有理數(shù)的加法教案15篇
作為一名辛苦耕耘的教育工作者,時常需要編寫教案,教案是教學活動的依據,有著重要的地位。教案應該怎么寫才好呢?下面是小編精心整理的有理數(shù)的加法教案,歡迎大家借鑒與參考,希望對大家有所幫助。
有理數(shù)的加法教案1
一.教學目標
1.知識與技能
。1)通過足球賽中的凈勝球數(shù),使學生掌握有理數(shù)加法法則,并能運用法則進行計算;
(2)在有理數(shù)加法法則的教學過程中,注意培養(yǎng)學生的運算能力.
2.過程與方法
通過觀察,比較,歸納等得出有理數(shù)加法法則。能運用有理數(shù)加法法則解決實際問題。
3.情感態(tài)度與價值觀
認識到通過師生合作交流,學生主動叁與探索獲得數(shù)學知識,從而提高學生學習數(shù)學的積極性。
二、教學重難點及關鍵:
重點:會用有理數(shù)加法法則進行運算.
難點:異號兩數(shù)相加的法則.
關鍵:通過實例引入,循序漸進,加強法則的應用.
三、教學方法
發(fā)現(xiàn)法、歸納法、與師生轟動緊密結合.
四、教材分析
“有理數(shù)的加法”是人教版七年級數(shù)學上冊第一章有理數(shù)的第三節(jié)內容,本節(jié)內容安排四個課時,本課時是本節(jié)內容的第一課時,本課設計主要是通過球賽中凈勝球數(shù)的實例來明確有理數(shù)加法的意義,引入有理數(shù)加法的法則,為今后學習“有理數(shù)的'減法”做鋪墊。
五、教學過程
。ㄒ唬﹩栴}與情境
我們已經熟悉正數(shù)的運算,然而實際問題中做加法運算的數(shù)有可能超出正數(shù)范圍。例如,足球循環(huán)賽中,通常把進球數(shù)記為正數(shù),失球數(shù)記為負數(shù),它們的和叫作凈勝球數(shù)。章前言中,紅隊進4個球,失2個球;藍隊進1個球,失1個球。于是紅隊的凈勝球為4+(-2),黃隊的凈勝球為1+(-1),這里用到正數(shù)與負數(shù)的加法。
(二)師生共同探究有理數(shù)加法法則
前面我們學習了有關有理數(shù)的一些基礎知識,從今天起開始學習有理數(shù)的運算.這節(jié)課我們來研究兩個有理數(shù)的加法.兩個有理數(shù)相加,有多少種不同的情形?為此,我們來看一個大家熟悉的實際問題:
足球比賽中贏球個數(shù)與輸球個數(shù)是相反意義的量.若我們規(guī)定贏球為“正”,輸球為“負”,打平為“0”.比如,贏3球記為+3,輸1球記為-1.學校足球隊在一場比賽中的勝負可能有以下各種不同的情形:
(1)上半場贏了3球,下半場贏了1球,那么全場共贏了4球.也就是
(+3)+(+1)=+4.
(2)上半場輸了2球,下半場輸了1球,那么全場共輸了3球.也就是
(-2)+(-1)=-3.
現(xiàn)在,請同學們說出其他可能的情形.
答:上半場贏了3球,下半場輸了2球,全場贏了1球,也就是
(+3)+(-2)=+1;
上半場輸了3球,下半場贏了2球,全場輸了1球,也就是
(-3)+(+2)=-1;
上半場贏了3球下半場不輸不贏,全場仍贏3球,也就是
(+3)+0=+3;
上半場輸了2球,下半場兩隊都沒有進球,全場仍輸2球,也就是
(-2)+0=-2;
上半場打平,下半場也打平,全場仍是平局,也就是
0+0=0.
上面我們列出了兩個有理數(shù)相加的7種不同情形,并根據它們的具體意義得出了它們相加的和.但是,要計算兩個有理數(shù)相加所得的和,我們總不能一直用這種方法.現(xiàn)在請同學們仔細觀察比較這7個算式,你能從中發(fā)現(xiàn)有理數(shù)加法的運算法則嗎?也就是結果的符號怎么定?絕對值怎么算?
這里,先讓學生思考,師生交流,再由學生自己歸納出有理數(shù)加法法則:
1.同號兩數(shù)相加,取相同的符號,并把絕對值相加;
2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0;
3.一個數(shù)同0相加,仍得這個數(shù).
。ㄈ⿷门e例 變式練習&&</p>
例1 口答下列算式的結果
(1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);
(5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);(8)0+0.
學生逐題口答后,師生共同得出:進行有理數(shù)加法,先要判斷兩個加數(shù)是同號還是異號,有一個加數(shù)是否為零;再根據兩個加數(shù)符號的具體情況,選用某一條加法法則.進行計算時,通常應該先確定“和”的符號,再計算“和”的絕對值.
例2(教科書的例1)
解:(1)(-3)+(-9) (兩個加數(shù)同號,用加法法則的第1條計算)
=-(3+9) (和取負號,把絕對值相加)
=-12.
。2)(-4.7)+3.9 (兩個加數(shù)異號,用加法法則的第2條計算)
=-(4.7-3.9) (和取負號,把大的絕對值減去小的絕對值)
=-0.8
例3(教科書的例2)教師在算出紅隊的凈勝球數(shù)后,學生自己算黃隊和藍隊的凈勝球數(shù)
下面請同學們計算下列各題以及教科書第23頁練習第1與第2題
(1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);
學生書面練習,四位學生板演,教師巡視指導,學生交流,師生評價。
。ㄋ模┬〗Y
1.本節(jié)課你學到了什么?
2.本節(jié)課你有什么感受?(由學生自己小結)
。ㄎ澹┳鳂I(yè)設計
1.計算:
(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);(4)(+6)+(+9);
(5)67+(-73);(6)(-84)+(-59);(7)-33+48;(8)(-56)+37.
2.計算:
(1)(-0.9)+(-2.7); (2)3.8+(-8.4);(3)(-0.5)+3;(4)3.29+1.78;
(5)7+(-3.04);(6)(-2.9)+(-0.31)(7)(-9.18)+6.18; (8)(-0.78)+0.
3.用“>”或“<”號填空:
(1)如果a>0,b>0,那么a+b ______0;
(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;
(4)如果a<0,b>0,|a|>|b|,那么a+b ______0
。┌鍟O計
1.3.1有理數(shù)加法
一、加法法則二、例1例2例3
有理數(shù)的加法教案2
教學目標:
1、使學生掌握有理數(shù)加法的運算律,并能運用加法運算律簡化運算。
2、培養(yǎng)學生觀察、比較、歸納及運算能力。
重點:有理數(shù)加法運算律及其運用。
重點:靈活運用運算律
教學過程:
一、創(chuàng)設情境,引入新課
1、小學時已學過的加法運算律有哪幾條?
2、猜一猜:在有理數(shù)的加法中,這兩條運算律仍然適用嗎?
3、(1)計算30+(-20)=__________=______,-20+30=___________=_____;
(2)[8+(-5)]+(-4)=_______=______, 8+[(-5)+(-4)]=_______=______。
二、講授新課
教師:你會用文字表述加法的兩條運算律嗎?你會用字母表示加法的這兩條運算律嗎?
。▽W生回答省略)
師生共同歸納:加法交換律:兩個數(shù)相加,交換加數(shù)的位置,和不變。 即:a+b=b+a
加法結合律:三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。即(a+b)+c=a+(b+c)
講解例3
教師:例3中是怎樣使計算簡化的'?這樣做的根據是什么?(請兩位同學起來回答)
三、鞏固知識
教師:例4中用了兩種方法,比較兩種解法,哪種方法比較好?解法2中使用了哪些運算律?
師生共同得出:解法2比較好,因為它的運算量比較小。解法2中使用了加法交換律和加法結合律。
四、總結
本節(jié)課主要學習有理數(shù)加法運算律及其運用,主要用到的思想方法是類比思想,需要注意的是:有理數(shù)的加法運算律與小學學習的運算律相同,運用加法運算律的目的為了簡化運算。解題技巧是將正數(shù)分別相加,再把負數(shù)分別相加,然后再把它們的和相加。
五、布置作業(yè)
有理數(shù)的加法教案3
第一課時
三維目標
一、知識與技能
理解有理數(shù)加法的意義,掌握有理數(shù)加法法則,并能準確地進行有理數(shù)的加法運算。
二、過程與方法
引導學生觀察符號及絕對值與兩個加數(shù)的符號及其他絕對值的關系,培養(yǎng)學生的分類、歸納、概括能力。
三、情感態(tài)度與價值觀
培養(yǎng)學生主動探索的良好學習習慣。
教學重、難點與關鍵
1.重點:掌握有理數(shù)加法法則,會進行有理數(shù)的加法運算。
2.難點:異號兩數(shù)相加的法則。
3.關鍵:培養(yǎng)學生主動探索的良好學習習慣。
四、教學過程
一、復習提問,引入新課
1.有理數(shù)的絕對值是怎樣定義的?如何計算一個數(shù)的絕對值?
2.比較下列每對數(shù)的大小。
(1)-3和-2; (2)│-5│和│5│; (3)-2與│-1│;(4)-(-7)和-│-7│。
五、新授
在小學里,我們已學習了加、減、乘、除四則運算,當時學習的運算是在正有理數(shù)和零的范圍內。然而實際問題中做加法運算的數(shù)有可能超出正數(shù)范圍,例如,足球循環(huán)賽中,可以把進球數(shù)記為正數(shù),失球數(shù)記為負數(shù),它們的和叫做凈勝球數(shù)。本章前言中,紅隊進4個球,失2個球;藍隊進1個球,失1個球,那么哪個隊的`凈勝球多呢?
