當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教案> 因式分解教案

因式分解教案

時(shí)間:2023-04-02 08:21:49 教案 我要投稿
  • 相關(guān)推薦

因式分解教案

  作為一位優(yōu)秀的人民教師,常常要寫一份優(yōu)秀的教案,教案是實(shí)施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。我們?cè)撛趺慈懡贪改?以下是小編精心整理的因式分解教案,希望能夠幫助到大家?/p>

因式分解教案

因式分解教案1

  教學(xué)目標(biāo):運(yùn)用平方差公式和完全平方公式分解因式,能說(shuō)出平方差公式和完全平方公式的特點(diǎn),會(huì)用提公因式法與公式法分解因式.培養(yǎng)學(xué)生的觀察、聯(lián)想能力,進(jìn)一步了解換元的思想方法.并能說(shuō)出提公因式在這類因式分解中的作用,能靈活應(yīng)用提公因式法、公式法分解因式以及因式分解的標(biāo)準(zhǔn).

  教學(xué)重點(diǎn)和難點(diǎn):1.平方差公式;2.完全平方公式;3.靈活運(yùn)用3種方法.

  教學(xué)過(guò)程:

  一、提出問(wèn)題,得到新知

  觀察下列多項(xiàng)式:x24和y225

  學(xué)生思考,教師總結(jié):

  (1)它們有兩項(xiàng),且都是兩個(gè)數(shù)的.平方差;(2)會(huì)聯(lián)想到平方差公式.

  公式逆向:a2b2=(a+b)(ab)

  如果多項(xiàng)式是兩數(shù)差的形式,并且這兩個(gè)數(shù)又都可以寫成平方的形式,那么這個(gè)多項(xiàng)式可以運(yùn)用平方差公式分解因式.

  二、運(yùn)用公式

  例1:填空

  ①4a2=()2②b2=()2③0.16a4=()2

 、1.21a2b2=()2⑤2x4=()2⑥5x4y2=()2

  解答:①4a2=(2a)2;②b2=(b)2③0.16a4=(0.4a2)2

 、1.21a2b2=(1.1ab)2⑤2x4=(x2)2⑥5x4y2=(x2y)2

  例2:下列多項(xiàng)式能否用平方差公式進(jìn)行因式分解

  ①1.21a2+0.01b2②4a2+625b2③16x549y4④4x236y2

  解答:①1.21a2+0.01b2能用

 、4a2+625b2不能用

  ③16x549y4不能用

 、4x236y2不能用

因式分解教案2

  學(xué)習(xí)目標(biāo)

  1、學(xué)會(huì)用公式法因式法分解

  2、綜合運(yùn)用提取公式法、公式法分解因式

  學(xué)習(xí)重難點(diǎn)重點(diǎn):

  完全平方公式分解因式。

  難點(diǎn):綜合運(yùn)用兩種公式法因式分解

  自學(xué)過(guò)程設(shè)計(jì)

  完全平方公式:

  完全平方公式的逆運(yùn)用:

  做一做:

  1.(1)16x2-8x+_______=(4x-1)2;

  (2)_______+6x+9=(x+3)2;

  (3)16x2+_______+9y2=(4x+3y)2;

  (4)(a-b)2-2(a-b)+1=(______-1)2.

  2.在代數(shù)式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號(hào))

  3.下列因式分解正確的是( )

  A.x2+y2=(x+y)2 B.x2-xy+x2=(x-y)2

  C.1+4x-4x2=(1-2x)2 D.4-4x+x2=(x-2)2

  4.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+1

  5.計(jì)算:20062-40102006+20052=___________________。

  6.若x+y=1,則x2+xy+ y2的值是_________________。

  想一想

  你還有哪些地方不是很懂?請(qǐng)寫出來(lái)。

  ____________________________________________________________________________________預(yù)習(xí)展示一:

  1.判別下列各式是不是完全平方式。

  2、把下列各式因式分解:

  (1)-x2+4xy-4y2

  (2)3ax2+6axy+3ay2

  (3)(2x+y)2-6(2x+y)+9

  應(yīng)用探究:

  1、用簡(jiǎn)便方法計(jì)算

  49.92+9.98 +0.12

  拓展提高:

  (1)( a2+b2)( a2+b2 10)+25=0求a2+b2

  (2)4x2+y2-4xy-12x+6y+9=0

  求x、y關(guān)系

  (3)分解因式:m4+4

  教后反思

  考察利用公式法因式分解的題目不會(huì)很難,但是需要學(xué)生記住公式的形式,之后利用公式把式子進(jìn)行變形,從而達(dá)到進(jìn)行因式分解的目的.,但是這里有用到實(shí)際中去的例子,對(duì)學(xué)生來(lái)說(shuō)會(huì)難一些。

因式分解教案3

  第十五章 整式的乘除與因式分解

  根據(jù)定義,我們不難得出a+b+c、t-5、3x+5+2z、 ab-3.12r2、x2+2x+18都是多項(xiàng)式.請(qǐng)分別指出它們的項(xiàng)和次數(shù).

  15.1.2 整式的加減

 。3)x-(1-2x+x2)+(-1-x2) (4)(8x-3x2)-5x-2(3x-2x2)

  四、提高練習(xí):

  1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,問(wèn)C是什么樣的多項(xiàng)式?

  2、設(shè)A=2x2-3x+2-x+2,B=4x2-6x+22-3x-,若│x-2a│+(+3)2=0,且B-2A=a,求A的值。

  3、已知有理數(shù)a、b、c在數(shù)軸上(0為數(shù)軸原點(diǎn))的.對(duì)應(yīng)點(diǎn)如圖:

  試化簡(jiǎn):│a│-│a+b│+│c-a│+│b+c│

  小 結(jié):要善于在圖形變化中發(fā)現(xiàn)規(guī)律,能熟練的對(duì)整式加減進(jìn)行運(yùn)算。

  作 業(yè):課本P14習(xí)題1.3:1(2)、(3)、(6),2。

  《課堂感悟與探究》

因式分解教案4

  教學(xué)設(shè)計(jì)思想:

  本小節(jié)依次介紹了平方差公式和完全平方公式,并結(jié)合公式講授如何運(yùn)用公式進(jìn)行多項(xiàng)式的因式分解。第一課時(shí)的內(nèi)容是用平方差公式對(duì)多項(xiàng)式進(jìn)行因式分解,首先提出新問(wèn)題:x2-4與y2-25怎樣進(jìn)行因式分解,讓學(xué)生自主探索,通過(guò)整式乘法的平方差公式,逆向得出用公式法分解因式的方法,發(fā)展學(xué)生的逆向思維和推理能力,然后讓學(xué)生獨(dú)立去做例題、練習(xí)中的題目,并對(duì)結(jié)果通過(guò)展示、解釋、相互點(diǎn)評(píng),達(dá)到能較好的運(yùn)用平方差公式進(jìn)行因式分解的目的。第二課時(shí)利用完全平方公式進(jìn)行多項(xiàng)式的因式分解是在學(xué)生已經(jīng)學(xué)習(xí)了提取公因式法及利用平方差公式分解因式的基礎(chǔ)上進(jìn)行的,因此在教學(xué)設(shè)計(jì)中,重點(diǎn)放在判斷一個(gè)多項(xiàng)式是否為完全平方式上,采取啟發(fā)式的教學(xué)方法,引導(dǎo)學(xué)生積極思考問(wèn)題,從中培養(yǎng)學(xué)生的思維品質(zhì)。

