當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教案> 二次函數(shù)教案

二次函數(shù)教案

時(shí)間:2024-07-20 04:32:51 教案 我要投稿

二次函數(shù)教案15篇

  作為一名為他人授業(yè)解惑的教育工作者,時(shí)常需要編寫(xiě)教案,編寫(xiě)教案有利于我們弄通教材內(nèi)容,進(jìn)而選擇科學(xué)、恰當(dāng)?shù)慕虒W(xué)方法。我們?cè)撛趺慈?xiě)教案呢?下面是小編整理的二次函數(shù)教案,希望對(duì)大家有所幫助。

二次函數(shù)教案15篇

二次函數(shù)教案1

  【知識(shí)與技能】

  1.會(huì)用描點(diǎn)法畫(huà)二次函數(shù)y=ax2+bx+c的圖象.

  2.會(huì)用配方法求拋物線(xiàn)y=ax2+bx+c的頂點(diǎn)坐標(biāo)、開(kāi)口方向、對(duì)稱(chēng)軸、y隨x的增減性.

  3.能通過(guò)配方求出二次函數(shù)y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函數(shù)的性質(zhì)求實(shí)際問(wèn)題中的最大值或最小值.

  【過(guò)程與方法】

  1.經(jīng)歷探索二次函數(shù)y=ax2+bx+c(a≠0)的圖象的作法和性質(zhì)的過(guò)程,體會(huì)建立二次函數(shù)y=ax2+bx+c(a≠0)對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)公式的必要性.

  2.在學(xué)習(xí)y=ax2+bx+c(a≠0)的`性質(zhì)的過(guò)程中,滲透轉(zhuǎn)化(化歸)的思想.

  【情感態(tài)度】

  進(jìn)一步體會(huì)由特殊到一般的化歸思想,形成積極參與數(shù)學(xué)活動(dòng)的意識(shí).

  【教學(xué)重點(diǎn)】

 、儆门浞椒ㄇ髖=ax2+bx+c的頂點(diǎn)坐標(biāo);②會(huì)用描點(diǎn)法畫(huà)y=ax2+bx+c的圖象并能說(shuō)出圖象的性質(zhì).

  【教學(xué)難點(diǎn)】

  能利用二次函數(shù)y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)公式,解決一些問(wèn)題,能通過(guò)對(duì)稱(chēng)性畫(huà)出二次函數(shù)y=ax2+bx+c(a≠0)的圖象.

  一、情境導(dǎo)入,初步認(rèn)識(shí)

  請(qǐng)同學(xué)們完成下列問(wèn)題.

  1.把二次函數(shù)y=-2x2+6x-1化成y=a(x-h)2+k的形式.

  2.寫(xiě)出二次函數(shù)y=-2x2+6x-1的開(kāi)口方向,對(duì)稱(chēng)軸及頂點(diǎn)坐標(biāo).

  3.畫(huà)y=-2x2+6x-1的圖象.

  4.拋物線(xiàn)y=-2x2如何平移得到y(tǒng)=-2x2+6x-1的圖象.

  5.二次函數(shù)y=-2x2+6x-1的y隨x的增減性如何?

  【教學(xué)說(shuō)明】上述問(wèn)題教師應(yīng)放手引導(dǎo)學(xué)生逐一完成,從而領(lǐng)會(huì)y=ax2+bx+c與y=a(x-h)2+k的轉(zhuǎn)化過(guò)程.

  二、思考探究,獲取新知

  探究1 如何畫(huà)y=ax2+bx+c圖象,你可以歸納為哪幾步?

  學(xué)生回答、教師點(diǎn)評(píng):

  一般分為三步:

  1.先用配方法求出y=ax2+bx+c的對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo).

  2.列表,描點(diǎn),連線(xiàn)畫(huà)出對(duì)稱(chēng)軸右邊的部分圖象.

  3.利用對(duì)稱(chēng)點(diǎn),畫(huà)出對(duì)稱(chēng)軸左邊的部分圖象.

  探究2 二次函數(shù)y=ax2+bx+c圖象的性質(zhì)有哪些?你能試著歸納嗎?

二次函數(shù)教案2

  一、教材分析

  1、教材的地位和作用

  二次函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,在初中的學(xué)習(xí)中已經(jīng)給出了二次函數(shù)的圖象及性質(zhì),學(xué)生已經(jīng)基本掌握了二次函數(shù)的圖象及一些性質(zhì),只是研究函數(shù)的方法都是按照函數(shù)解析式---定義域----圖象----性質(zhì)的方法進(jìn)行的,基于這種情況,我認(rèn)為本節(jié)課的作用是讓學(xué)生借助于熟悉的函數(shù)來(lái)進(jìn)一步學(xué)習(xí)研究函數(shù)的更一般的方法,即:利用解析式分析性質(zhì)來(lái)推斷函數(shù)圖象。它可以進(jìn)一步深化學(xué)生對(duì)函數(shù)概念與性質(zhì)的理解與認(rèn)識(shí),使學(xué)生得到較系統(tǒng)的函數(shù)知識(shí)和研究函數(shù)的方法,站在新的高度研究函數(shù)的性質(zhì)與圖象。因此,本節(jié)課的內(nèi)容十分重要。

  2、教學(xué)的重點(diǎn)和難點(diǎn)