要解決這個問題,先要分別求出它們的凈勝球數(shù)。
紅隊的凈勝球數(shù)為:4+(-2);
藍隊的凈勝球數(shù)為:1+(-1)。
這里用到正數(shù)與負數(shù)的加法。
怎樣計算4+(-2)呢?
下面借助數(shù)軸來討論有理數(shù)的加法。
看下面的問題:
一個物體作左右方向的運動,我們規(guī)定向左為負、向右為正。
(1)如果物體先向右運動5m,再向右運動3m,那么兩次運動后總的結果是什么?
有理數(shù)的加法教案4
教學目標:
1通過學生身邊可以嘗試、探索的場景,經歷有理數(shù)加法法則得出的過程,理解有理數(shù)加法法則的合理性。2能進行簡單的有理數(shù)加法運算。3發(fā)展觀察、歸納、猜測驗證等能力。
重點難點:
重點:有理數(shù)加法法則的得出,和的符號的確定;難點:異號兩數(shù)相加
教學過程
一激情引趣,導入新課
1我們早知道正有理數(shù)和零可以做加法運算,所有的有理數(shù)是否都可以進行加法運算呢?這就是我們這節(jié)課要研究的問題,先來分析一下,所有的有理數(shù)相加的時候有哪些情況呢?請你想一想
2從前有一個文盲記錄家里的收入和支出的時候是這樣的,用一顆紅豆代表收入一文錢,用一顆黑豆代表支出一文錢,有一個月他發(fā)現(xiàn)記賬的盒子里有10顆紅豆6顆黑豆,他發(fā)現(xiàn)紅豆比黑豆多了4顆,于是他不僅知道了這個月結余了4文錢還知道了自己這個月的收入和支出情況。我們可以用一個圖形來表示他這種記賬方式。“○”,“●”分別表紅豆和黑豆。
,這個圖形其實就是一個有理數(shù)的.加法算式:(+10)+(-6)=+4下面我們借助數(shù)軸來理解有理數(shù)的加法運算。
二合作交流,探究新知
以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負方向,一個單位代表1千米
1同號兩數(shù)相加
小亮從O點出發(fā),先向西移動2個千米休息一會兒,再向西移動3個千米,兩次走路的總效果等于從點O出發(fā)向_____走了_______千米,用式子表示為_______________.
從上,你發(fā)現(xiàn)了嗎,同號兩數(shù)相加結果的符號怎么確定?結果的絕對值怎么確定?請把你的發(fā)現(xiàn)填在下面的框里。
同號兩數(shù)相加,取__________的符號,并把它們的_____________相加。
2異號兩數(shù)相加
(1)小明先從點O出發(fā),先向東走4千米,發(fā)現(xiàn)口袋里的鑰匙丟了,急急忙忙掉頭向西走了1千米,找到了掉在路邊的鑰匙,小明這兩次走路的效果總等于從點O出發(fā)向___走了____千米,用式子表示為_________________________.
(2)小李先從點O出發(fā),先向東走了1米,突然想起今天家里有事,趕緊掉頭向西往家里走,走了3千米到達家中,小李兩次走路的總效果等于等于吃哦從點O出發(fā),向___走了
_____千米。用式子表達為_______________________.
從上面例子,你發(fā)現(xiàn)了異號兩數(shù)怎么做嗎?把你的結論填在下框中。
異號兩數(shù)相加,絕對值不相等時,取__________________的符號,并用_________的絕對值
減去_______________的絕對值。
3一個數(shù)和零相加,以及互為相反數(shù)相加
(1)某個人第一批貨獲得利潤3萬元,第二批貨物保本,這兩批貨物總的利潤是多少萬元?
(2)某人第一批貨物的利潤是5萬元,第二批貨物虧損5萬元,這兩批貨物總的利潤是多少?
從上問題,你發(fā)現(xiàn)了什么?把你的結論寫在下框中,
互為相反數(shù)的兩個相加得_______,一個數(shù)和零相加,任得____________________.
三應用遷移,拓展提高
例1計算(1)(-8)+(-12)(2)(-3.75)+(-0.25)
(3)(-5)+9(4)(–10)+7
例2計算(1)(-3)+(2)(-)+(-)
例3填空
(1)-7+____=0(2)(+)+______=-(3)____+(-)=(4)__+=
四課堂練習,鞏固提高
P21
五反思小結鞏固提高
有理數(shù)的加法法則有哪些?請你把它們寫在下面:
1
2
3
4
六作業(yè)p24-25A組1-4B1
有理數(shù)的加法教案5
1.教學目標
1.1地位、作用
在初中階段,要培養(yǎng)學生的運算能力、邏輯思維能力和空間想象能力以及讓學生根據一些現(xiàn)實模型,把實際問題轉化成數(shù)學問題的數(shù)學意識,增強學生對數(shù)學的理解和解決實際問題的能力。運算能力的培養(yǎng)主要是在初一階段完成。有理數(shù)的運算是初等數(shù)學的基本運算,掌握有理數(shù)的運算,是學好后續(xù)內容的重要前提。有理數(shù)的加法作為有理數(shù)的運算的一種,它是有理數(shù)運算的重要基礎之一,也是整個初中代數(shù)的一個基礎,它直接關系到有理數(shù)運算、實數(shù)運算、代數(shù)式運算、解方程、研究函數(shù)等內容的學習。
1.2學情分析
在初中數(shù)學教學中,非智力因素在認知過程中起十分重要的作用,而興趣在非智力因素中占有特殊的地位,它是學生學習自覺性和積極性的核心因素,是學習的強化劑。因此,從初一開始培養(yǎng)學生對數(shù)學的興趣,是其學好數(shù)學的重要保障。圍繞這一點,在教學中要讓不同程度的學生都有體驗成功的機會,教學中教師為導、學生為主,充分認識初一學生這個年齡段的心理特征:好奇心強;好勝心強;抽象思維能力弱,過分依賴直觀;意志薄弱,缺乏毅力。
另一方面,課本知識的傳授是符合學生的認知發(fā)展特點的。在前期段,學生已經儲藏了兩個正數(shù)的加法,較大數(shù)減較小數(shù)的減法,引入了負數(shù),有必要再學習有理數(shù)的加法,然后過渡到有理數(shù)的其它運算,再到式的運算、方程、函數(shù)的運算;同時,負數(shù)、數(shù)軸、絕對值的學習又為這節(jié)課的學習方法奠定了基礎。
1.3教學目標
根據本節(jié)所處的地位與作用,結合學生的具體學情,確定本節(jié)課的教學目標如下:
知識目標:通過將生活中的問題轉化為有理數(shù)加法的全過程,使學生直觀形象地理解有理數(shù)加法的意義,掌握有理數(shù)的加法法則,并能正確運用。
能力目標:通過情境的設計,培養(yǎng)學生的探索創(chuàng)新精神。在學生學習的`過程中,滲透分類思想、數(shù)形結合思想與及綜合、歸納、概括的能力。
情感目標:通過教師引導下的探索,讓學生感受到數(shù)學學習的價值與樂趣。
1.4教材處理
根據本節(jié)教材的內容,我把有理數(shù)的加法劃分為兩個課時,第一課時學習有理數(shù)的加法法則并能準確進行兩個數(shù)的加法運算;第二節(jié)課學習有理數(shù)的加法運算律并能準確進行多個數(shù)的加法運算。
2.重點、難點
2.1教學重點:有理數(shù)加法法則的理解與運用(而不是簡單地記憶法則)。
2.2教學難點:異號兩數(shù)加法的實際意義及法則的歸納。
3.教學方法與教學手段
本課采用多媒體輔助教學,從學生熟悉的人物出發(fā),激發(fā)學生探索欲;通過層層鋪墊,引導學生利用已學數(shù)學工具探索新知;在學生探索的基礎上,有意識地引導學生對多樣化的結果進行分類整理;在法則的提煉過程中,培養(yǎng)學生類比、歸納和概括的學習能力。
在本節(jié)的設計過程中,利用了一道開放性習題引出課題,讓學生在研究中學習,對學生進行能力培養(yǎng),充分跨越學生的最近發(fā)展區(qū)。
4.教學過程:
4.1創(chuàng)設情境,讓學生的思維“動”起來
[生活情境]劉翔是世界男子青年錦標賽110米欄的冠軍,是中國人的驕傲。從他的體育精神中我們應該學習他堅忍不拔的刻苦精神,激勵學生愛國、立志。將跑道抽象為數(shù)軸,起跑點為原點,將生活問題數(shù)學化。
說明:這種從生活到數(shù)學的建模,從學生感興趣的題材出發(fā),為創(chuàng)設下文的探索情境作一個興奮點的刺激,讓每個學生都有信心并且能夠積極嘗試、探索。
4.2體驗進程,讓學生的思維“活”起來
“數(shù)學是問題的心臟”,是教學的出發(fā)點,由問題引入課題能使學生產生較強的未知欲。