  教學(xué)目標(biāo)

  知識(shí)與技能:

  會(huì)用平方差公式對(duì)多項(xiàng)式進(jìn)行因式分解;

  會(huì)用完全平方公式對(duì)多項(xiàng)式進(jìn)行因式分解;

  能夠綜合運(yùn)用提公因式法、平方差公式、完全平方公式對(duì)多項(xiàng)式進(jìn)行因式分解;

  提高全面地觀察問(wèn)題、分析問(wèn)題和逆向思維的能力。

  過(guò)程與方法:

  經(jīng)歷用公式法分解因式的探索過(guò)程,進(jìn)一步體會(huì)這兩個(gè)公式在因式分解和整式乘法中的.不同方向,加深對(duì)整式乘法和因式分解這兩個(gè)相反變形的認(rèn)識(shí),體會(huì)從正逆兩方面認(rèn)識(shí)和研究事物的方法。

  情感態(tài)度價(jià)值觀:

  通過(guò)學(xué)習(xí)進(jìn)一步理解數(shù)學(xué)知識(shí)間有著密切的聯(lián)系。

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):①運(yùn)用平方差公式分解因式;②運(yùn)用完全平方式分解因式。

  難點(diǎn):①靈活運(yùn)用平方差公式分解因式,正確判斷因式分解的徹底性;②靈活運(yùn)用完全平方公式分解因式

  關(guān)鍵:把握住因式分解的基本思路,觀察多項(xiàng)式的特征,靈活地運(yùn)用換元和劃歸思想。

因式分解教案5

  學(xué)習(xí)目標(biāo)

  1、學(xué)會(huì)用平方差公式進(jìn)行因式法分解

  2、學(xué)會(huì)因式分解的而基本步驟.

  學(xué)習(xí)重難點(diǎn)重點(diǎn)

  用平方差公式進(jìn)行因式法分解.

  難點(diǎn)

  因式分解化簡(jiǎn)的過(guò)程

  自學(xué)過(guò)程設(shè)計(jì)教學(xué)過(guò)程設(shè)計(jì)

 看一看

 平方差公式:

  平方差公式的逆運(yùn)用:

  做一做:

 1.填空題.

  (1)25a2-_______=(5a+2b)(5a-2b);(2)x2-=(x-)(________).

  (3)-a2+b2=(b+a)(________);(4)36x2-81y2=9(_______)(_______).

  2.把下列各式分解因式結(jié)果為-(x-2y)(x+2y)的多項(xiàng)式是()

  A.x2-4yB.x2+4y2C.-x2+4y2D.-x2-4y2

  3.多項(xiàng)式-1+0.04a2分解因式的結(jié)果是()

  A.(-1+0.2a)2B.(1+0.2a)(1-0.2a)

  C.(0.2a+1)(0.2a-1)D.(0.04a+1)(0.04a-1)

  4.把下列各式分解因式:

  (1)4x2-25y2;(2)0.81m2-n2;

  (3)a3-9a;(4)8x3y3-2xy.

  5.把下列各式分解因式:

  (1)(3a+2b)2-(a-b)2;(2)4(x+2y)2-25(x-y)2.

  6.用簡(jiǎn)便方法計(jì)算:3492-2512.

  想一想

 你還有哪些地方不是很懂?請(qǐng)寫出來(lái)。

  ____________________________________________________________________________________

  Xkb1.com預(yù)習(xí)展示一:

  1、下列多項(xiàng)式能否用平方差公式分解因式?

  說(shuō)說(shuō)你的理由。

  4x2+y2

  4x2-(-y)2

  -4x2-y2-4x2+y2

  a2-4a2+3

  2.把下列各式分解因式:

  (1)16-a2

  (2)0.01s2-t2

  (4)-1+9x2

  (5)(a-b)2-(c-b)2

  (6)-(x+y)2+(x-2y)2

  應(yīng)用探究:

 1、分解因式

  4x3y-9xy3

  變式:把下列各式分解因式

 、賦4-81y4

  ②2a-8a

  2、從前有一位張老漢向地主租了一塊“十字型”土地(尺寸如圖)。為便于種植,他想換一塊相同面積的長(zhǎng)方形土地。同學(xué)們,你能幫助張老漢算出這塊長(zhǎng)方形土地的長(zhǎng)和寬嗎?w

  3、在日常生活中如上網(wǎng)等都需要密碼.有一種因式分解法產(chǎn)生的密碼方便記憶又不易破譯.

  例如用多項(xiàng)式x4-y4因式分解的'結(jié)果來(lái)設(shè)置密碼,當(dāng)取x=9,y=9時(shí),可得一個(gè)六位數(shù)的密碼“018162”.你想知道這是怎么來(lái)的嗎?

  小明選用多項(xiàng)式4x3-xy2,取x=10,y=10時(shí)。用上述方法產(chǎn)生的密碼是什么?(寫出一個(gè)即可)

  拓展提高:

若n為整數(shù),則(2n+1)2-(2n-1)2能被8整除嗎?請(qǐng)說(shuō)明理由.

  教后反思考察利用公式法因式分解的題目不會(huì)很難,但是需要學(xué)生記住公式的形式,之后利用公式把式子進(jìn)行變形,從而達(dá)到進(jìn)行因式分解的目的。

因式分解教案6

  一、教學(xué)目標(biāo)

  【知識(shí)與技能】

  了解運(yùn)用公式法分解因式的意義,會(huì)用平方差分解因式;知道提公因式法分解因式是首先考慮的方法,再考慮用平方差分解因式。

  【過(guò)程與方法】

  通過(guò)對(duì)平方差特點(diǎn)的辨析,培養(yǎng)觀察、分析能力,訓(xùn)練對(duì)平方差公式的應(yīng)用能力。

  【情感態(tài)度價(jià)值觀】

  在逆用乘法公式的過(guò)程中,培養(yǎng)逆向思維能力,在分解因式時(shí)了解換元的思想方法。

  二、教學(xué)重難點(diǎn)

  【教學(xué)重點(diǎn)】

  運(yùn)用平方差公式分解因式。

  【教學(xué)難點(diǎn)】

  靈活運(yùn)用公式法或已經(jīng)學(xué)過(guò)的提公因式法分解因式;正確判斷因式分解的徹底性。

  三、教學(xué)過(guò)程

  (一)引入新課

  我們學(xué)習(xí)了因式分解的定義,還學(xué)習(xí)了提公因式法分解因式。如果一個(gè)多項(xiàng)式的`各項(xiàng),不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,大家知道因式分解與多項(xiàng)式乘法是互逆關(guān)系,能否利用這種關(guān)系找到新的因式分解的方法呢?

