- 相關推薦
弦切角的教案
作為一名老師,就不得不需要編寫教案,通過教案準備可以更好地根據(jù)具體情況對教學進程做適當?shù)谋匾恼{整。那么大家知道正規(guī)的教案是怎么寫的嗎?以下是小編精心整理的弦切角的教案,歡迎閱讀與收藏。
弦切角的教案1
1、教材分析
(1)知識結構
(2)重點、難點分析
重點:定理是本節(jié)的重點也是本章的重點內容之一,它在證明角相等、線段相等、線段成比例等問題時,有重要的作用;它與圓心角和圓周角以及直線形角的性質構成了完美的角的體系,屬于工具知識之一.
難點:定理的證明.因為在證明過程中包含了由“一般到特殊”的數(shù)學思想方法和完全歸納法的數(shù)學思想,雖然在圓周角定理的證明中應用過,但對學生來說是生疏的,因此它是教學中的難點.
2、教學建議
(1)教師在教學過程中,主要是設置學習情境,組織或引導學生發(fā)現(xiàn)問題、分析問題、研究問題和歸納結論,應用知識培養(yǎng)學生的數(shù)學能力;在學生主體參與的學習過程中,讓學生學會學習,并獲得新知識;
(2)學習時應注意:(Ⅰ)的識別由三要素構成:①頂點為切點,②一邊為切線,③一邊為過切點的弦;(Ⅱ)在使用定理時,首先要根據(jù)圖形準確找到和它們所夾弧上的圓周角;(Ⅲ)要注意定理的證明,體現(xiàn)了從特殊到一般的證明思路.
教學目標:
1、理解的概念;
2、掌握定理及推論,并會運用它們解決有關問題;
3、進一步理解化歸和分類討論的數(shù)學思想方法以及完全歸納的證明方法.
教學重點:定理及其應用是重點.
教學難點:定理的證明是難點.
教學活動設計:
(一)創(chuàng)設情境,以舊探新
1、復習:什么樣的角是圓周角?
2、的概念:
電腦顯示:圓周角∠CAB,讓射線AC繞點A旋轉,產生無數(shù)個圓周角,當AC繞點A旋轉至與圓相切時,得∠BAE.
引導學生共同觀察、分析∠BAE的特點:
(1)頂點在圓周上;(2)一邊與圓相交;(3)一邊與圓相切.
的定義:
頂點在圓上,一邊和圓相交,另一邊和圓相切的角叫做。
3、用反例圖形剖析定義,揭示概念本質屬性:
判斷下列各圖形中的角是不是,并說明理由:
以下各圖中的角都不是.
圖(1)中,缺少“頂點在圓上”的條件;
圖(2)中,缺少“一邊和圓相交”的條件;
圖(3)中,缺少“一邊和圓相切”的條件;
圖(4)中,缺少“頂點在圓上”和“一邊和圓相切”兩個條件.
通過以上分析,使全體學生明確:定義中的三個條件缺一不可。
(二)觀察、猜想
1、觀察:(電腦動畫,使C點變動)
觀察∠P與∠BAC的關系.
2、猜想:∠P=∠BAC
(三)類比聯(lián)想、論證
1、首先讓學生回憶聯(lián)想:
(1)圓周角定理的'證明采用了什么方法?
(2)既然可由圓周角演變而來,那么上述猜想是否可用類似的方法來證明呢?
2、分類:教師引導學生觀察圖形,當固定切線,讓過切點的弦運動,可發(fā)現(xiàn)一個圓的有無數(shù)個.
如圖.由此發(fā)現(xiàn),可分為三類:
(1)圓心在角的外部;
(2)圓心在角的一邊上;
(3)圓心在角的內部.
3、遷移圓周角定理的證明方法
先證明了特殊情況,在考慮圓心在的外部和內部兩種情況.
組織學生討論:怎樣將一般情況的證明轉化為特殊情況.
如圖(1),圓心O在∠CAB外,作⊙O的直徑AQ,連結PQ,則∠BAC=∠BAQ-∠l=∠APQ-∠2=∠APC.
如圖(2),圓心O在∠CAB內,作⊙O的直徑AQ.連結PQ,則∠BAC=∠QAB十∠1=∠QPA十∠2=∠APC,
(在此基礎上,給出證明,寫出完整的證明過程)
回顧證明方法:將情形圖都化歸至情形圖1,利用角的合成、對三種情況進行完全歸納、從而證明了上述猜想是正確的,得:
定理:等于它所夾的弧對的圓周角.