[開放式探索]劉翔在一條東西方向的跑道上往返跑步進行訓練,他連續(xù)跑了兩段路,共跑了80米。問劉翔兩次以后的位置可能在哪里?設計意圖:這是一道條件不唯一,結果也不唯一的開放性題型,對學生有一定的挑戰(zhàn)性。它的優(yōu)點在于:只要理解題意,任何一個學生都能答對至少一種正確答案;同時它的答案又分多種情況,學生由于思維的不完備性,很容易丟失答案,并且這種錯誤在別人的提醒中能馬上恍然大悟。這是一道能鍛煉學生思維的靈活性、嚴謹性及答案適用分類討論、培養(yǎng)學生概括能力的好題。在本題中,包含學生對有理數(shù)加法的意義的理解及探索有理數(shù)加法加數(shù)的幾種類別(從正負性上區(qū)分),在求和的過程中,讓學生有機會經歷從實物模擬到表象操作再到符號操作的轉化。
教學方法:用課件幫助學生思維從“實物操作”過渡到“表象操作”并優(yōu)化思路;給予學生充分的思考機會;善于抓住學生思維的弱勢因勢利導。
預計困難:①學生直觀思維理解“共跑了80米”就是在離出發(fā)點80米遠的地方。這是一個距離與位移的概念混淆并且教學中不宜新增概念。 ②條件中的“兩段”和“80米”分別對應加法中的什么量?有的學生不理解題意,可能放棄。
處理方法:①教學中學生思維上的弱點也可能會成為他這堂課思維的亮點,讓學生在練習紙上嘗試“實物操作”思維方式,自己突破思維瓶頸。②在學生正確理解80米的條件使用方法后,再讓學生比較80與加數(shù)的絕對值、和的絕對值的關系,在理解能力上更上一層樓。③區(qū)別不同程度的學生,可以從“列式子”,“列等式”,問“為什么”逐步遞進,讓盡可能多的學生嘗試最近發(fā)展區(qū)。
教學注意點:要明確本堂課的教學重點和目標,對開放題的探索淺嘗止,不深究問題的所有可能性,剪輯學生答案盡快引出課題。
4.3探究規(guī)律,讓學生的思維“跳”起來
用分類討論的方法進行有理數(shù)的加法規(guī)律的歸納是本節(jié)課的重點和難點,教師要依據學生現(xiàn)有得出的學習發(fā)現(xiàn)組織語言,減少指示或命令性語言,爭取把課堂靜止或學生不理解時間減至最少。
在答案的匯總過程中,要肯定學生的探索,愛護學生的學習興趣和探索欲。讓學生作課堂的主人,陳述自己的結果。對學生的不完整或不準確回答,教師適當延遲評價;要鼓勵學生創(chuàng)造性思維,教師要及時抓住學生智慧的火花的閃現(xiàn),這一瞬間的心理激勵,是培養(yǎng)學生創(chuàng)造力、充分挖掘潛能的有效途徑。
預先設想學生思路,可能從以下方面分類歸納,探索規(guī)律:
①從加數(shù)的不同符號情況(可遇見情況:正數(shù)+正數(shù);負數(shù)+負數(shù);正數(shù)+負數(shù);數(shù)+0)
、趶募訑(shù)的不同數(shù)值情況(加數(shù)為整數(shù);加數(shù)為小數(shù))
、蹚挠欣頂(shù)加法法則的分類(同號兩數(shù)相加;異號兩數(shù)相加;同0相加)
④從向量的迭加性方面(加數(shù)的絕對值相加;加數(shù)的絕對值相減)
、輳暮偷姆柎_定方面(同號兩數(shù)相加符號的確定;異號兩數(shù)相加符號的確定)
教學中要避免課堂熱熱鬧鬧,卻陷入數(shù)學教學的淺薄與貧乏。
有理數(shù)的加法教案6
今天我說課的題目是“有理數(shù)的加法(一)"。本節(jié)課選自華東師范大學出版社出版的〈義務教育課程標準實驗教科書〉七年級(上),。這一節(jié)課是本冊書第二章第六節(jié)第一課時的內容。下面我就從以下四個方面一一教材分析、教材處理、教學方法和教學手段、教學過程的設計向大家介紹一下我對本節(jié)課的理解與設計。
一、教材分析
分析本節(jié)課在教材中的地位和作用,以及在分析數(shù)學大綱的基礎上確定本節(jié)課的教學目標、重點和難點。首先來看一下本節(jié)課在教材中的地位和作用。
1、 有理數(shù)的加法在整個知識系統(tǒng)中的地位和作用是很重要的。初中階段要培養(yǎng)學生的運算能力、邏輯思維能力和空間想象能力以及讓學生根據一些現(xiàn)實模型,把它轉化成數(shù)學問題,從而培養(yǎng)學生的數(shù)學意識,增強學生對數(shù)學的理解和解決實際問題的能力。運算能力的培養(yǎng)主要是在初一階段完成。有理數(shù)的加法作為有理數(shù)的運算的一種,它是有理數(shù)運算的重要基礎之一,它是整個初中代數(shù)的一個基礎,它直接關系到有理數(shù)運算、實數(shù)運算、代數(shù)式運算、解方程、、研究函數(shù)等內容的學習。
2、 就第二章而言,有理數(shù)的加法是本章的一個重點。有理數(shù)這一章分為兩大部分一-有理數(shù)的意義和有理數(shù)的運算,有理數(shù)的意義是有理數(shù)運算的基礎,有理數(shù)的混合運算是這一章的難點,但混合運算是以各種基本運算為基礎的。在有理數(shù)范圍內進行的各種運算:加、減法可以統(tǒng)一成為加法,乘法、除法和乘方可以統(tǒng)一成乘法,因此加法和乘法的運算是本章的關鍵,而加法又是學生接觸的第一種有理數(shù)運算,學生能否接受和形成在有理數(shù)范圍內進行的各種運算的思考方式(確定結果的符合和絕對值),關鍵是這一節(jié)的學習。
從以上兩點不難看出它的地位和作用都是很重要的。
接下來,介紹本節(jié)課的教學目標、重點和難點。(結合微機顯示)
教學大綱是我們確定教學目標,重點和難點的依據。教學大鋼規(guī)定,在有理數(shù)的加法的第一節(jié)要使學生理解有理數(shù)加法的意義,理解有理數(shù)的加法法則,并運用法則進行準確運算。因此根據教學大綱的要求,確定了本節(jié)課的教學目標。1、知識目標是:“(1)理解有理數(shù)加法的意義;(2)理解并掌握有理數(shù)加法的法則;(3)應用有理數(shù)加法法則進行準確運算;(4)滲透數(shù)形結合的思想。2能力目標是:(1)培養(yǎng)學生準確運算的能力;(2)培養(yǎng)學生歸納總結知識的能力;3、德育目標是;(1)滲透由特殊到一般的辯證唯物主義思想:(2)培養(yǎng)學生嚴謹?shù)乃季S品質。有理數(shù)加法的意義與小學學習的在正有理數(shù)和零的范圍內進行的加法運算的意義相同,讓學生理解即可,有理數(shù)的加法法則的理解與運用是本節(jié)的重點內容。因此本節(jié)課的重點是:有理數(shù)加法法則的理解與運用。由于本階段的學生很難把握住事物主要特征:如異號兩數(shù)、絕對值不相等的異號兩數(shù)和互為相反數(shù)之間的關系,這就對法則的理解造成困難。因此我確定本節(jié)課的難,是是;有理數(shù)加法法則的理解。
二、教材處理
本節(jié)課是在前面學習了有理數(shù)的意義的基礎上進行的,學生已經很牢固地掌握了正數(shù)、負數(shù)、數(shù)軸、相反數(shù)、絕對值等概念,因此我沒有把時間過多地放在復習這些舊知識上,而是利用學生的好奇心,采用生動形象的事例,讓學生充當指揮官的角色,親身參加探索發(fā)現(xiàn),從而獲取知識。在法則的得出過程當中,我引進了現(xiàn)代化的教學工具微機,讓學生在微機演示的一種動態(tài)變化中自己發(fā)現(xiàn)規(guī)律歸納總結,這不但增加了課堂的趣味性提高了學生的能力。而且直接地向學生滲透了數(shù)形結合的思想。在法則的應用這一環(huán)節(jié)我又選配了一些變式練習,通過書上的基本練習達到訓練雙基的目的,通過變式練習達到發(fā)展智力、提高能力的目的。這些我將在教學過程的設計簾具體體現(xiàn)。而且在做練習的過程當中讓學生互相提問,使課堂在學生的參與下積極有序的進行。
三、教學方法和數(shù)學孚段
在教學過程中,我注重體現(xiàn)教師的導向作用和學生的主體地位,。本節(jié)是新課內容的學習,。教學過程中盡力引導學生成為知識的發(fā)現(xiàn)者,把教師的點撥和學生解決問題結合起來,為學生創(chuàng)設情境,從而不斷激發(fā)學生的求知欲望和學習興趣,使學生輕松愉快地學習不斷克服學生學習中的被動情況,使其在教學過程中在掌握知識同時、發(fā)展智力、受到教育。
四、教學過程的設計
1, 引入:再課堂的引入上,開始我本打算選擇教材上的例子,但是它過于簡單。并且不宜于引起學生的注意,所以我選擇了學生們感興趣的軍事問題,讓學生在充當指揮官的同時,有一種解決問題的成就感,從而使學生積極主動的學習,并且營造了良好的學習氛圍。
2, 探索規(guī)律:法則的得出重要體現(xiàn)知識的發(fā)生,發(fā)展,形成過程。我通過了一個小人在坐標軸上來回的移動,使學生在小人的移動過程當中體會兩個數(shù)相加的變化規(guī)律。由于采用了形式活潑的教學手段,學生能夠全副身心的投入到思考問題中去,讓學生親身參加了探索發(fā)現(xiàn),獲取知識和技能的全過程。最后由學生對規(guī)律進行歸納總結補充,從而得出有理數(shù)的加法法則。