  大家先觀察下列式子:

  (1)(x+5)(x-5)=,(2)(3x+y)(3x-y)=,(3)(1+3a)(1-13a)=

  他們有什么共同的特點(diǎn)?你可以得出什么結(jié)論?

  (二)探索新知

  學(xué)生獨(dú)立思考或者與同桌討論。

  引導(dǎo)學(xué)生得出:①有兩項(xiàng)組成,②兩項(xiàng)的符號(hào)相反,③兩項(xiàng)都可以寫成數(shù)或式的平方的形式。

  提問(wèn)1:能否用語(yǔ)言以及數(shù)學(xué)公式將其特征表述出來(lái)?

因式分解教案7

  學(xué)習(xí)目標(biāo)

  1、了解因式分解的意義以及它與正式乘法的關(guān)系。

  2、能確定多項(xiàng)式各項(xiàng)的公因式,會(huì)用提公因式法分解因式。

  學(xué)習(xí)重點(diǎn):能用提公因式法分解因式。

  學(xué)習(xí)難點(diǎn):確定因式的公因式。

  學(xué)習(xí)關(guān)鍵,在確定多項(xiàng)式各項(xiàng)公因式時(shí),應(yīng)抓住各項(xiàng)的公因式來(lái)提公因式。

  學(xué)習(xí)過(guò)程

  一.知識(shí)回顧

  1、計(jì)算

  (1)、n(n+1)(n-1)(2)、(a+1)(a-2)

  (3)、m(a+b)(4)、2ab(x-2y+1)

  二、自主學(xué)習(xí)

  1、閱讀課文P72-73的內(nèi)容,并回答問(wèn)題:

  (1)知識(shí)點(diǎn)一:把一個(gè)多項(xiàng)式化為幾個(gè)整式的__________的形式叫做____________,也叫做把這個(gè)多項(xiàng)式__________。

  (2)、知識(shí)點(diǎn)二:由m(a+b+c)=ma+mb+mc可得

  ma+mb+mc=m(a+b+c)

  我們來(lái)分析一下多項(xiàng)式ma+mb+mc的`特點(diǎn);它的每一項(xiàng)都含有一個(gè)相同的因式m,m叫做各項(xiàng)的_________。如果把這個(gè)_________提到括號(hào)外面,這樣

  ma+mb+mc就分解成兩個(gè)因式的積m(a+b+c),即ma+mb+mc=m(a+b+c)。這種________的方法叫做________。

  2、練一練。P73練習(xí)第1題。

  三、合作探究

  1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一種變形,左邊是幾個(gè)整式乘積形式,右邊是一個(gè)多項(xiàng)式。、

  2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一種變形,左邊是_____________,右邊是_____________。

  3、下列是由左到右的變形,哪些屬于整式乘法,哪些屬于因式分解?

  (1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)

  (3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-1

  4、準(zhǔn)確地確定公因式時(shí)提公因式法分解因式的關(guān)鍵,確定公因式可分兩步進(jìn)行:

  (1)確定公因式的數(shù)字因數(shù),當(dāng)各項(xiàng)系數(shù)都是整數(shù)時(shí),他們的最大公約數(shù)就是公因式的數(shù)字因數(shù)。

  例如:8a2b-72abc公因式的數(shù)字因數(shù)為8。

  (2)確定公因式的字母及其指數(shù),公因式的字母應(yīng)是多項(xiàng)式各項(xiàng)都含有的字母,其指數(shù)取最低的。故8a2b-72abc的公因式是8ab

  四、展示提升

  1、填空(1)a2b-ab2=ab(________)

  (2)-4a2b+8ab-4b分解因式為_(kāi)_________________

  (3)分解因式4x2+12x3+4x=__________________

  (4)__________________=-2a(a-2b+3c)

  2、P73練習(xí)第2題和第3題

  五、達(dá)標(biāo)測(cè)試。

  1、下列各式從左到右的變形中,哪些是整式乘法?哪些是因式分解?哪些兩者都不是?

  (1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)

  (3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)

  (5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-4

  2.課本P77習(xí)題8.5第1題

  學(xué)習(xí)反思

  一、知識(shí)點(diǎn)

  二、易錯(cuò)題

  三、你的困惑

因式分解教案8

  學(xué)習(xí)目標(biāo):經(jīng)歷探索同底數(shù)冪的乘法運(yùn)算性質(zhì)的過(guò)程,能用代數(shù)式和文字正確地表述,并會(huì)熟練地進(jìn)行計(jì)算。通過(guò)由特殊到一般的猜想與說(shuō)理、驗(yàn)證,發(fā)展推理能力和有條理的表達(dá)能力.

  學(xué)習(xí)重點(diǎn):同底數(shù)冪乘法運(yùn)算性質(zhì)的推導(dǎo)和應(yīng)用.

  學(xué)習(xí)過(guò)程:

  一、創(chuàng)設(shè)情境引入新課

  復(fù)習(xí)乘方an的意義:an表示個(gè)相乘,即an=.

  乘方的結(jié)果叫a叫做,n是

  問(wèn)題:一種電子計(jì)算機(jī)每秒可進(jìn)行1012次運(yùn)算,它工作103秒可進(jìn)行多少次運(yùn)算?

  列式為,你能利用乘方的意義進(jìn)行計(jì)算嗎?

  二、探究新知:

  探一探:

  1根據(jù)乘方的意義填空

  (1)23×24=(2×2×2)×(2×2×2×2)=2();

  (2)55×54=_________=5();

  (3)(-3)3×(-3)2=_________________=(-3)();

  (4)a6a7=________________=a().

  (5)5m5n

  猜一猜:aman=(m、n都是正整數(shù))你能證明你的猜想嗎?

  說(shuō)一說(shuō):你能用語(yǔ)言敘述同底數(shù)冪的乘法法則嗎?

  同理可得:amanap=(m、n、p都是正整數(shù))

  三、范例學(xué)習(xí):

  【例1】計(jì)算:(1)103×104;(2)aa3;(3)mm3m5;(4)xmx3m+1(5)xx2+x2x

  1.填空:⑴10×109=;⑵b2×b5=;⑶x4x=;⑷x3x3=.

  2.計(jì)算:

  (1)a2a6;(2)(-x)(-x)3;(3)8m(-8)38n;(4)b3(-b2)(-b)4.

  【例2】:把下列各式化成(x+y)n或(x-y)n的'形式.

