。4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y)

  三、例題講解

  例1、分解因式

 。1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x)

 。3)(4)y2+y+

  例2、分解因式

  1、a3—ab2=2、(a—b)(x—y)—(b—a)(x+y)=3、(a+b)2+2(a+b)—15=

  4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y=

  例3、分解因式

  1、72—2(13x—7)22、8a2b2—2a4b—8b3

  四、知識應用

  1、(4x2—9y2)÷(2x+3y)2、(a2b—ab2)÷(b—a)

  3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)2

  4、。若x=—3,求20x2—60x的值。5、1993—199能被200整除嗎?還能被哪些整數(shù)整除?

  五、拓展應用

  1。計算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235)

  2、20042+20xx被20xx整除嗎?

  3、若n是整數(shù),證明(2n+1)2—(2n—1)2是8的倍數(shù)。

  五、課堂小結(jié)

  今天你對因式分解又有哪些新的認識?

因式分解教案 篇2

  學習目標

  1、了解因式分解的意義以及它與正式乘法的關系。

  2、能確定多項式各項的公因式,會用提公因式法分解因式。

  學習重點:能用提公因式法分解因式。

  學習難點:確定因式的公因式。

  學習關鍵,在確定多項式各項公因式時,應抓住各項的公因式來提公因式。

  學習過程

  一.知識回顧

  1、計算

  (1)、n(n+1)(n-1)(2)、(a+1)(a-2)

  (3)、m(a+b)(4)、2ab(x-2y+1)

  二、自主學習

  1、閱讀課文P72-73的內(nèi)容,并回答問題:

  (1)知識點一:把一個多項式化為幾個整式的__________的形式叫做____________,也叫做把這個多項式__________。

  (2)、知識點二:由m(a+b+c)=ma+mb+mc可得

  ma+mb+mc=m(a+b+c)

  我們來分析一下多項式ma+mb+mc的特點;它的每一項都含有一個相同的因式m,m叫做各項的_________。如果把這個_________提到括號外面,這樣

  ma+mb+mc就分解成兩個因式的積m(a+b+c),即ma+mb+mc=m(a+b+c)。這種________的方法叫做________。

  2、練一練。P73練習第1題。

  三、合作探究

  1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一種變形,左邊是幾個整式乘積形式,右邊是一個多項式。、

  2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一種變形,左邊是_____________,右邊是_____________。

  3、下列是由左到右的變形,哪些屬于整式乘法,哪些屬于因式分解?

  (1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)

  (3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-1

  4、準確地確定公因式時提公因式法分解因式的'關鍵,確定公因式可分兩步進行:

  (1)確定公因式的數(shù)字因數(shù),當各項系數(shù)都是整數(shù)時,他們的最大公約數(shù)就是公因式的數(shù)字因數(shù)。

  例如:8a2b-72abc公因式的數(shù)字因數(shù)為8。

  (2)確定公因式的字母及其指數(shù),公因式的字母應是多項式各項都含有的字母,其指數(shù)取最低的。故8a2b-72abc的公因式是8ab

  四、展示提升

  1、填空(1)a2b-ab2=ab(________)

  (2)-4a2b+8ab-4b分解因式為__________________

  (3)分解因式4x2+12x3+4x=__________________

  (4)__________________=-2a(a-2b+3c)

  2、P73練習第2題和第3題

  五、達標測試。

  1、下列各式從左到右的變形中,哪些是整式乘法?哪些是因式分解?哪些兩者都不是?

  (1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)

  (3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)

  (5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-4

  2.課本P77習題8.5第1題

  學習反思

  一、知識點

  二、易錯題

  三、你的困惑

因式分解教案 篇3

  教學目標:

  1、進一步鞏固因式分解的概念; 2、鞏固因式分解常用的三種方法

  3、選擇恰當?shù)姆椒ㄟM行因式分解 4、應用因式分解來解決一些實際問題

  5、體驗應用知識解決問題的樂趣

  教學重點:靈活運用因式分解解決問題

  教學難點:靈活運用恰當?shù)囊蚴椒纸獾姆椒,拓展練?、3

  教學過程:

  一、創(chuàng)設情景:若a=101,b=99,求a2-b2的值

  利用因式分解往往能將一些復雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

  二、知識回顧

  1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.

  判斷下列各式哪些是因式分解?(讓學生先思考,教師提問講解,讓學生明確因式分解的概念以及與乘法的關系)

  (1).x2-4y2=(x+2y)(x-2y) 因式分解 (2).2x(x-3y)=2x2-6xy 整式乘法

  (3).(5a-1)2=25a2-10a+1 整式乘法 (4).x2+4x+4=(x+2)2 因式分解

  (5).(a-3)(a+3)=a2-9 整式乘法 (6).m2-4=(m+4)(m-4) 因式分解

  (7).2πR+2πr=2π(R+r) 因式分解

  2、.規(guī)律總結(jié)(教師講解): 分解因式與整式乘法是互逆過程.