3, 鞏固練習:再習題的配備上,我注意了學生的思維是一個循序漸進的過程,所以習題的配備由難而易,使學生在練習的過程當中能夠逐步的提高能力,得到發(fā)展。并且采用男生出題,女生回答;女生出題,男生回答,活躍課堂氣氛,充分調動學生的積極性。使學生在一種比較活躍的氛圍中,解決各種問題。
4, 歸納總結:歸納總結由學生完成,并且做適當?shù)难a充。最后教師對本節(jié)的課進行說明。
以上是我對本節(jié)課的理解和設計。希望各位老師批評指正,以達到提高個人教學能力的目的。
要的。初中階段要培養(yǎng)學生的運算能力、邏輯思維能力和空間想象能力以及讓學生根據一些現(xiàn)實模型,把它轉化成數(shù)學問題,從而培養(yǎng)學生的數(shù)學意識,增強學生對數(shù)學的理解和解決實際問題的能力。運算能力的培養(yǎng)主要是在初一階段完成。有理數(shù)的加法作為有理數(shù)的運算的'一種,它是有理數(shù)運算的重要基礎之一,它是整個初中代數(shù)的一個基礎,它直接關系到有理數(shù)運算、實數(shù)運算、代數(shù)式運算、解方程、、研究函數(shù)等內容的學習。
2、 就第一章而言,有理數(shù)的加法是本章的一個重點。有理數(shù)這一章分為兩大部分一-有理數(shù)的意義和有理數(shù)的運算,有理數(shù)的意義是有理數(shù)運算的基礎,有理數(shù)的混合運算是這一章的難點,但混合運算是以各種基本運算為基礎的。在有理數(shù)范圍內進行的各種運算:加、減法可以統(tǒng)一成為加法,乘法、除法和乘方可以統(tǒng)一成乘法,因此加法和乘法的運算是本章的關鍵,而加法又是學生接觸的第一種有理數(shù)運算,學生能否接受和形成在有理數(shù)范圍內進行的各種運算的思考方式(確定結果的符合和絕對值),關鍵是這一節(jié)的學習。
從以上兩點不難看出它的地位和作用都是很重要的。
接下來,介紹本節(jié)課的教學目標、重點和難點。
教學大綱是我們確定教學目標,重點和難點的依據。教學大綱規(guī)定,在有理數(shù)的加法的第一節(jié)要使學生理解有理數(shù)加法的意義,理解有理數(shù)的加法法則,并運用法則進行準確運算。因此根據教學大綱的要求,確定了本節(jié)課的教學目標。1、知識目標是:“(1)理解有理數(shù)加法的意義;(2)理解并掌握有理數(shù)加法的法則;(3)應用有理數(shù)加法法則進行準確運算;(4)滲透數(shù)形結合的思想。2能力目標是:(1)培養(yǎng)學生準確運算的能力;(2)培養(yǎng)學生歸納總結知識的能力;3、德育目標是;(1)滲透由特殊到一般的辯證唯物主義思想:(2)培養(yǎng)學生嚴謹?shù)乃季S品質。有理數(shù)加法的意義與小學學習的在正有理數(shù)和零的范圍內進行的加法運算的意義相同,讓學生理解即可,有理數(shù)的加法法則的理解與運用是本節(jié)的重點內容。因此本節(jié)課的重點是:有理數(shù)加法法則的理解與運用。由于本階段的學生很難把握住事物主要特征:如異號兩數(shù)、絕對值不相等的異號兩數(shù)和互為相反數(shù)之間的關系,這就對法則的理解造成困難。因此我確定本節(jié)課的難,是有理數(shù)加法法則的理解。
以上是我對本節(jié)課的理解和設計。希望各位老師批評指正,以達到提高個人教學能力的目的。
有理數(shù)的加法教案7
【教學目標】
1.理解有理數(shù)加法的實際意義;
2.會作簡單的加法計算;
3.感受到原來用減法算的問題現(xiàn)在也可以用加法算.
【對話探索設計】
〖探索1〗
(1)某倉庫第一天運進300噸化肥,第二天又運進200噸化肥,兩天一共運進多少噸?
(2)某倉庫第一天運進300噸化肥,第二天運出200噸化肥,兩天總的結果一共運進多少噸?
(3)某倉庫第一天運進300噸化肥,第二天又運進-200噸化肥,兩天一共運進多少噸?
(4)把第(3)題的算式列為300+(-200),有道理嗎?
(5)某倉庫第一天運進a噸化肥,第二天又運進b噸化肥,兩天一共運進多少噸?
〖探索2〗
如果物體先向右運動,再向右運動,那么兩次運動后總的結果是什么?
假設原點為運動起點,用下面的數(shù)軸檢驗你的'答案.
在足球比賽中,通常把進球數(shù)記為正數(shù),失球數(shù)記為負數(shù),它們的和叫做凈勝球數(shù).若某場比賽紅隊勝黃隊5:2(即紅隊進5個球,失2個球),紅隊凈勝幾個球?
〖小游戲〗
(請一位同學到黑板前)前進5步,又前進-3步,那么兩次運動后總的結果是什么?若是后退-1步,又后退3步呢?
〖練習〗
1.登山隊員第一天向上攀登,第二天又向上攀登(天氣惡劣!),兩天一共向上攀登多少米?
2.第一天營業(yè)贏利90元,第二天虧本80元,兩天一共贏利多少元?
〖補充作業(yè)〗
1.分別用加法和減法的算式表示下面每小題的結果(能求出得數(shù)最好):
(1)溫度由下降;(2)倉庫原有化肥200t,又運進-120t;
(3)標準重量是,超過標準重量;(4)第一天盈利-300元,第二天盈利100元.
2.借助數(shù)軸用加法計算:
(1)前進,又前進,那么兩次運動后總的結果是什么?
(2)上午8時的氣溫是,下午5時的氣溫比上午8時下降,下午5時的氣溫是多少?
3.某潛水員先潛入水下,他的位置記為.然后又上升,這時他處在什么位置?
有理數(shù)的加法教案8
學習過程:
一、自主學習不動筆墨不讀書!請拿出你的筆和你的激情,探究新知:
1.小學學過的加法運算律有哪些?舉例說明運用運算律有何好處?
2.加法的交換律:
兩個數(shù)相加,交換xx的位置,和不變.用式子表示:a+b=。
3.加法的結合律:
《1.3.1有理數(shù)的加法》同步練習含答案
在進行兩個異號有理數(shù)的加法運算時,其計算步驟如下:
①將絕對值較大的有理數(shù)的符號作為結果的符號并記住;
、趯⒂涀〉姆柡徒^對值的差一起作為最終的計算結果;
、塾幂^大的絕對值減去較小的.絕對值;
、芮髢蓚有理數(shù)的絕對值;⑤比較兩個絕對值的大小.其中操作順序正確的是( )
A.①②③④⑤B.④⑤③②①C.①⑤③④②D.④⑤①③②
《1.3.1有理數(shù)的加法》同步練習題(含答案)
10.小蟲從某點A出發(fā)在一直線上來回爬行,假定向右爬行的路程記為正數(shù),向左爬行的路程記為負數(shù),爬行的各段路程依次為(單位:cm):+5,-3,+10,-8,-6,+12,-10。
(1)小蟲最后是否回到出發(fā)點A?
(2)在爬行過程中,如果每爬行1cm獎勵一粒芝麻,那么小蟲一共得到多少粒芝麻?
解析(1)是.(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=[(+5)+(+10)+(+12)]+[(-3)+(-8)+(-6)+(-10)]=27-27=0,
所以小蟲最后回到出發(fā)點A。
(2)小蟲爬行的總路程為|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm)。
所以小蟲一共得到54粒芝麻。
有理數(shù)的加法教案9
【教學目標】
1. 通過學習,能感受到數(shù)學知識來源于生活又可應用于實際生活,激發(fā)學習的興趣。
2.通過探索,能歸納總結出有理數(shù)加法法則,理解有理數(shù)加法的意義滲透分類思想。
3.掌握有理數(shù)加法法則,并能準確地進行有理數(shù)加法運算。
【學習重點、難點】
重點:了解有理數(shù)加法的意義,會根據有理數(shù)加法法則進行有理數(shù)加法計算;
難點:異號兩數(shù)如何相加的法則。
【學習過程】
一、 預習自學:
1.蛋糕店上半年掙5萬,下半年掙3萬,請問一年共掙多少錢?
2.蛋糕店上半年賠5萬,下半年賠3萬,請問一年共掙多少錢?
3.蛋糕店上半年掙5萬,下半年賠3萬,請問一年共掙多少錢?
4.蛋糕店上半年賠5萬,下半年掙3萬,請問一年共掙多少錢?
5.蛋糕店上半年掙5萬,下半年賠5萬,請問一年共掙多少錢?
6.蛋糕店上半年賠5萬,下半年掙0萬,請問一年共掙多少錢?
請你列式計算,并引導學生對前面的七個加法運算進行合理的分類探討:和的符號怎樣確定?和的絕對值怎樣確定?(小組討論展示)
二、 教師點撥
知識點一:引導學生對前面的七個加法運算進行合理的分類
同號兩數(shù)相加: (+5)+(+3)= ______.(-5)+(-3)= ______
異號兩數(shù)相加:(+5)+(-3)= ______;(-5)+(+3)= ______;
。ǎ5)+(-5)=______
一數(shù)與零相加: (-5)+0=______;
知識點二:探討:和的符號怎樣確定?和的絕對值怎樣確定?