  (1)(x+y)4(x+y)3(2)(x-y)3(x-y)(y-x)

  (3)-8(x-y)2(x-y)(4)(x+y)2m(x+y)m+1

  四、學(xué)以致用:

  1.計(jì)算:⑴10n10m+1=⑵x7x5=⑶mm7m9=

 、-4444=⑸22n22n+1=⑹y5y2y4y=

  2.判斷題:判斷下列計(jì)算是否正確?并說(shuō)明理由

 、臿2a3=a6();⑵a2a3=a5();⑶a2+a3=a5();

 、萢a7=a0+7=a7();⑸a5a5=2a10();⑹25×32=67()。

  3.計(jì)算:

  (1)xx2+x2x(2)x2xn+1+xn-2x4-xn-1x4

  (3)-(-a)3(-a)2a5;(4)(a-b)3(b-a)2

  (5)(x+y)(x+y)(x+y)2+(x+y)2(x+y)2

  4.解答題:

  (1)已知xm+nxm-n=x9,求m的值.

  (2)據(jù)不完全統(tǒng)計(jì),每個(gè)人每年最少要用去106立方米的水,1立方米的水中約含有3.34×1019個(gè)水分子,那么,每個(gè)人每年要用去多少個(gè)水分子?

因式分解教案9

  知識(shí)點(diǎn):

  因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項(xiàng)式的因式(十字相乘法、求根)、因式分解一般步驟。

  教學(xué)目標(biāo):

  理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項(xiàng)式的方法,能把簡(jiǎn)單多項(xiàng)式分解因式。

  考查重難點(diǎn)與常見(jiàn)題型:

  考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點(diǎn)考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運(yùn)用。習(xí)題類型以填空題為多,也有選擇題和解答題。

  教學(xué)過(guò)程:

  因式分解知識(shí)點(diǎn)

  多項(xiàng)式的因式分解,就是把一個(gè)多項(xiàng)式化為幾個(gè)整式的積。分解因式要進(jìn)行到每一個(gè)因式都不能再分解為止。分解因式的常用方法有:

 。1)提公因式法

  如多項(xiàng)式

  其中m叫做這個(gè)多項(xiàng)式各項(xiàng)的.公因式, m既可以是一個(gè)單項(xiàng)式,也可以是一個(gè)多項(xiàng)式。

 。2)運(yùn)用公式法,即用

  寫出結(jié)果。

 。3)十字相乘法

  對(duì)于二次項(xiàng)系數(shù)為l的二次三項(xiàng)式 尋找滿足ab=q,a+b=p的a,b,如有,則對(duì)于一般的二次三項(xiàng)式尋找滿足

  a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則

 。4)分組分解法:把各項(xiàng)適當(dāng)分組,先使分解因式能分組進(jìn)行,再使分解因式在各組之間進(jìn)行。

  分組時(shí)要用到添括號(hào):括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變符號(hào);括號(hào)前面是“-”號(hào),括到括號(hào)里的各項(xiàng)都改變符號(hào)。

 。5)求根公式法:如果有兩個(gè)根X1,X2,那么

  2、教學(xué)實(shí)例:學(xué)案示例

  3、課堂練習(xí):學(xué)案作業(yè)

  4、課堂:

  5、板書(shū):

  6、課堂作業(yè):學(xué)案作業(yè)

  7、教學(xué)反思:

因式分解教案10

  教學(xué)目標(biāo):

  1、 理解運(yùn)用平方差公式分解因式的方法。

  2、 掌握提公因式法和平方差公式分解因式的綜合運(yùn)用。

  3、 進(jìn)一步培養(yǎng)學(xué)生綜合、分析數(shù)學(xué)問(wèn)題的能力。

  教學(xué)重點(diǎn):

  運(yùn)用平方差公式分解因式。

  教學(xué)難點(diǎn):

  高次指數(shù)的轉(zhuǎn)化,提公因式法,平方差公式的靈活運(yùn)用。

  教學(xué)案例:

  我們數(shù)學(xué)組的觀課議課主題:

  1、關(guān)注學(xué)生的合作交流

  2、如何使學(xué)困生能積極參與課堂交流。

  在精心備課過(guò)程中,我設(shè)計(jì)了這樣的自學(xué)提示:

  1、整式乘法中的平方差公式是___,如何用語(yǔ)言描述?把上述公式反過(guò)來(lái)就得到_____,如何用語(yǔ)言描述?

  2、下列多項(xiàng)式能用平方差公式分解因式嗎?若能,請(qǐng)寫出分解過(guò)程,若不能,說(shuō)出為什么?

 、-x2+y2 ②-x2-y2 ③4-9x2

  ④ (x+y)2-(x-y)2 ⑤ a4-b4

  3、試總結(jié)運(yùn)用平方差公式因式分解的'條件是什么?

  4、仿照例4的分析及旁白你能把x3y-xy因式分解嗎?

  5、試總結(jié)因式分解的步驟是什么?

  師巡回指導(dǎo),生自主探究后交流合作。

  生交流熱情很高,但把全部問(wèn)題分析完已用了30分鐘。

  生展示自學(xué)成果。

  生1: -x2+y2能用平方差公式分解,可分解為(y+x)(y-x)

  生2: -x2+y2=-(x2-y2)=-(x+y)(x-y)

  師:這兩種方法都可以,但第二種方法提出負(fù)號(hào)后,一定要注意括號(hào)里的各項(xiàng)要變號(hào)。

  生3:4-9x2 也能用平方差公式分解,可分解為(2+9x)(2-9x)

  生4:不對(duì),應(yīng)分解為(2+3x)(2-3x),要運(yùn)用平方差公式必須化為兩個(gè)數(shù)或整式的平方差的形式。

  生5: a4-b4可分解為(a2+b2)(a2-b2)

  生6:不對(duì),a2-b2 還能繼續(xù)分解為a+b)(a-b)

  師:大家爭(zhēng)論的很好,運(yùn)用平方差公式分解因式,必須化為兩個(gè)數(shù)或兩個(gè)整式的平方的差的形式,另因式分解必須分解到不能再分解為止!