  分解因式要注意以下幾點: (1).分解的對象必須是多項式.

  (2).分解的結(jié)果一定是幾個整式的乘積的形式. (3).要分解到不能分解為止.

  3、因式分解的.方法

  提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1) 公因式的概念;公因式的求法

  公式法: 平方差公式:a2-b2=(a+b)(a-b) 完全平方公式:a2+2ab+b2=(a+b)2

  4、強化訓練

  試一試把下列各式因式分解:

  (1).1-x2=(1+x)(1-x) (2).4a2+4a+1=(2a+1)2

  (3).4x2-8x=4x(x-2) (4).2x2y-6xy2 =2xy(x-3y)

  三、例題講解

  例1、分解因式

  (1)-x3y3+x2y+xy (2)6(x-2)+2x(2-x)

  (3) (4)y2+y+例2、分解因式

  1、a3-ab2= 2、(a-b)(x-y)-(b-a)(x+y)= 3、(a+b) 2+2(a+b)-15=

  4、-1-2a-a2= 5、x2-6x+9-y2 6、x2-4y2+x+2y=

  例3、分解因式

  1、72-2(13x-7) 2 2、8a2b2-2a4b-8b3

  三、知識應用

  1、(4x2-9y2)÷(2x+3y) 2、(a2b-ab2)÷(b-a)

  3、解方程:(1)x2=5x (2) (x-2)2=(2x+1)2

  4、.若x=-3,求20x2-60x的值. 5、1993-199能被200整除嗎?還能被哪些整數(shù)整除?

  四、拓展應用

  1.計算:7652×17-2352×17 解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)

  2、20042+20xx被20xx整除嗎?

  3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).

  五、課堂小結(jié):今天你對因式分解又有哪些新的認識?

因式分解教案 篇4

  教學目標

  1、 會運用因式分解進行簡單的多項式除法。

  2、 會運用因式分解解簡單的方程。

  二、教學重點與難點教學重點:

  教學重點

  因式分解在多項式除法和解方程兩方面的應用。

  教學難點:

  應用因式分解解方程涉及較多的推理過程。

  三、教學過程

  (一)引入新課

  1、 知識回顧(1) 因式分解的幾種方法: ①提取公因式法: ma+mb=m(a+b) ②應用平方差公式: = (a+b) (a—b)③應用完全平方公式:a 2ab+b =(ab) (2) 課前熱身: ①分解因式:(x +4) y — 16x y

  (二)師生互動,講授新課

  1、運用因式分解進行多項式除法例1 計算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3

  一個小問題 :這里的x能等于3/2嗎 ?為什么?

  想一想:那么(4x —9) (3—2x) 呢?練習:課本P162課內(nèi)練習

  合作學習

  想一想:如果已知 ( )( )=0 ,那么這兩個括號內(nèi)應填入怎樣的數(shù)或代數(shù)式子才能夠滿足條件呢? (讓學生自己思考、相互之間討論。┦聦嵣希鬉B=0 ,則有下面的結(jié)論:(1)A和B同時都為零,即A=0,且B=0(2)A和B中有一個為零,即A=0,或B=0

  試一試:你能運用上面的結(jié)論解方程(2x+1)(3x—2)=0 嗎?3、 運用因式分解解簡單的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0則x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 則3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一個未知數(shù)的方程的解也叫做根,當方程的根多于一個時,常用帶足標的字母表示,比如:x1 ,x2

  等練習:課本P162課內(nèi)練習2

  做一做!對于方程:x+2=(x+2) ,你是如何解該方程的,方程左右兩邊能同時除以(x+2)嗎?為什么?

  教師總結(jié):運用因式分解解方程的基本步驟(1)如果方程的`右邊是零,那么把左邊分解因式,轉(zhuǎn)化為解若干個一元一次方程;(2)如果方程的兩邊都不是零,那么應該先移項,把方程的右邊化為零以后再進行解方程;遇到方程兩邊有公因式,同樣需要先進行移項使右邊化為零,切忌兩邊同時除以公因式!4、知識延伸解方程:(x +4) —16x =0解:將原方程左邊分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接著繼續(xù)解方程,5、 練一練 ①已知 a、b、c為三角形的三邊,試判斷 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c為三角形的三邊 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑戰(zhàn)極限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx

  (三)梳理知識,總結(jié)收獲因式分解的兩種應用:

  (1)運用因式分解進行多項式除法

 。2)運用因式分解解簡單的方程

  (四)布置課后作業(yè)

  作業(yè)本6、42、課本P163作業(yè)題(選做)

因式分解教案 篇5

  教學目標:

  1.知識與技能:掌握運用提公因式法、公式法分解因式,培養(yǎng)學生應用因式分解解決問題的能力.