結論:有理數(shù)加法法則:
1.同號兩數(shù)相加,取相同的符號,并把絕對值相加。
2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;橄喾磾(shù)的兩個數(shù)相加得0。
3.一個數(shù)同0相加,仍得這個數(shù)。
三.例題精講;例1(學生自學,教師示范。注意解題步驟)
四、課堂練習;36頁隨堂練習與習題(小組展示交流)
五、當堂檢測;
1.用生活中的事例說明下列算是的意義,并計算出結果:
。-2)+(-3);(-3)+2
2.有理數(shù)加法法則:
絕對值不相等的`兩數(shù)相加,取絕對值的加數(shù)的符號,并用較大的絕對值較小的絕對值. 互為相反數(shù)的兩個數(shù)相加得.
3.計算:(+15)+(-7);(-39)+(-21);
。-37)+22;(-3)+(+3)
有理數(shù)的加法教案10
(一)知識與技能目標
1、經歷探索有理數(shù)加法法則的過程,理解有理數(shù)的加法法則。
2、運用有理數(shù)加法法則熟練進行整數(shù)加法運算。
(二)過程與方法目標
1、在教師創(chuàng)設的熟悉情境與學生探索法則的過程中,通過觀察結果的符號及絕對值與兩個加數(shù)的符號及其絕對值的關系,培養(yǎng)學生的分類、歸納、概括的能力。
2、在探索過程中感受數(shù)形結合和分類討論的數(shù)學思想。
3、滲透由特殊到一般的唯物辯證法思想
(三)情感態(tài)度與價值觀目標
(1)通過師生交流、探索,激發(fā)學生的學習興趣、求知欲望,養(yǎng)成良好的數(shù)學思維品質。
。2)讓學生體會到數(shù)學知識于生活、服務于生活,培養(yǎng)學生對數(shù)學的熱愛,培養(yǎng)學生運用數(shù)學的意識。
。3)培養(yǎng)學生合作意識,體驗成功,樹立學習自信心。
二、教學重點、難點:
重點:
理解和運用有理數(shù)的加法法則難點:理解有理數(shù)加法法則,尤其是理解異號兩數(shù)相加的法則 三、教學組織與教材處理:
在教學過程中一如既往的開展“新、行、省、信”四字教育模式的教學。新:創(chuàng)設新的問題情境(足球凈勝球數(shù))、開展新的學習方式(自主、合作、交流)、進行新的評價體系(個人評價、教師評價與小組評價相結合);行:在教師的啟發(fā)引導下自主、合作探究新知(有理數(shù)的加法法則),教師關注學生是否積極思考問題(幾組有理數(shù)加法的符號與絕對值特征)、是否主動參與討論(同號與異號的特征)、是否敢于發(fā)表自己的見解(有理數(shù)加法法則的概括);。涸谔厥鈱嵗幕A上觀察、歸納、概括有理數(shù)的加法法則,在實例講解和自主練習的基礎上總結心得、反省得失(如:解后思)。信:在本節(jié)課的探究法則與運用法則中體驗成功,增添學習興趣,樹立學習自信心(如在教師用數(shù)帶正號球的方法得出(+2)+(+3)= +5后,學生按照此思路可以很快得出(-2)+(-3)等其它情形。又如以口答形式判斷幾組有理數(shù)加法的和的符號和在最后以“挑戰(zhàn)老師”的形式判斷一句話的正誤等等)。同時本節(jié)課在運用“正負抵消”和數(shù)軸探討有理數(shù)法則時,教師只對第一個或前兩個進行指導和示范,其它的留給學生獨立得出或合作完成。另外利用多媒體來輔助教學,使教學內容直觀形象化,使學生在比較真實的環(huán)境里面體驗數(shù)學的生活性。
四、教學流程
。ㄒ唬┮胄轮---新師播放一段世界杯的音樂,讓學生感受激情,再問“大家知道今年世界杯的冠軍得主是誰?”學生回答后師給與評價,然后出示“凈勝球”問題:凱旋足球隊第一場比賽贏了1個球,第二場比賽輸了1個球。該隊這兩場比賽的凈勝球數(shù)是多少?學生回答后教師引導學生用數(shù)學式子表示:把贏1個球記為“+1”,輸1個球記為“-1” ,凈勝球數(shù)應是(+1)+(-1) =0。師再問:如果該隊第一場比賽輸1個球,第二場比賽贏1個球.那么該隊這兩場比賽的凈勝球數(shù)為多少?師引導學生用(-1) + (+1) =0的式子說明。 (二)探究新知---行
1、師:同學們今天我們借助這兩個式子來探討有理數(shù)的加法。為了更形象的說明問題,我們用 1個 表示 +1,用 1個 表示 -1,那么就表示0。
2、師:首先我們一起來計算(+2)+(+3)。教師演示:先出現(xiàn)兩個帶正號的球,再出現(xiàn)三個帶正號的球,用方框框住總共有五個帶正號的`球,也就是說(+2)+(+3)= +5。師問:聰明的同學們能告訴我(-2)+(-3)等于多少嗎?教師先讓學生思考再回答,教師演示過程,并給與積極評價。在前兩例的基礎上再啟發(fā)學生思考:(-3)+2,3+(-2),(-4) + 4三種情形。(注:此三例關鍵是“正負抵消”,教師教學時引導學生觀察并運用這個思想)。
3、師:同學們,其實我們還可以用數(shù)軸來表示剛才這幾道題的運算過程。出示數(shù)軸,并規(guī)定正負方向。師先舉例說明:先向西移動2個單位,再向西移動3個單位,則一共向西移動了5個單位。所以:(-2)+(-3)=-5。師然后讓學生用數(shù)軸的方法運算(-3)+2,3+(-2),(-4) + 4三個式子。(注:學生在表示(-3)+2的移動過程時對于+2可能不能正確表示。師應強調加法是“相繼”活動的合并,教學時可讓學生先想想再決定到底是從原點出發(fā)還是從-3這個點出發(fā)。對于非常正確的見解,師給與積極評價。)
(三)發(fā)現(xiàn)新知---省
1、教師引導學生觀察剛才的五個例子:
問:兩個有理數(shù)相加,和的符號怎樣確定?和的絕對值怎樣確定?師先讓學生獨立思考,再小組討論。在學生發(fā)表見解時應肯定他們樸素的語言,同時教師引導學生先把他們分成三類:同號類、異號類、相反數(shù)類,再去觀察他們加數(shù)與和的符號和絕對值特征。
2、師生共同得出有理數(shù)加法法則
同號兩數(shù)相加,取相同的符號,并把絕對值相加;異號兩數(shù)相加,取絕對值較大的符號,并把較大的絕對值減去較小的絕對值;相反數(shù)相加,和為零。師問:一個數(shù)同0相加?師生得出仍得這個數(shù)。師引導學生記一記。
(四)運用新知---信 1、范例講解:
例1 計算下列各題:
、180+(-10);
、冢ǎ10)+(-1);
、5+(-5);
、 0+(-2).
教師引導學生先觀察符號特征,再教師示范寫出過程。
解:(1)180+(-10)(異號型 ) =+(180-10)(取絕對值較大的數(shù)的符號, =170 并用較大的絕對值減去較小的絕對值)
、冢ǎ10)+(-1) (同號型) =-(10+1) (取相同的符號,并把絕對值相加)對于③④ 小題,可以讓學生口答。
2、解后思:
教師引導學生反思剛才做題時的基本思路。教師在學生回答的基礎上提煉為三句話: ①確定類型、②確定符號、③確定絕對值。
3、說一說
。ǹ诖穑┐_定下列各題中的符號,并說明理由:
(1) (+5)+(+ 7); (2) (- 10) +(- 3) (3) (+ 6)+(-5)
(4) (+ 3)+(-8)
注:此題意在強化對有理數(shù)加法的符號判斷,特別是異號的情形著重反饋矯正 4、練一練
1、計算下列各式:(1) (-25)+(-7); (2)(-13)+5;(3) (-23)+0; (4)45+(-45)。
2、土星表面的夜間平均溫度為-150度,白天比夜間高27度,那么白天的平均溫度是多少?注:此兩題意在對有理數(shù)加法法則的鞏固和引導學生運用有理數(shù)的加法解決實際問題。第一題教師先讓學生獨立完成,并請四個學生演板。做完后小組之間開展互評,正誤怎樣?有什么值得改 進的地方?對于第二題教師請男女兩個同學比賽進行演板,師給與評價。
5、想一想
請根據 式子(-4)+3,舉出一個恰當?shù)纳钋榫;(聰明的你能舉出多少種新情境?)注:此例意在引導學生關注“生活中的數(shù)學”。對于學生有創(chuàng)意的情境師應給與積極評價。(符合此式子的情境有很多,如:溫度變化問題、足球凈勝球問題、方向行走問題、收入支出問題、水位漲落問題等等)
(五)反省新知---談一談 我學到了什么?
教師引導學生自我反省、自我評價。 師生共同總結:1、有理數(shù)的加法法則,2、運算時的基本思路。
(六)挑戰(zhàn)老師
師說:通過今天的學習,老師認為:“ 兩個有理數(shù)相加,和一定大于其中一個加數(shù)”。老師的說法正確嗎?請聰明的你舉例說明。
(七)超越自我
分別在右圖的圓圈內填上彼此不相等的數(shù),使得 條線上的數(shù)之和為零,你有幾種填法?