  反思:這節(jié)課我備課比較認(rèn)真,自學(xué)提示的設(shè)計(jì)也動(dòng)了一番腦筋,為讓學(xué)生順利得出運(yùn)用平方差公式因式分解的條件,我設(shè)計(jì)了問(wèn)題2,為讓學(xué)生能更容易總結(jié)因式分解的步驟,我又設(shè)計(jì)了問(wèn)題4,自認(rèn)為,本節(jié)課一定會(huì)上的非常成功,學(xué)生的交流、合作,自學(xué)展示一定會(huì)很精彩,結(jié)果卻出乎我的意料,本節(jié)課沒(méi)有按計(jì)劃完成教學(xué)任務(wù),學(xué)生練習(xí)很少,作業(yè)有很大一部分同學(xué)不能獨(dú)立完成,反思這節(jié)課主要有以下幾個(gè)問(wèn)題:

  (1) 我在備課時(shí),過(guò)高估計(jì)了學(xué)生的能力,問(wèn)題2中的③、④、⑤ 多數(shù)學(xué)生剛預(yù)習(xí)后不能熟練解答,導(dǎo)致在小組交流時(shí),多數(shù)學(xué)生都在交流這幾題該怎樣分解,耽誤了寶貴的時(shí)間,也分散了學(xué)生的注意力,導(dǎo)致難點(diǎn)、重點(diǎn)不突出,若能把問(wèn)題2改為:

  下列多項(xiàng)式能用平方差公式因式分解嗎?為什么?可能效果會(huì)更好。

  (2) 教師備課時(shí),要考慮學(xué)生的知識(shí)層次,能力水平,真正把學(xué)生放在第一位,要考慮學(xué)生的接受能力,安排習(xí)題要循序漸進(jìn),切莫過(guò)于心急,過(guò)分追求課堂容量、習(xí)題類型全等等,例如在問(wèn)題2的設(shè)計(jì)時(shí)可寫一些簡(jiǎn)單的,像④、⑤ 可到練習(xí)時(shí)再出現(xiàn),發(fā)現(xiàn)問(wèn)題后再?gòu)?qiáng)調(diào)、歸納,效果也可能會(huì)更好。

  我及時(shí)調(diào)整了自學(xué)提示的內(nèi)容,在另一個(gè)班也上了這節(jié)課。果然,學(xué)生的討論有了重點(diǎn),很快(大約10分鐘)便合作得出了結(jié)論,課堂氣氛非;钴S,練習(xí)量大,準(zhǔn)確率高,但隨之我又發(fā)現(xiàn)我在處理課后練習(xí)時(shí)有點(diǎn)不能應(yīng)對(duì)自如。例如:師:下面我們把課后練習(xí)做一下,話音剛落,大家紛紛拿著本到我面前批改。師:都完了?生:全完了。我很興奮。來(lái):“我們?cè)僮鰩最}試試。”生又開(kāi)始緊張地練習(xí)……下課后,無(wú)意間發(fā)現(xiàn)竟還有好幾個(gè)同學(xué)課后題沒(méi)做。原因是預(yù)習(xí)時(shí)不會(huì),上課又沒(méi)時(shí)間,還有幾位同學(xué)練習(xí)題竟然有誤,也沒(méi)改正,原因是上課慌著展示自己,沒(méi)顧上改……?磥(lái),以后上課不能單聽(tīng)學(xué)生的齊答,要發(fā)揮組長(zhǎng)的職責(zé),注重過(guò)關(guān)落實(shí)。給學(xué)生一點(diǎn)機(jī)動(dòng)時(shí)間,讓學(xué)習(xí)有困難的學(xué)生有機(jī)會(huì)釋疑,練習(xí)不在于多,要注意融會(huì)貫通,會(huì)舉一反三。

  確實(shí),“學(xué)海無(wú)涯,教海無(wú)邊”。我們備課再認(rèn)真,預(yù)設(shè)再周全,面對(duì)不同的學(xué)生,不同的學(xué)情,仍然會(huì)產(chǎn)生新的問(wèn)題,“沒(méi)有最好,只有更好!”我會(huì)一直探索、努力,不斷完善教學(xué)設(shè)計(jì),更新教育觀念,直到永遠(yuǎn)……

因式分解教案11

  教材分析

  因式分解是代數(shù)式的一種重要恒等變形。《數(shù)學(xué)課程標(biāo)準(zhǔn)》雖然降低了因式分解的特殊技巧的要求,也對(duì)因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個(gè)公式,但絲毫沒(méi)有否定因式分解的教育價(jià)值及其在代數(shù)運(yùn)算中的重要作用。本章教材是在學(xué)生學(xué)習(xí)了整式運(yùn)算的基礎(chǔ)上提出來(lái)的,事實(shí)上,它是整式乘法的逆向運(yùn)用,與整式乘法運(yùn)算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡(jiǎn)、解方程等—恒等變形的基礎(chǔ),為數(shù)學(xué)交流提供了有效的途徑。分解因式這一章在整個(gè)教材中起到了承上啟下的作用。本章的教育價(jià)值還體現(xiàn)在使學(xué)生接受對(duì)立統(tǒng)一的觀點(diǎn),培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見(jiàn)、解決問(wèn)題的能力。

  學(xué)情分析

  通過(guò)探究平方差公式和運(yùn)用平方差公式分解因式的.活動(dòng)中,讓學(xué)生發(fā)表自己的觀點(diǎn),從交流中獲益,讓學(xué)生獲得成功的體驗(yàn),鍛煉克服困難的意志建立自信心。

  教學(xué)目標(biāo)

  1、在分解因式的過(guò)程中體會(huì)整式乘法與因式分解之間的聯(lián)系。

  2、通過(guò)公式a -b =(a+b)(a-b)的逆向變形,進(jìn)一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語(yǔ)言表達(dá)能力。

  3、能運(yùn)用提公因式法、公式法進(jìn)行綜合運(yùn)用。

  4、通過(guò)活動(dòng)4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn): 靈活運(yùn)用平方差公式進(jìn)行分解因式。

  難點(diǎn):平方差公式的推導(dǎo)及其運(yùn)用,兩種因式分解方法(提公因式法、平方差公式)的綜合運(yùn)用。

因式分解教案12

  一、運(yùn)用平方差公式分解因式

  教學(xué)目標(biāo)1、使學(xué)生了解運(yùn)用公式來(lái)分解因式的意義。

  2、使學(xué)生理解平方差公式的意義,弄清平方差公式的形式和特點(diǎn);使學(xué)生知道把乘法公式反過(guò)來(lái)就可以得到相應(yīng)的因式分解。

  3、掌握運(yùn)用平方差公式分解因式的方法,能正確運(yùn)用平方差公式把多項(xiàng)式分解因式(直接用公式不超過(guò)兩次)

  重點(diǎn)運(yùn)用平方差公式分解因式

  難點(diǎn)靈活運(yùn)用平方差公式分解因式

  教學(xué)方法對(duì)比發(fā)現(xiàn)法課型新授課教具投影儀

  教師活動(dòng)學(xué)生活動(dòng)

  情景設(shè)置:

  同學(xué)們,你能很快知道992-1是100的倍數(shù)嗎?你是怎么想出來(lái)的?

  (學(xué)生或許還有其他不同的解決方法,教師要給予充分的肯定)

  新課講解:

  從上面992-1=(99+1)(99-1),我們?nèi)菀卓闯?這種方法利用了我們剛學(xué)過(guò)的哪一個(gè)乘法公式?

  首先我們來(lái)做下面兩題:(投影)

  1.計(jì)算下列各式:

  (1)(a+2)(a-2)=;

  (2)(a+b)(a-b)=;

  (3)(3a+2b)(3a-2b)=.