  2.過程與方法:經(jīng)歷探索因式分解方法的過程,培養(yǎng)學生研討問題的方法,通過猜測、推理、驗證、歸納等步驟,得出因式分解的方法.

  3.情感態(tài)度與價值觀:通過因式分解的學習,使學生體會數(shù)學美,體會成功的自信和團結(jié)合作精神,并體會整體數(shù)學思想和轉(zhuǎn)化的數(shù)學思想.

  教學重、難點:用提公因式法和公式法分解因式.

  教具準備:多媒體課件(小黑板)

  教學方法:活動探究法

  教學過程:

  引入:在整式的變形中,有時需要將一個多項式寫成幾個整式的乘積的形式,這種變形就是因式分解.什么叫因式分解?

  知識詳解

  知識點1 因式分解的定義

  把一個多項式化成幾個整式的.積的形式,這種變形叫做把這個多項式因式分解,也叫做把這個多項式分解因式.

  【說明】 (1)因式分解與整式乘法是相反方向的變形.

  例如:

  (2)因式分解是恒等變形,因此可以用整式乘法來檢驗.

  怎樣把一個多項式分解因式?

  知識點2 提公因式法

  多項式ma+mb+mc中的各項都有一個公共的因式m,我們把因式m叫做這個多項式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成兩個因式乘積的形式,其中一個因式是各項的公因式m,另一個因式(a+b+c)是ma+mb+mc除以m所得的商,像這種分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).

  探究交流

  下列變形是否是因式分解?為什么?

  (1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;

  (3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.

  典例剖析 師生互動

  例1 用提公因式法將下列各式因式分解.

  (1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);

  分析:(1)題直接提取公因式分解即可,(2)題首先要適當?shù)淖冃? 再把b-a化成-(a-b),然后再提取公因式.

  小結(jié) 運用提公因式法分解因式時,要注意下列問題:

  (1)因式分解的結(jié)果每個括號內(nèi)如有同類項要合并,而且每個括號內(nèi)不能再分解.

  (2)如果出現(xiàn)像(2)小題需統(tǒng)一時,首先統(tǒng)一,盡可能使統(tǒng)一的個數(shù)少。這時注意到(a-b)n=(b-a)n(n為偶數(shù)).

  (3)因式分解最后如果有同底數(shù)冪,要寫成冪的形式.

  學生做一做 把下列各式分解因式.

  (1) (2a+b)(2a-3b)+(2a+5b)(2a+b) ;(2) 4p(1-q)3+2(q-1)2

  知識點3 公式法

  (1)平方差公式:a2-b2=(a+b)(a-b).即兩個數(shù)的平方差,等于這兩個數(shù)的和與這個數(shù)的差的積.例如:4x2-9=(2x)2-32=(2x+3)(2x-3).

  (2)完全平方公式:a2±2ab+b2=(a±b)2.其中,a2±2ab+b2叫做完全平方式.即兩個數(shù)的平方和加上(或減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或差)的平方.例如:4x2-12xy+9y2=(2x)2-2·2x·3y+(3y)2=(2x-3y)2.

  探究交流

  下列變形是否正確?為什么?

  (1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x-1=(x-1)2.

  例2 把下列各式分解因式.

  (1) (a+b)2-4a2;(2)1-10x+25x2;(3)(m+n)2-6(m+n)+9.

  分析:本題旨在考查用完全平方公式分解因式.

  學生做一做 把下列各式分解因式.

  (1)(x2+4)2-2(x2+4)+1; (2)(x+y)2-4(x+y-1).

  綜合運用

  例3 分解因式.

  (1)x3-2x2+x; (2) x2(x-y)+y2(y-x);

  分析:本題旨在考查綜合運用提公因式法和公式法分解因式.

  小結(jié) 解因式分解題時,首先考慮是否有公因式,如果有,先提公因式;如果沒有公因式是兩項,則考慮能否用平方差公式分解因式. 是三項式考慮用完全平方式,最后,直到每一個因式都不能再分解為止.

  探索與創(chuàng)新題

  例4 若9x2+kxy+36y2是完全平方式,則k= .

  分析:完全平方式是形如:a2±2ab+b2即兩數(shù)的平方和與這兩個數(shù)乘積的2倍的和(或差).

  學生做一做 若x2+(k+3)x+9是完全平方式,則k= .