4.深化結論.
練習1直線AB和圓相切于點P,PC,PD為弦,指出圖中所有的以及它們所夾的弧.
練習2如圖,DE切⊙O于A,AB,AC是⊙O的弦,若=,那么∠DAB和∠EAC是否相等?為什么?
分析:由于和分別是兩個∠OAB和∠EAC所夾的弧.而=.連結B,C,易證∠B=∠C.于是得到∠DAB=∠EAC.
由此得出:
推論:若兩所夾的弧相等,則這兩個也相等.
(四)應用
例1如圖,已知AB是⊙O的直徑,AC是弦,直線CE和⊙O切于點C,AD⊥CE,垂足為D
求證:AC平分∠BAD.
思路一:要證∠BAC=∠CAD,可證這兩角所在的直角三角形相似,于是連結BC,得Rt△ACB,只需證∠ACD=∠B.
證明:(學生板書)
組織學生積極思考.可否用前邊學過的知識證明此題?由學生回答,教師小結.
思路二,連結OC,由切線性質,可得OC∥AD,于是有∠l=∠3,又由于∠1=∠2,可證得結論。
思路三,過C作CF⊥AB,交⊙O于P,連結AF.由垂徑定理可知∠1=∠3,又根據(jù)定理有∠2=∠1,于是∠2=∠3,進而可證明結論成立.
練習題
1、如圖,AB為⊙O的直徑,直線EF切⊙O于C,若∠BAC=56°,則∠ECA=______度.
2、AB切⊙O于A點,圓周被AC所分成的優(yōu)弧與劣弧之比為3:1,則夾劣弧的∠BAC=________
3、如圖,經過⊙O上的點T的切線和弦AB的延長線相交于點C.
求證:∠ATC=∠TBC.
(此題為課本的練習題,證明方法較多,組織學生討論,歸納證法.)
(五)歸納小結
教師組織學生歸納:
(1)這節(jié)課我們主要學習的知識;
(2)在學習過程中應用哪些重要的數(shù)學思想方法?
(六)作業(yè):教材P13l習題7.4A組l(2),5,6,7題.
探究活動
一個角的頂點在圓上,它的度數(shù)等于它所夾的弧對的圓周角的度數(shù),試探討該角是否圓周角?若不是,請舉出反例;若是圓周角,請給出證明.
提示:是圓周角(它是定理的逆命題).分三種情況證明(證明略).
弦切角的教案2
1、教材分析
。1)知識結構
(2)重點、難點分析
重點:弦切角定理是本節(jié)的重點也是本章的重點內容之一,它在證明角相等、線段相等、線段成比例等問題時,有重要的作用;它與圓心角和圓周角以及直線形角的性質構成了完美的角的體系,屬于工具知識之一.
難點:弦切角定理的證明.因為在證明過程當中包含了由“一般到特殊”的數(shù)學思想方法和完全歸納法的數(shù)學思想,雖然在圓周角定理的證明中應用過,但對學生來說是生疏的,因此它是教學中的難點.
2、教學建議
。1)教師在教學過程中,主要是設置學習情境,組織或引導學生發(fā)現(xiàn)問題、分析問題、研究問題和歸納結論,應用知識培養(yǎng)學生的數(shù)學能力;在學生主體參與的學習過程當中,讓學生學會學習,并獲得新知識;
。2)學習時應注意:
。á瘢┫仪薪堑淖R別由三要素構成:
、夙旤c為切點
②一邊為切線
、垡贿厼檫^切點的弦;
。á颍┰谑褂孟仪薪嵌ɡ頃r,首先要根據(jù)圖形準確找到弦切角和它們所夾弧上的`圓周角;
。á螅┮⒁庀仪薪嵌ɡ淼淖C明,體現(xiàn)了從特殊到一般的證明思路.
教學目標:
1、理解弦切角的概念;
2、掌握弦切角定理及推論,并會運用它們解決有關問題;
3、進一步理解化歸和分類討論的數(shù)學思想方法以及完全歸納的證明方法.
教學重點:
弦切角定理及其應用是重點.
教學難點:
弦切角定理的證明是難點.
教學活動設計:
(一)創(chuàng)設情境,以舊探新
1、復習:什么樣的角是圓周角?