  2.下面請(qǐng)你根據(jù)上面的算式填空:

  (1)a2-4=;

  (2)a2-b2=;

  (3)9a2-4b2=;

  請(qǐng)同學(xué)們對(duì)比以上兩題,你發(fā)現(xiàn)什么呢?

  事實(shí)上,像上面第2題那樣,把一個(gè)多項(xiàng)式寫成幾個(gè)整式積的形式叫做多項(xiàng)式的`因式分解。(投影)

  比如:a2–16=a2–42=(a+4)(a–4)

  例題1:把下列各式分解因式;(投影)

  (1)36–25x2;(2)16a2–9b2;

  (3)9(a+b)2–4(a–b)2.

  (讓學(xué)生弄清平方差公式的形式和特點(diǎn)并會(huì)運(yùn)用)

  例題2:如圖,求圓環(huán)形綠化區(qū)的面積

  練習(xí):第87頁(yè)練一練第1、2、3題

  小結(jié):

  這節(jié)課你學(xué)到了什么知識(shí),掌握什么方法?

  教學(xué)素材:

  A組題:

  1.填空:81x2-=(9x+y)(9x-y);=

  利用因式分解計(jì)算:=。

  2、下列多項(xiàng)式中能用平方差公式分解因式的是()(A)(B)(C)(D)3.把下列各式分解因式

  (1)1-16a2(2)9a2x2-b2y2

  (3).49(a-b)2-16(a+b)2

  B組題:

  1分解因式81a4-b4=

  2若a+b=1,a2+b2=1,則ab=;

  3若26+28+2n是一個(gè)完全平方數(shù),則n=.

  由學(xué)生自己先做(或互相討論),然后回答,若有答不全的,教師(或其他學(xué)生)補(bǔ)充.

  學(xué)生回答1:

  992-1=99×99-1=9801-1

  =9800

  學(xué)生回答2:992-1就是(99+1)(99-1)即100×98

  學(xué)生回答:平方差公式

  學(xué)生回答:

  (1):a2-4

  (2):a2-b2

  (3):9a2-4b2

  學(xué)生輕松口答

  (a+2)(a-2)

  (a+b)(a-b)

  (3a+2b)(3a-2b)

  學(xué)生回答:

  把乘法公式

  (a+b)(a-b)=a2-b2

  反過(guò)來(lái)就得到

  a2-b2=(a+b)(a-b)

  學(xué)生上臺(tái)板演:

  36–25x2=62–(5x)2

  =(6+5x)(6–5x)

  16a2–9b2=(4a)2–(3b)2

  =(4a+3b)(4a–3b)

  9(a+b)2–4(a–b)2

  =[3(a+b)]2–[2(a–b)]2

  =[3(a+b)+2(a–b)]

  [3(a+b)–2(a–b)]

  =(5a+b)(a+5b)

  解:352π–152π

  =π(352–152)

  =(35+15)(35–15)π

  =50×20π

  =1000π(m2)

  這個(gè)綠化區(qū)的面積是

  1000πm2

  學(xué)生歸納總結(jié)

因式分解教案13

  教學(xué)目標(biāo):

  1、進(jìn)一步鞏固因式分解的概念;

  2、鞏固因式分解常用的三種方法

  3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解4、應(yīng)用因式分解來(lái)解決一些實(shí)際問(wèn)題

  5、體驗(yàn)應(yīng)用知識(shí)解決問(wèn)題的樂(lè)趣

  教學(xué)重點(diǎn):靈活運(yùn)用因式分解解決問(wèn)題

  教學(xué)難點(diǎn):靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒,拓展練?xí)2、3

  教學(xué)過(guò)程:

  一、創(chuàng)設(shè)情景:若a=101,b=99,求a2—b2的值

  利用因式分解往往能將一些復(fù)雜的運(yùn)算簡(jiǎn)單化,那么我們先來(lái)回顧一下什么是因式分解和怎樣來(lái)因式分解。

  二、知識(shí)回顧

  1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式。

  判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問(wèn)講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)

  (1)、x2—4y2=(x+2y)(x—2y)因式分解(2)。2x(x—3y)=2x2—6xy整式乘法

 。3)、(5a—1)2=25a2—10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解

  (5)、(a—3)(a+3)=a2—9整式乘法(6)。m2—4=(m+4)(m—4)因式分解

 。7)、2πR+2πr=2π(R+r)因式分解

  2、規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過(guò)程。

  分解因式要注意以下幾點(diǎn):

  (1)。分解的對(duì)象必須是多項(xiàng)式。

 。2)。分解的結(jié)果一定是幾個(gè)整式的乘積的形式。

  (3)。要分解到不能分解為止。

  3、因式分解的方法

  提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法

  公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2

  4、強(qiáng)化訓(xùn)練

  教學(xué)引入

  師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個(gè)長(zhǎng)方形折疊就可以得到一個(gè)正方形,F(xiàn)在請(qǐng)同學(xué)們拿出一個(gè)長(zhǎng)方形紙條,按動(dòng)畫所示進(jìn)行折疊處理。

  動(dòng)畫演示:

  場(chǎng)景一:正方形折疊演示

  師:這就是我們得到的正方形。下面請(qǐng)同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來(lái)研究正方形的幾何性質(zhì)—邊、角以及對(duì)角線之間的關(guān)系。請(qǐng)大家測(cè)量各邊的長(zhǎng)度、各角的大小、對(duì)角線的長(zhǎng)度以及對(duì)角線交點(diǎn)到各頂點(diǎn)的長(zhǎng)度。

  [學(xué)生活動(dòng):各自測(cè)量。]

  鼓勵(lì)學(xué)生將測(cè)量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。

  講授新課

  找一兩個(gè)學(xué)生表述其結(jié)論,表述是要注意糾正其語(yǔ)言的規(guī)范性。

  動(dòng)畫演示:

  場(chǎng)景二:正方形的性質(zhì)

  師:這些性質(zhì)里那些是矩形的性質(zhì)?

  [學(xué)生活動(dòng):尋找矩形性質(zhì)。]

  動(dòng)畫演示:

  場(chǎng)景三:矩形的性質(zhì)

  師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。

  [學(xué)生活動(dòng);尋找菱形性質(zhì)。]

  動(dòng)畫演示:

  場(chǎng)景四:菱形的性質(zhì)

  師:這說(shuō)明正方形具有矩形和菱形的全部性質(zhì)。

  及時(shí)提出問(wèn)題,引導(dǎo)學(xué)生進(jìn)行思考。

  師:根據(jù)這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準(zhǔn)確的定義?

  [學(xué)生活動(dòng):積極思考,有同學(xué)做躍躍欲試狀。]

  師:請(qǐng)同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的.定義。

  學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵(lì),把以下三種板書(shū):

  “有一組鄰邊相等的矩形叫做正方形!

  “有一個(gè)角是直角的菱形叫做正方形!

  “有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形!