(八)布置作業(yè)。
附:“新、行、省、信”
------------我的四字教育法
一、“新”
1、新的教學理念(“春風不讓一木枯”);
2、新的學習方式(“自主、合作、交流、探究”);
3、新的評價體系(制定《成長檔案袋》內設“單元知識總結”、“自己獨特的解法”、“提出挑戰(zhàn)性問題”、“探究性活動記錄”、“自我評價與小組評價”,從而動態(tài)、全方位評價學生)。
二、“行” 1、有品行(引導學生養(yǎng)成良好的數(shù)學學習習慣和培養(yǎng)良好的情感與價值觀); 2、有行動(培養(yǎng)學生主動探究、參與合作和交流的意識)。
有理數(shù)的加法教案11
教學目的:
經歷探索有理數(shù)加法法則,理解有理數(shù)加法的意義。初步掌握有理數(shù)加法法則,并能準確地進行有理數(shù)加法運算。
教學重點:
有理數(shù)的加法法則
教學難點:
異號兩數(shù)相加的法則
教學教程:
一、復習提問:
1、如果向東走5米記作+5米,那么向
西走3米記作__.
2、已知a=-5,b=+3,
︱a︳+︱b︱=_
已知a=-5,b=+3,
︱a︱-︱b︱=__
-1012345678
二、授新課
小明在一條東西向的跑道上,先走了5米,又走了3米,能否確定他現(xiàn)在位于原來位置的.哪個方向?與原來相距多少米?規(guī)定向東的方向為正方向
提問:這題有幾種情況?
小結:有以下四種情況
。1)兩次都向東走,
。2)兩次都向西走
(3)先向東走,再向西走
(4)先向西走,再向東走
根據小結,我們再分析每一種情況:
。1)向東走5米,再向東走3米,一共向東走了多少米?
+5+3(+5)+(+3)=+8
(2)向西走-5米,再向西走-3米,一共向東走了多少米?
-5-3(-3)+(-5)=-8
。ǎ常┫认驏|走5米,再向西走3米,兩次一共向東走了多少米?
。常担ǎ担ǎ常剑
(4)先向西走5米,再向東走3米,兩次一共向東走了多少米?
。担常ǎ担ǎ常剑
下面再看兩種特殊情況:
。ǎ担┫驏|走5米,再向西走5米,兩次一共向東走了多少米
-5+5(+5)+(-5)=0
。ǎ叮┫蛭髯撸得,再向東走0米,兩次一共向東走了多少米?
-5(-5)+0=-5
小結:總結前的六種情況:
同號兩數(shù)相加:(+5)+(+3)=+8
。ǎ担ǎ常剑
異號兩數(shù)相加:(+5)+(-3)=2
。ǎ担ǎ常剑
(+5)+(-5)=0
一數(shù)與零相加:(-5)+0=-5
得出結論:有理數(shù)加法法則
1、同號兩數(shù)相加,取相同的符號,并把絕對值相加
2、絕對值不等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;橄喾磾(shù)的兩個數(shù)相加得零
3、一個數(shù)與零相加,仍得這個數(shù)
例如:
。ǎ4)+(-5)(同號兩數(shù)相加)
解:=-()(取相同的符號)
=-9(并把絕對值相加)
。ǎ玻ǎ叮ń^對值不等的異號兩數(shù)相加)
解:=+()(取絕對值較大的符號)
。剑矗ㄓ幂^大的絕對值減去較小的絕對值)
練習:
口答:
1、(-15)+(-32)=
2、(+10)+(-4)=
3、7+(-4)=
。础ⅲ矗ǎ矗
。、9+(-2)=
。、(-0.5)+4.4=
7、(-9)+0=
。浮ⅲ埃ǎ常
計算:
。1)(-3)+(-9)(2)(-1/2)+(+1/3)
解略
練習:
。1)15+(-22)=
(2)(-13)+(-8)=
。3)(-0·9)+1·5=
(4)2·7+(-3·5)=
。5)1/2+(-2/3)=
。6)(-1/4)+(-1/3)=
練習三:
1、填空:
。1)+11=27(2)7+=4
(3)(-9)+=9(4)12+=0
。5)(-8)+=-15(6)+(-13)=-6
2、用“<”或“>”號填空:
(1)如果a>0,b>0,那么a+b0;
(2)如果a<0,b<0,那么a+b0;
(3)如果a>0,b<0,|a|>|b|,那么a+b0;
(4)如果a<0,b>0,|a|>|b|,那么a+b0
小結:
1、掌握有理數(shù)的加法法則,正確地進
行加法運算。
2、兩個有理數(shù)相加,首先判斷加法類
型,再確定和的符號,最后確定和的絕對值。
作業(yè):課本第38頁2、3
第40頁1、2
有理數(shù)的加法教案12
一、學情及學習內容分析
“有理數(shù)的加法與減法”是基于規(guī)則為主的新授課型
有理數(shù)的加法與減法是在引入“負數(shù)”的基礎上,將數(shù)的范圍擴展到“有理數(shù)”范圍內的加、減法運算。本節(jié)課從學生的生活經歷和經驗出發(fā),創(chuàng)設情境,通過分析生活情境中的事理和觀察溫度計刻度的操作,得到了一些有理數(shù)減法的算式,用“化歸”的思想方法歸納出有理數(shù)減法法則,并應用所學的有理數(shù)減法解決實際問題,整節(jié)課的設計流程和總體思路可以用下圖表示: 生活情境,動手操作------有理數(shù)減法算式-------有理數(shù)減法法則-------有理數(shù)減法的應用
二、教學目標及教學重(難)點
教學目標:
1.知識與技能:會根據減法的法則進行有理數(shù)減法的運算。
2.過程與方法:經歷分析生活情境中的數(shù)學事例,提煉其中的數(shù)學算式,并從中歸納有理數(shù)減
法法則;經歷將法則應用于解題的這一由一般到特殊的過程。
3.情感態(tài)度與價值觀:在由實際情境提煉數(shù)學算式的過程中,感受數(shù)學在我們的生活中;在這
一過程中,滲透轉化的思想方法,感受數(shù)學思想方法的導航作用。
教學重點:有理數(shù)減法法則與運用
教學難點:從實際情境到數(shù)學算式,從數(shù)學算式到法則的提煉,在法則的總結中體現(xiàn)化歸
的思想方法的滲透。
教學方法:觀察探究、合作交流。
三、教學過程設計:
在課前讓學生玩有理數(shù)加法中的撲克牌游戲。
1.情境引入:
師:同學們,大家都看過天氣預報,有沒有注意到里面有“溫差”之說呢?
有效性分析:通過設計“溫差”這一問題情境,進而順利的進入課題,并從列算式角度加以認識,得到一些有理數(shù)減法算式,為后面的化歸思想方法歸納出有理數(shù)減法法則做好素材和算式上的準備。
2.建構活動
活動1:計算溫差
師:有理數(shù)加減3_百度文庫
生1:利用溫度計的刻度直觀得到算式 5 + 3 = 8
生2:利用日溫差的定義可得到算式:5 -(-3)= 8
師: 比較兩式,我們有什么發(fā)現(xiàn)嗎?
生:“-”變“+”,( -3)變3。
活動2:通過舉例子驗證剛才的變化過程,加深對有理數(shù)減法算式的理解。
有理數(shù)加減3_百度文庫
有效性分析:從生活情境中,學生獲取了豐富的素材和有理數(shù)減法運算的算式,為下面觀察算式特點,總結運算方法做好準備。這種由算式到法則的過程,使學生從心理上更易接受,令算式更有實際背景和說服力,為有理數(shù)減法運算法則的提煉和數(shù)學化打下了良好的基礎。
3. 數(shù)學化認識
5 -(-3)=5 + 3( -3)-(-5)=(-3)+ 5
3-(-5) =3 +5(-3)-5=(-3)+ (-5)
師:綜合上面算式的共同特點即被減數(shù)不變,減號變加號,減數(shù)變成它的相反數(shù),我們就得到了有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。有理數(shù)減法概念_百度知道
有效性分析:“化歸”的思想和方法是初中數(shù)學中最重要的方法之一,本節(jié)課的數(shù)學化過程正是通過觀察已有的`算式來發(fā)現(xiàn)和總結“有理數(shù)的減法法則”的,在教學中滲透了“化歸”思想。此外,在化歸為加法運算時,進一步復習加法法則,強化了有理數(shù)的減法與小學學的減法之間的聯(lián)系和區(qū)別:即小學的減法是有理數(shù)減法中的一種特例,即減數(shù)比被減數(shù)小,;當減數(shù)比被減數(shù)大時,小學無法解決的問題現(xiàn)在可以解決了。
4. 基礎性訓練
例1計算下列各題
、0-(-22)②8.5-(-1.5)③(+4)-16
、(?1
2)?1
4⑤15-(-7)⑥(+2)-(+8)
基礎練 :1.課本p 322、3、4
2. 求出數(shù)軸上兩點之間的距離:
。1)表示數(shù)10的點與表示數(shù)4的點;
。2)表示數(shù)2的點與表示數(shù)-4的點;
。3)表示數(shù)-1的點與表示數(shù)-6的點。
有效性分析:基礎性訓練中安排了典型例題,著重訓練學生利用剛學過的“有理數(shù)的減法法則”進行計算的正確性和熟練度,并規(guī)范了計算題目的格式,在格式中進一步熟悉法則,正確運用法則,讓學生明確有理數(shù)的減法的一般步驟是(1)變符號;(2)用加法法則進行計算
5. 拓展延伸
[原創(chuàng)] 巧用撲克牌進行有理數(shù)簡單運算練習
有效性分析:通過撲克牌的兩個活動,進一步調動學生學習有理數(shù)減法運算法則的積極性和主動性,寓教于樂,在活動中通過小組帶動班上所有學生學習的熱情,同時在活動中更加明確運算法則,做到熟練而準確地運用法則,感受并思考:“兩個有理數(shù)相減,差一定比兩個減數(shù)小嗎?”的問題,以區(qū)別于學生在小學中熟知的減法運算,更好的完成本節(jié)課的教學目標。
四、教學反思
“有理數(shù)的加法與減法”的教學,可以有多種不同的設計方案,但大體上可以分為兩類:一類是由老師較快的給出法(本站 推薦)則,用較多的時間組織學生練習,以求熟練的掌握法則;另一類是適當?shù)募訌姺▌t的形成過程,從而在此過程中著力培養(yǎng)學生的觀察、比較、歸納能力,相應的適當壓縮法則的練,如本教學設計。本節(jié)課注重學生自我學習的能力,學生在學習了有理數(shù)加法后,再學習有理數(shù)的減法,教師把學習的主動權歸還學生,不再是教師講,學生聽,現(xiàn)在變?yōu)閷W生講,教師聽,由學生自己發(fā)現(xiàn)問題,分析問題,解決問題。學生與教師分享彼此的思考,經驗和知識,交流彼此的情感,體驗與感悟,豐富教學內容,求的新的發(fā)展,從而達到共識,共享,共進。
有理數(shù)的加法教案13
教學目標
1,在現(xiàn)實背景中理解有理數(shù)加法的意義。
2,經歷探索有理數(shù)加法法則的過程,理解有理數(shù)的加法法則。
3,能積極地參與探究有理數(shù)加法法則的活動,并學會與他人交流合作。
4,能較為熟練地進行有理數(shù)的加法運算,并能解決簡單的實際間題。
5,在教學中適當滲透分類討論思想
教學難點
異號兩數(shù)相加
知識重點
和的符號的確定
教學過程
。◣熒顒樱┰O計理念
設置情境
引入課題回顧用正負數(shù)表示數(shù)量的實際例子;
在足球比賽中,如果把進球數(shù)記為正數(shù),失球數(shù)記為負數(shù),它們的和叫做凈勝球數(shù)。若紅隊進4個球,失2個球,則紅隊的勝球數(shù),可以怎樣表示?藍隊的勝球數(shù)呢?