2、弦切角的概念:
電腦顯示:圓周角∠CAB,讓射線AC繞點A旋轉,產生無數(shù)個圓周角,當AC繞點A 旋轉至與圓相切時,得∠BAE.
引導學生共同觀察、分析∠BAE的特點:
(1)頂點在圓周上;
(2)一邊與圓相交;
(3)一邊與圓相切.
弦切角的定義:
頂點在圓上,一邊和圓相交,另一邊和圓相切的角叫做弦切角。
3、用反例圖形剖析定義,揭示概念本質屬性:
判斷下列各圖形中的角是不是弦切角,并說明理由:
以下各圖中的角都不是弦切角.
圖(1)中,缺少“頂點在圓上”的條件;
圖(2)中,缺少“一邊和圓相交”的條件;
圖(3)中,缺少“一邊和圓相切”的條件;
圖(4)中,缺少“頂點在圓上”和“一邊和圓相切”兩個條件.
通過以上分析,使全體學生明確:弦切角定義中的三個條件缺一不可。
。ǘ┯^察、猜想
1、觀察:(電腦動畫,使C點變動)
觀察∠P與∠BAC的關系.
2、猜想:∠P=∠BAC
。ㄈ╊惐嚷(lián)想、論證
1、首先讓學生回憶聯(lián)想:
(1)圓周角定理的證明采用了什么方法?
(2)既然弦切角可由圓周角演變而來,那么上述猜想是否可用類似的方法來證明呢?
2、分類:教師引導學生觀察圖形,當固定切線,讓過切點的弦運動,可發(fā)現(xiàn)一個圓的弦切角有無數(shù)個.
如圖.由此發(fā)現(xiàn),弦切角可分為三類:
(1)圓心在角的外部;
(2)圓心在角的一邊上;
(3)圓心在角的內部.
3、遷移圓周角定理的證明方法
先證明了特殊情況,在考慮圓心在弦切角的外部和內部兩種情況.
組織學生討論:怎樣將一般情況的證明轉化為特殊情況.
如圖(1),圓心O在∠CAB外,作⊙O的直徑AQ,連結PQ,則∠BAC=∠BAQ-∠l=∠APQ-∠2=∠APC.
如圖(2),圓心O在∠CAB內,作⊙O的直徑AQ.連結PQ,則∠BAC=∠QAB十∠1=∠QPA十∠2=∠APC,(在此基礎上,給出證明,寫出完整的證明過程)
回顧證明方法:將情形圖都化歸至情形圖1,利用角的合成、對三種情況進行完全歸納、從而證明了上述猜想是正確的,得:
弦切角定理:弦切角等于它所夾的弧對的圓周角.
。ㄋ模⿷
例1如圖,已知AB是⊙O的直徑,AC是弦,直線CE和⊙O切于點C,AD⊥CE,垂足為D
求證:AC平分∠BAD.
思路一:要證∠BAC=∠CAD,可證這兩角所在的直角三角形相似,于是連結BC,得Rt△ACB,只需證∠ACD=∠B.
證明:(學生板書)
組織學生積極思考.可否用前邊學過的知識證明此題?由學生回答,教師小結.
思路二,連結OC,由切線性質,可得OC∥AD,于是有∠l=∠3,又由于∠1=∠2,可證得結論。
思路三,過C作CF⊥AB,交⊙O于P,連結AF.由垂徑定理可知∠1=∠3,又根據(jù)弦切角定理有∠2=∠1,于是∠2=∠3,進而可證明結論成立.
練習題
1、如圖,AB為⊙O的直徑,直線EF切⊙O于C,若∠BAC=56°,則∠ECA=______度.
2、AB切⊙O于A點,圓周被AC所分成的優(yōu)弧與劣弧之比為3:1,則夾劣弧的弦切角∠BAC=________
3、如圖,經過⊙O上的點T的切線和弦AB的延長線相交于點C.
求證:∠ATC=∠TBC.
(此題為課本的練習題,證明方法較多,組織學生討論,歸納證法.)
(五)歸納小結
教師組織學生歸納:
(1)這節(jié)課我們主要學習的知識;
(2)在學習過程當中應用哪些重要的數(shù)學思想方法?
。┳鳂I(yè):
【弦切角的教案】相關文章:
教案中班教案02-23
教案中班教案09-09
高中教案教案03-05
小班教案安全教案11-03
小班教案小班教案03-02
小班教案游戲教案01-13
大班教案大班教案10-27
藝術教案中班教案03-07
教案06-18