  課堂小結(jié)

  用提公因式法和公式法分解因式,會運用因式分解解決計算問題.

  各項有"公"先提"公",首項有負常提負,某項提出莫漏"1",括號里面分到"底"。

  自我評價 知識鞏固

  1.若x2+2(m-3)x+16是完全平方式,則m的值等于( )

  A.3 B.-5 C.7. D.7或-1

  2.若(2x)n-81=(4x2+9)(2x+3)(2x-3),則n的值是( )

  A.2 B.4 C.6 D.8

  3.分解因式:4x2-9y2= .

  4.已知x-y=1,xy=2,求x3y-2x2y2+xy3的值.

  5.把多項式1-x2+2xy-y2分解因式

  思考題 分解因式(x4+x2-4)(x4+x2+3)+10.

因式分解教案 篇6

  知識點:

  因式分解定義,提取公因式、應用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。

  教學目標:

  理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。

  考查重難點與常見題型:

  考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點考查的分式提取公因式、應用公式法、分組分解法及它們的綜合運用。習題類型以填空題為多,也有選擇題和解答題。

  教學過程:

  因式分解知識點

  多項式的因式分解,就是把一個多項式化為幾個整式的積。分解因式要進行到每一個因式都不能再分解為止。分解因式的常用方法有:

  (1)提公因式法

  如多項式

  其中m叫做這個多項式各項的公因式, m既可以是一個單項式,也可以是一個多項式。

 。2)運用公式法,即用

  寫出結(jié)果。

 。3)十字相乘法

  對于二次項系數(shù)為l的'二次三項式 尋找滿足ab=q,a+b=p的a,b,如有,則對于一般的二次三項式尋找滿足

  a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則

 。4)分組分解法:把各項適當分組,先使分解因式能分組進行,再使分解因式在各組之間進行。

  分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。

 。5)求根公式法:如果有兩個根X1,X2,那么

  2、教學實例:學案示例

  3、課堂練習:學案作業(yè)

  4、課堂:

  5、板書:

  6、課堂作業(yè):學案作業(yè)

  7、教學反思:

因式分解教案 篇7

  教學目標:

  1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式綜合應用;能利用平方差公式法解決實際問題。

  2、經(jīng)歷探究分解因式方法的過程,體會整式乘法與分解因式之間的聯(lián)系。

  3、通過對公式的探究,深刻理解公式的應用,并會熟練應用公式解決問題。

  4、通過探究平方差公式特點,學生根據(jù)公式自己取值設計問題,并根據(jù)公式自己解決問題的過程,讓學生獲得成功的體驗,培養(yǎng)合作交流意識。

  教學重點:

  應用平方差公式分解因式.

  教學難點:

  靈活應用公式和提公因式法分解因式,并理解因式分解的要求.

  教學過程:

  一、復習準備 導入新課

  1、什么是因式分解?判斷下列變形過程,哪個是因式分解?

  ①(x+2)(x-2)= ②

 、

  2、我們已經(jīng)學過的因式分解的方法有什么?將下列多項式分解因式。

  x2+2x

  a2b-ab

  3、根據(jù)乘法公式進行計算:

  (1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=

  二、合作探究 學習新知

  (一) 猜一猜:你能將下面的多項式分解因式嗎?

  (1)= (2)= (3)=

  (二)想一想,議一議: 觀察下面的公式:

 。剑╝+b)(a—b)(

  這個公式左邊的多項式有什么特征:_____________________________________

  公式右邊是__________________________________________________________

  這個公式你能用語言來描述嗎? _______________________________________

  (三)練一練:

  1、下列多項式能否用平方差公式來分解因式?為什么?

 、 ② ③ ④

  2、你能把下列的數(shù)或式寫成冪的形式嗎?

  (1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2

 。ㄋ模┳鲆蛔觯

  例3 分解因式:

  (1) 4x2- 9 (2) (x+p)2- (x+q)2

  (五)試一試:

  例4 下面的.式子你能用什么方法來分解因式呢?請你試一試。

  (1) x4- y4 (2) a3b- ab

  (六)想一想:

  某學校有一個邊長為85米的正方形場地,現(xiàn)在場地的四個角分別建一個邊長為5米的正方形花壇,問場地還剩余多大面積供學生課間活動使用?

【因式分解教案】相關文章:

因式分解教案04-02

因式分解復習教案09-06

精選因式分解教案3篇02-07

【精選】因式分解教案4篇02-09

因式分解教案8篇01-03

精選因式分解教案四篇03-03

初中數(shù)學因式分解教案12-13

初中數(shù)學因式分解教案03-01

因式分解教案(15篇)04-02

精選因式分解教案三篇02-01