  [學(xué)生活動(dòng):討論這三個(gè)定義正確不正確?三個(gè)定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]

  師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。

  試一試把下列各式因式分解:

 。1)。1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2

 。3)。4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y)

  三、例題講解

  例1、分解因式

 。1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x)

  (3)(4)y2+y+

  例2、分解因式

  1、a3—ab2=2、(a—b)(x—y)—(b—a)(x+y)=3、(a+b)2+2(a+b)—15=

  4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y=

  例3、分解因式

  1、72—2(13x—7)22、8a2b2—2a4b—8b3

  四、知識(shí)應(yīng)用

  1、(4x2—9y2)÷(2x+3y)2、(a2b—ab2)÷(b—a)

  3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)2

  4、。若x=—3,求20x2—60x的值。5、1993—199能被200整除嗎?還能被哪些整數(shù)整除?

  五、拓展應(yīng)用

  1。計(jì)算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235)

  2、20042+20xx被20xx整除嗎?

  3、若n是整數(shù),證明(2n+1)2—(2n—1)2是8的倍數(shù)。

  五、課堂小結(jié)

  今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?

因式分解教案14

  背景材料:

  因式分解是初中數(shù)學(xué)中的一個(gè)重點(diǎn)內(nèi)容,也是一項(xiàng)重要的基本技能和基礎(chǔ)知識(shí),更是一種數(shù)學(xué)的變形方法,在今后的學(xué)習(xí)中有著重要的作用。因此,除了單純的因式分解問(wèn)題外,因式分解在解某些數(shù)學(xué)問(wèn)題中有著廣泛的作用,因式分解在三角形中的應(yīng)用,因式分解可以用來(lái)證明代數(shù)問(wèn)題,用于代數(shù)式的求值,用于求不定方程,用于解應(yīng)用題解決有關(guān)復(fù)雜數(shù)值的計(jì)算,本節(jié)課的例題因式分解在數(shù)學(xué)題中的簡(jiǎn)單應(yīng)用。

  教材分析:

  本節(jié)課是本章的最后一節(jié),是學(xué)生學(xué)習(xí)因式分解初步應(yīng)用,首先要使學(xué)生體會(huì)到因式分解在數(shù)學(xué)中應(yīng)用,其次給學(xué)生提供更多機(jī)會(huì)體驗(yàn)主動(dòng)學(xué)習(xí)和探索的“過(guò)程”與“經(jīng)歷”,使多數(shù)學(xué)里擁有一定問(wèn)題解決的經(jīng)驗(yàn)。

  教學(xué)目標(biāo):

  1、在整除的情況下,會(huì)應(yīng)用因式分解,進(jìn)行多項(xiàng)式相除。

  2、會(huì)應(yīng)用因式分解解簡(jiǎn)單的一元二次方程。

  3、體驗(yàn)數(shù)學(xué)問(wèn)題中的矛盾轉(zhuǎn)化思想。

  4、培養(yǎng)觀察和動(dòng)手能力,自主探索與合作交流能力。

  教學(xué)重點(diǎn):

  學(xué)會(huì)應(yīng)用因式分解進(jìn)行多項(xiàng)式除法和解簡(jiǎn)單一元二次方程。

  教學(xué)難點(diǎn):

  應(yīng)用因式分解解簡(jiǎn)單的一元二次方程。

  設(shè)計(jì)理念:

  根據(jù)本節(jié)課的內(nèi)容特點(diǎn),主要采用師生合作控討式課堂教學(xué)方法,以教師為主導(dǎo),學(xué)生為主體,動(dòng)手實(shí)踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標(biāo),引導(dǎo)學(xué)生自主探索,動(dòng)手實(shí)踐,合作交流。注重使學(xué)生經(jīng)辦觀察、操作、推理等探索過(guò)程。這種教學(xué)理念,反映了時(shí)代精神,有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),能有效地激發(fā)學(xué)生的思維積極性,學(xué)生在學(xué)習(xí)過(guò)程中調(diào)動(dòng)各種感官,進(jìn)行觀察與抽象、操作與思考、自主與交流等,進(jìn)而改進(jìn)學(xué)生的學(xué)習(xí)方法。

  教學(xué)過(guò)程:

  一、創(chuàng)設(shè)情境,復(fù)習(xí)提問(wèn)

  1、將正式各式因式分解

 。1)(a+b)2-10(a+b)+25(2)-xy+2x2y+x3y

 。3)2 a2b-8a2b(4)4x2-9

  [四位同學(xué)到黑板上演板,本課時(shí)用復(fù)習(xí)“練習(xí)引入”也不失為一種好方法,既先復(fù)習(xí)因式分解的提取分因式和公式法,又為下面解決多項(xiàng)式除法運(yùn)算作鋪墊]

  教師訂正

  提出問(wèn)題:怎樣計(jì)算(2 a2b-8a2b)÷(4a-b)

  二、導(dǎo)入新課,探索新知

 。ㄏ茸寣W(xué)生思考上面所提出的問(wèn)題,教師從旁啟發(fā))

  師:如果出現(xiàn)豎式計(jì)算,教師可以給予肯定;可能出現(xiàn)(2 a2b-8a2b)÷(4a-b)= ab-8a2追問(wèn)學(xué)生怎么得來(lái)的,運(yùn)算的依據(jù)是什么?這樣暴露學(xué)生的思維,讓學(xué)生自己發(fā)現(xiàn)錯(cuò)誤之處;觀察2 a2b-8a2b=2 ab(b-4a),其中一個(gè)因式正好是除式4a-b的相反數(shù),如果用“換元”思想,我們就可以把問(wèn)題轉(zhuǎn)化為單項(xiàng)式除以單項(xiàng)式。

  (2 a2b-8a2b)÷(4a-b)

  =-2ab(4a-b)÷(4a-b)

  =-2ab

 。ㄗ寣W(xué)生自己比較哪種方法好)

  利用上面的數(shù)學(xué)解題思路,同學(xué)們嘗試計(jì)算

 。4x2-9)÷(3-2x)

  學(xué)生總結(jié)解題步驟:1、因式分解;2、約去公因式)

 。ㄈw學(xué)生動(dòng)手動(dòng)腦,然后叫學(xué)生回答,及時(shí)表?yè)P(yáng),講練結(jié)合,[運(yùn)用多項(xiàng)式的`因式分解和換元的思想,可以把兩個(gè)多項(xiàng)式相除,轉(zhuǎn)化為單項(xiàng)式的除法]

  練習(xí)計(jì)算

 。1)(a2-4)÷(a+2)

  (2)(x2+2xy+y2)÷(x+y)

 。3)[(a-b)2+2(b-a)] ÷(a-b)

  三、合作學(xué)習(xí)

  1、以四人為一組討論下列問(wèn)題

  若A?B=0,下面兩個(gè)結(jié)論對(duì)嗎?