師:如何進行類似的有理數(shù)的加法運算呢?這就是我們這節(jié)課一起與大家探討的問題。
。ǔ鍪菊n題)讓學生感受到在實際問題中做加法運算的數(shù)可能超出正數(shù)的范圍,體會學習有理數(shù)加法的必要性,激發(fā)學生探究新知的興趣。
分析問題
探究新知如果是球隊在某場比賽中上半場失了兩個球,下
半場失了3個球,那么它的得勝球是幾個呢?算式應該
怎么列?若這支球隊上半場進了2個球,下半場失了3個球,又如何列出算式,求它的得勝球呢?
。▽W生思考回答)
思考:請同學們想想,這支球隊在這場比賽中還可
能出現(xiàn)其他的什么情況?你能列出算式嗎?與同伴交流。
學生相互交流后,教師進一步引導學生可以把兩個有理數(shù)相加歸納為同號兩數(shù)相加、異號兩數(shù)相加、一個數(shù)同零相加這三種情況。
2,借助數(shù)軸來討論有理數(shù)的加法。I
一個物體向左右方向運動,我們規(guī)定向左運動為負,向右為正,向右運動5m,記作5m,向左運動5m,記作—5m。
。1)(小組合作)把我們已經得出的幾種有理數(shù)相加的情況在數(shù)軸上用運動的方向表示出來,并求出結果,解釋它的意義。
。2)交流匯報。(對學習小組的匯報結果,數(shù)軸用實物投影儀展示,算式由教師寫在黑板上)
。3)說一說有理數(shù)相加應注意什么?(符號,絕對值)能用自己的語言歸納如何相加嗎?
(4)在學生歸納的基礎上,教師出示有理數(shù)加法法則。
有理數(shù)加法法則:
1,同號兩數(shù)相加,取相同的符號,并把絕對值相加。
2,絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0。
3,一個數(shù)同。相加,仍得這個數(shù)。再次創(chuàng)設足球比賽情境,一方面與引題相呼應,聯(lián)系密切,另一方面讓學生在此情境中感受到有理數(shù)相加的幾種不同情形,并能將它分類,滲透分類討論思想。
估計學生能順利地得到(+)+(+),(+)+(一),(一)+(+),(一)十(—),0+(+),0+(一)。
但不能把它歸的為同號異號等三類,所以此處需教師。點拔、指扎,體現(xiàn)教師的引導者作用。
、偌僭O原點0為第一次運動起點,第二次運動的起點是第一次運動的終點。②若學生在學習小組內不能很好地參與探究,也可以讓其參照教科書第21頁的.“探究”自主進行。③讓學生感受“數(shù)學模型”的思想。④學會與同伴交流,并在交流中獲益。培養(yǎng)學生的語言表達能力和歸納能力,也許學生說得不夠嚴謹,但這并不重要,重要的足能用自己的語言表達自己所發(fā)現(xiàn)的規(guī)律
解決問題解決問題
例1計算:
(1)(—3)+(—9);(2)(—5)+13;
(3)0十(—7);(4)(—4。7)+3。9。
教師板演,讓學生說出每一步運算所依據的法則。
請同學們比較,有理數(shù)的加法運算與小學時候學的加法有什么異同?(如:有理數(shù)加法計算中要注意符號,和不一定大于加數(shù)等等)
例2足球循環(huán)賽中,紅隊4:1勝黃隊,黃隊1:0勝藍隊藍隊1:0勝紅隊,計算各隊的凈勝球數(shù)。
。ㄗ寣W生讀數(shù),理解題意,思考解決方案,然后由學生口述,教師板書)
學生活動:請學生說一說在生活中用到有理數(shù)加法的例子。注意點:(1)下先確定是哪種類型的加法再定符號,最后算絕對位。(2)教教師板演的例通要完整體現(xiàn)過程,并要求學生在剛開始學的時候要把中間的過
程寫完整。(3)體現(xiàn)化歸思想。(4)這里增加了兩道題目,要是讓學生能較為熟練地運用法則進行計算。
拓寬學生視野,讓學
生體會到數(shù)學與生活的密切聯(lián)系。
課堂練習教科書第23頁練習
小結與作業(yè)
課堂小結通過這節(jié)課的學習,你有哪些收獲,學生自己總結。
本課作業(yè)必做題:閱讀教科書第20~22頁,教科書第31習題1。3第1、12、第13題。
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,在本節(jié)課的設計中,注重引導學生參與探究、歸納(用自己的語言敘迷)有理數(shù)加法法則的過程。
2,注意滲透數(shù)學思想方法。數(shù)學思想方法的滲透不可能立即見效,也不可能靠一朝一夕讓學生理解、掌握,所以,本節(jié)課在這一方面主要是讓學生感知研究數(shù)學問題的一般方法(分類、辯析、歸納、化歸等)。如在探究加法法則時,有意識地把各種情況先分為三類(同號、異號,一個數(shù)同0相加);在運用法則時,當和的符號確定以后,有理數(shù)的加法就轉化為算術的加減法。
3,注意學生合作學習的學習方式,讓學生在與他人合作中受益,學會交流,學會傾聽
別人的意見和建議。
附板書:1。3。1有理數(shù)的加法(一)
有理數(shù)的加法教案14
【目標預覽】
知識技能:1、通過實例,了解有理數(shù)加法的意義,掌握有理數(shù)加法法則,并能運用法則進行計算;
2、在有理數(shù)加法法則的教學過程中,培養(yǎng)觀察、比較、歸納及運算能力。 數(shù)學思考:1、正確地進行有理數(shù)的加法運算;
2、用數(shù)形結合的思想方法得出有理數(shù)加法法則。
解決問題:能運用有理數(shù)加法解決實際問題。
情感態(tài)度:通過師生活動、學生自我探究,讓學生充分參與到數(shù)學學習的過程中來。
【教學重點和難點】
重點:了解有理數(shù)加法的意義,會根據有理數(shù)加法法則進行有理數(shù)加法計算; 難點:異號兩數(shù)如何相加的法則。
【情景設計】
我們來看一個大家熟悉的實際問題:
足球比賽中進球個數(shù)與失球個數(shù)是相反意義的量.若我們規(guī)定進球為“正”,失球為“負”。比如,進3個球記為正數(shù):+3,失2個球記為負數(shù):-2。它們的和為凈勝球數(shù):(+3)+(-2)學校足球隊在一場比賽中的勝負情況如下:
(1)紅隊進了3個球,失了2個球,那么凈勝球數(shù)是:(+3)+(-2)
(2)藍隊進了1個球,失了1個球,那么凈勝球數(shù)是:(+1)+(-1)
這里,就需要用到正數(shù)與負數(shù)的加法。
下面,我們利用數(shù)軸一起來討論有理數(shù)的加法規(guī)律。
【探求新知】
一個物體作左右運動,我們規(guī)定向左為負,向右為正。向右運動5m,可以記作多少?向左運動5m呢?
。1)如果物體先向右運動5m,再向右運動3m,那么兩次運動后總的`結果是多少呢? 利用數(shù)軸演示(如圖1),把原點假設為運動起點。
兩次運動后物體從起點向右運動了8m。寫成算式是:5+3=8①
利用數(shù)軸依次討論如下問題,引導學生自己尋找算式的答案:
(2)如果物體先向左運動5m,再向左運動3m,那么兩次運動后總的結果是多少呢?
。3)如果物體先向右運動5m,再向左運動3m,那么兩次運動后總的結果是多少呢?
。4)如果物體先向左運動5m,再向右運動3m,那么兩次運動后總的結果是多少呢?