 。1)A和B同時(shí)都為零,即A=0且B=0

  (2)A和B至少有一個(gè)為零即A=0或B=0

  [合作學(xué)習(xí),四個(gè)小組討論,教師逐步引導(dǎo),讓學(xué)生講自己的想法,及解題步驟,培養(yǎng)語(yǔ)言表達(dá)能力,體會(huì)運(yùn)用因式分解的實(shí)際運(yùn)用作用,增加學(xué)習(xí)興趣]

  2、你能用上面的結(jié)論解方程

 。1)(2x+3)(2x-3)=0(2)2x2+x=0

  解:

  ∵(2x+3)(2x-3)=0

  ∴2x+3=0或2x-3=0

  ∴方程的解為x=-3/2或x=3/2

  解:x(2x+1)=0

  則x=0或2x+1=0

  ∴原方程的解是x1=0,x2=-1/2

  [讓學(xué)生先獨(dú)立完成,再組織交流,最后教師針對(duì)性地講解,讓學(xué)生總結(jié)步驟:1、移項(xiàng),使方程一邊變形為零;2、等式左邊因式分解;3、轉(zhuǎn)化為解一元一次方程]

  3、練習(xí),解下列方程

 。1)x2-2x=0 4x2=(x-1)2

  四、小結(jié)

 。1)應(yīng)用因式分解和換元思想可以把某些多項(xiàng)式除法轉(zhuǎn)化為單項(xiàng)式除法。

 。2)如果方程的等號(hào)一邊是零,另一邊含有未知數(shù)x的多項(xiàng)式可以分解成若干個(gè)x的一次式的積,那么就可以應(yīng)用因式分解把原方程轉(zhuǎn)化成幾個(gè)一元一次方程來(lái)解。

  設(shè)計(jì)理念:

  根據(jù)本節(jié)課的內(nèi)容特點(diǎn),主要采用師生合作討論式課堂教學(xué)方法,以教師為主導(dǎo),學(xué)生為主體,動(dòng)手實(shí)踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標(biāo),引導(dǎo)學(xué)生自主探索,動(dòng)手實(shí)踐,合作交流。注重使學(xué)生經(jīng)辦觀察、操作、推理等探索過(guò)程。這種教學(xué)理念,反映了時(shí)代精神,有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),能有效地激發(fā)學(xué)生的思維積極性,學(xué)生在學(xué)習(xí)過(guò)程中調(diào)動(dòng)各種感官,進(jìn)行觀察與抽象、操作與思考、自主與交流等,進(jìn)而改進(jìn)學(xué)生的學(xué)習(xí)方法。

因式分解教案15

  整式乘除與因式分解

  一.回顧知識(shí)點(diǎn)

  1、主要知識(shí)回顧:

  冪的運(yùn)算性質(zhì):

  aman=am+n(m、n為正整數(shù))

  同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.

  =amn(m、n為正整數(shù))

  冪的乘方,底數(shù)不變,指數(shù)相乘.

  (n為正整數(shù))

  積的乘方等于各因式乘方的積.

  =am-n(a≠0,m、n都是正整數(shù),且m>n)

  同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.

  零指數(shù)冪的概念:

  a0=1(a≠0)

  任何一個(gè)不等于零的數(shù)的零指數(shù)冪都等于l.

  負(fù)指數(shù)冪的概念:

  a-p=(a≠0,p是正整數(shù))

  任何一個(gè)不等于零的數(shù)的-p(p是正整數(shù))指數(shù)冪,等于這個(gè)數(shù)的p指數(shù)冪的倒數(shù).

  也可表示為:(m≠0,n≠0,p為正整數(shù))

  單項(xiàng)式的乘法法則:

  單項(xiàng)式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,則連同它的指數(shù)作為積的一個(gè)因式.

  單項(xiàng)式與多項(xiàng)式的乘法法則:

  單項(xiàng)式與多項(xiàng)式相乘,用單項(xiàng)式和多項(xiàng)式的每一項(xiàng)分別相乘,再把所得的積相加.

  多項(xiàng)式與多項(xiàng)式的乘法法則:

  多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)與另一個(gè)多項(xiàng)式的每一項(xiàng)相乘,再把所得的積相加.

  單項(xiàng)式的除法法則:

  單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式:對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式.

  多項(xiàng)式除以單項(xiàng)式的法則:

  多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以這個(gè)單項(xiàng)式,再把所得的商相加.

  2、乘法公式:

 、倨椒讲罟剑(a+b)(a-b)=a2-b2

  文字語(yǔ)言敘述:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差相乘,等于這兩個(gè)數(shù)的平方差.

 、谕耆椒焦剑(a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  文字語(yǔ)言敘述:兩個(gè)數(shù)的和(或差)的平方等于這兩個(gè)數(shù)的平方和加上(或減去)這兩個(gè)數(shù)的積的.2倍.

  3、因式分解:

  因式分解的定義.

  把一個(gè)多項(xiàng)式化成幾個(gè)整式的乘積的形式,這種變形叫做把這個(gè)多項(xiàng)式因式分解.

  掌握其定義應(yīng)注意以下幾點(diǎn):

  (1)分解對(duì)象是多項(xiàng)式,分解結(jié)果必須是積的形式,且積的因式必須是整式,這三個(gè)要素缺一不可;

  (2)因式分解必須是恒等變形;

  (3)因式分解必須分解到每個(gè)因式都不能分解為止.

  弄清因式分解與整式乘法的內(nèi)在的關(guān)系.

  因式分解與整式乘法是互逆變形,因式分解是把和差化為積的形式,而整式乘法是把積化為和差的形式.

  二、熟練掌握因式分解的常用方法.

  1、提公因式法

  (1)掌握提公因式法的概念;

  (2)提公因式法的關(guān)鍵是找出公因式,公因式的構(gòu)成一般情況下有三部分:①系數(shù)一各項(xiàng)系數(shù)的最大公約數(shù);②字母——各項(xiàng)含有的相同字母;③指數(shù)——相同字母的最低次數(shù);

  (3)提公因式法的步驟:第一步是找出公因式;第二步是提取公因式并確定另一因式.需注意的是,提取完公因式后,另一個(gè)因式的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)一致,這一點(diǎn)可用來(lái)檢驗(yàn)是否漏項(xiàng).

  (4)注意點(diǎn):①提取公因式后各因式應(yīng)該是最簡(jiǎn)形式,即分解到“底”;②如果多項(xiàng)式的第一項(xiàng)的系數(shù)是負(fù)的,一般要提出“-”號(hào),使括號(hào)內(nèi)的第一項(xiàng)的系數(shù)是正的.

  2、公式法

  運(yùn)用公式法分解因式的實(shí)質(zhì)是把整式中的乘法公式反過(guò)來(lái)使用;

  常用的公式:

 、倨椒讲罟剑篴2-b2=(a+b)(a-b)

 、谕耆椒焦剑篴2+2ab+b2=(a+b)2

  a2-2ab+b2=(a-b)2