。5)如果物體先向左運動5m,再向右運動5m,那么兩次運動后總的結果是多少呢?
。6)如果物體先向右運動5m,再向左運動5m,那么兩次運動后總的結果是多少呢?
。7)如果物體第一分鐘向右(或向左)運動5m,第二分鐘原地不動,那么兩次運動后總的結果是多少呢?
總結:依次可得
。2)(-5)+(-3)=-8②
。3)5+(-3)=2③
。4)3+(-5)=-2④
(5)5+(-5)=0⑤
。6)(-5)+5=0⑥
。7)5+0=5或(-5)+0=-5⑦
觀察上述7個算式,自己歸納出有理數(shù)加法法則:
1.同號兩數(shù)相加,取相同的符號,并把絕對值相加;
2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0;
3.一個數(shù)同0相加,仍得這個數(shù)。
【范例精析】
例1計算下列算式的結果,并說明理由:
(1)(+4)+(+7);(2)(-4)+(-7);
(3)(+4)+(-7);(4)(+9)+(-4);
(5)(+4)+(-4);(6)(+9)+(-2);
(7)(-9)+(+2);(8)(-9)+0;
(9)0+(+2);(10)0+0.
學生逐題口答后,教師小結:
進行有理數(shù)加法,先要判斷兩個加數(shù)是同號還是異號,有一個加數(shù)是否為零;再根據兩個加數(shù)符號的具體情況,選用某一條加法法則.進行計算時,通常應該先確定“和”的符號,再計算“和”的絕對值.
解:(1)(-3)+(-9) (兩個加數(shù)同號,用加法法則的第2條計算)
=-(3+9)(和取負號,把絕對值相加)
=-12.
例3 足球循環(huán)比賽中,紅隊勝黃隊4﹕1,黃隊勝藍隊1﹕0,藍隊勝紅隊1﹕0,計算各隊的凈勝球數(shù)。
解:我們規(guī)定進球為“正”,失球為“負”。它們的和為凈勝球數(shù)。
三場比賽中,紅隊共進4球,失2球,凈勝球數(shù)為(+4)+(-2)=2;
黃隊共進2球,失4球,凈勝球數(shù)為(+2)+(-4)= -2;
藍隊共進1球,失1球,凈勝球數(shù)為(+1)+(-1)=0;
【一試身手】
下面請同學們計算下列各題:
(1)(-0.9)+(+1.5);(2)(+2.7)+(-3); (3)(-1.1)+(-2.9);
全班學生書面練,四位學生板演,教師對學生板演進行講評.
【總結陳詞】
1、這節(jié)課我們從實例出發(fā),經過比較、歸納,得出了有理數(shù)加法的法則.今后我們經常要用類似的思想方法研究其他問題。
2、應用有理數(shù)加法法則進行計算時,要同時注意確定“和”的符號,計算“和”的絕對值兩件事。
【實戰(zhàn)操練】
1.計算:
(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);
(4)(+6)+(+9);(5)67+(-73);(6)(-84)+(-59);
(7)33+48;(8)(-56)+37.
2.計算:
(1)(-0.9)+(-2.7);(2)3.8+(-8.4);
(3)(-0.5)+3;(4)3.29+1.78;
(5)7+(-3.04);(6)(-2.9)+(-0.31);
(7)(-9.18)+6.18;(8)4.23+(-6.77);(9)(-0.78)+0.
3.計算:
4*.用“>”或“<”號填空:
(1)如果a>0,b>0,那么a+b ______0;
(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;
(4)如果a<0,b>0,|a|>|b|,那么a+b ______0.
5*.分別根據下列條件,利用|a|與|b|表示a與b的和:
(1)a>0,b>0;(2) a<0,b<0;
(3)a>0,b<0,|a|>|b|;(4)a>0,b<0,|a|<|b|.
有理數(shù)的加法教案15
學習目標
1. 理解有理數(shù)的加法法則.
2. 能夠應用有理數(shù)的加法法則,將有理數(shù)的加法轉化為非負數(shù)的加減運算.
3. 掌握異號兩數(shù)的加法運算的規(guī)律.
[知識講解]
正有理數(shù)及0的加法運算,小學已經學過,然而實際問題中做加法運算的數(shù)有可能超出正數(shù)范圍。例如,足球循環(huán)賽中,可以把進球數(shù)記為正數(shù),失球數(shù)記為負數(shù),它們的和叫做凈勝球數(shù)。如果,紅隊進4個球,失2個球;藍隊進1個球,失1個球.于是紅隊的凈勝球數(shù)為
4+(-2),
藍隊的凈勝球數(shù)為
1+(-1)。
這里用到正數(shù)和負數(shù)的加法。
下面借助數(shù)軸來討論有理數(shù)的加法。
一、負數(shù)+負數(shù)
如果規(guī)定向東為正,向西為負,那么一個人向西走2米,再向西走3米,兩次共向西走多少米?很明顯,兩次共向西走了6米.
這個問題用算式表示就是:(-2)+(-4)=-6.
這個問題用數(shù)軸表示就是如圖1所示:
二、負數(shù)+正數(shù)
如果向西走2米,再向東走4米, 那么兩次運動后 這個人從起點向東走2米,寫成算式就是
(—2)+4=2。
這個問題用數(shù)軸表示就是如圖2所示:
探究
利用數(shù)軸,求以下情況時這個人兩次運動的結果:
。ㄒ唬┫认驏|走3米,再向西走5米,物體從起點向()運動了()米;
。ǘ┫认驏|走5米,再向西走5米,物體從起點向()運動了()米;
。ㄈ┫认蛭髯5米,再向東走5米,物體從起點向()運動了()米。 這三種情況運動結果的算式如下:
3+(—5)= —2;
5+(—5)= 0;
(—5)+5= 0。
如果這個人第一秒向東(或向西)走5米,第二秒原地不動,兩秒后這個人
從起點向東(或向西)運動了5米。寫成算式就是
5+0=5或(—5)+0= —5。
你能從以上7個算式中發(fā)現(xiàn)有理數(shù)加法的運算法則嗎?
三、有理數(shù)加法法則
1. 同號的兩數(shù)相加,取相同的符號,并把絕對值相加.
2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值. 互為相反數(shù)的兩個數(shù)相加得零.
3一個數(shù)同0相加,仍得這個數(shù)。
四、例題
例1 計算(-3)+(-9);(2)(-4·7)+3·
分析:解此題要利用有理數(shù)的加法法則. 解:(1) (-3)+(-9)= -(3+9)= -12:
(2) (-4·7)+3·9=-(4·7-3·9)= -0·8.
例2足球循環(huán)賽中,
紅隊勝黃隊4: 1,黃隊勝藍隊1 :0,藍隊勝紅隊1: 0,計算各隊的凈勝球數(shù)。 解:每個隊的進球總數(shù)記為正數(shù),失球總數(shù)記為負數(shù),這兩數(shù)的和為這隊的凈勝球數(shù)。 三場比賽中,紅隊共進4球,失2球,凈勝球數(shù)為
。+4)+(—2)=+(4—2)=2;
黃隊共進2球,失4球,凈勝球數(shù)為
。+2)+(—4)= —(4—2)= ();藍隊共進()球,失()球,凈勝球數(shù)為
()=()。
五、課堂練習1.填空:
。1)(-3)+(-5)=;(2)3+(-5)=;
。3)5+(-3)=;(4)7+(-7)=;
。5)8+(-1)=;(6)(-8)+1 =;
。7)(-6)+0 =;(8)0+(-2) =;
2.計算:
(1)(-13)+(-18);(2)20+(-14);
(3)1.7 + 2.8 ;(4)2.3 + (-3.1);
121)+(-);(6)1+(-1.5); 332
12(7)(-3.04)+ 6 ;(8)+(-). 23(5)(-
3.想一想,兩個數(shù)的和一定大于每個加數(shù)嗎?請你舉例說明.
4. 第23頁練習 1、2。
課堂練習答案
1.(1)-8; (2)-2; (3)2; (4)0; (5)7; (6)-7;
(7)-6; (8)-2.
2.(1)-31; (2)7; (3)4.5; (4)-0.7; (5)-1 ;
。6)0 ; (7)2.96; (8)-1. 6
3.不一定,例如兩個負數(shù)的和小于這兩個加數(shù).
課外作業(yè):第31頁1題.
課外選做題
1.判斷題:
。1)兩個負數(shù)的.和一定是負數(shù);
。2)絕對值相等的兩個數(shù)的和等于零;
(3)若兩個有理數(shù)相加時的和為負數(shù),這兩個有理數(shù)一定都是負數(shù);
。4)若兩個有理數(shù)相加時的和為正數(shù),這兩個有理數(shù)一定都是正數(shù).
2.當a = -1.6,b = 2.4時,求a+b和a+(-b)的值.
3.已知│a│= 8,│b│= 2.
。1)當a、b同號時,求a+b的值;
。2)當a、b異號時,求a+b的值.
課外選做題答案
1.(1)對;(2)錯;(3)錯;(4)錯.
2.a+b和a+(-b)的值分別為0.8、-4.
3.(1)當a、b同號時,a+b的值為10或-10;
【有理數(shù)的加法教案】相關文章:
有理數(shù)的加法教案11-26
《有理數(shù)加法》教案08-29
《有理數(shù)的加法》教案02-25
《有理數(shù)的加法》教案04-01
有理數(shù)的加法教案范文04-25
有理數(shù)的加法教案(15篇)03-02
有理數(shù)加法說課稿07-12
《有理數(shù)的加法》說課稿07-19
《有理數(shù)加法》說課稿07-06