  教學(xué)重點(diǎn):使學(xué)生掌握二次函數(shù)的概念、性質(zhì)和圖象;從函數(shù)的性質(zhì)推斷圖象的方法。

  教學(xué)難點(diǎn):掌握從函數(shù)的性質(zhì)推斷圖象的方法。

  二、目標(biāo)分析

  按照新課標(biāo)指出三維目標(biāo),根據(jù)任教班級(jí)學(xué)生的實(shí)際情況,本節(jié)課我確定的教學(xué)目標(biāo)是:

  1、知識(shí)與技能:掌握二次函數(shù)的性質(zhì)與圖象,能夠借助于具體的二次函數(shù),理解和掌握從函數(shù)的性質(zhì)推斷圖象的方研究法。

  2、過(guò)程與方法:通過(guò)老師的引導(dǎo)、點(diǎn)撥,讓學(xué)生在分組合作、積極探索的氛圍中,掌握從函數(shù)解析式、性質(zhì)出發(fā)去認(rèn)識(shí)函數(shù)圖象的高度理解和研究函數(shù)的方法。

  3、情感、態(tài)度、價(jià)值觀(guān):讓學(xué)生感受數(shù)學(xué)思想方法之美、體會(huì)數(shù)學(xué)思想方法之重要;培養(yǎng)學(xué)生主動(dòng)學(xué)習(xí)、合作交流的意識(shí)等。

  三、教法學(xué)法分析

  遵循“教師的主導(dǎo)作用和學(xué)生的主體地位相統(tǒng)一的教學(xué)規(guī)律”,從教師的角色突出體現(xiàn)教師是設(shè)計(jì)者、組織者、引導(dǎo)者、合作者,經(jīng)過(guò)教師對(duì)教材的分析理解,在教師的組織引導(dǎo)和師生互動(dòng)過(guò)程中以問(wèn)題為載體實(shí)施整個(gè)教學(xué)過(guò)程;在學(xué)生這方面,通過(guò)自主探索、合作交流、歸納方法等一系列活動(dòng)為主線(xiàn),感受知識(shí)的形成過(guò)程,拓展和完善自己的認(rèn)知結(jié)構(gòu),進(jìn)而體現(xiàn)出教學(xué)過(guò)程中教師與學(xué)生的雙主體作用。

  四、教學(xué)過(guò)程分析

  根據(jù)新課標(biāo)的理念,我把整個(gè)的教學(xué)過(guò)程分為六個(gè)階段,即:創(chuàng)設(shè)情景、提出問(wèn)題

  師生互動(dòng)、探究新知

  獨(dú)立探究,鞏固方法

  強(qiáng)化訓(xùn)練,加深理解

  小結(jié)歸納,拓展深化

  布置作業(yè),提高升華

  環(huán)節(jié)1本節(jié)課一開(kāi)始我就讓學(xué)生直接總結(jié)出二次函數(shù)的性質(zhì)與圖象形狀,在學(xué)生回答后,以有必要再重復(fù)嗎?編者的失誤?還是另有用意呢?的設(shè)問(wèn)來(lái)激發(fā)學(xué)生的求知欲,在學(xué)生感覺(jué)很疑惑的時(shí)候馬上進(jìn)入環(huán)節(jié)2:試作出二次函數(shù)

  的圖象。目的是充分暴露學(xué)生在作圖時(shí)不能很好的結(jié)合函數(shù)的性質(zhì)而出現(xiàn)的錯(cuò)誤或偏差問(wèn)題,突出本節(jié)課的重要性。在學(xué)生總結(jié)交流的基礎(chǔ)上教師指出學(xué)生的錯(cuò)誤并以設(shè)問(wèn)的方式提出本節(jié)課的目標(biāo):如何利用函數(shù)性質(zhì)的研究來(lái)推斷出較為準(zhǔn)確的函數(shù)圖象,進(jìn)而引導(dǎo)學(xué)生進(jìn)入師生互動(dòng)、探究新知階段。

  在這個(gè)階段,我引用課本所給的例題1請(qǐng)同學(xué)們以學(xué)習(xí)小組為單位嘗試完成并作出總結(jié)發(fā)言。目的是:讓學(xué)生充分參與,在合作探究中讓學(xué)生最大限度地突破目標(biāo)或暴露出在嘗試研究過(guò)程中出現(xiàn)的分析障礙,即不能很好的把握函數(shù)的性質(zhì)對(duì)圖象的影響,不能把抽象的性質(zhì)與直觀(guān)的圖象融會(huì)貫通,這樣便于教師在與學(xué)生互動(dòng)的過(guò)程中準(zhǔn)確把握難點(diǎn),各個(gè)擊破,最終形成知識(shí)的遷移。在學(xué)生探討后,教師選小組代表做總結(jié)發(fā)言,其他小組作出補(bǔ)充,教師引導(dǎo)從逐步完善函數(shù)性質(zhì)的分析。其中,學(xué)生對(duì)于對(duì)稱(chēng)軸的確定、單調(diào)區(qū)間及單調(diào)性的分析闡述等可能存在困難。這時(shí)教師可以利用對(duì)解析式的分析結(jié)合多媒體演示引導(dǎo)學(xué)生得到分析的思路和解決的方法,在師生互動(dòng)的過(guò)程中把函數(shù)的性質(zhì)完善。之后進(jìn)入環(huán)節(jié)3:再次讓學(xué)生利用二次函數(shù)的性質(zhì)推斷出二次函數(shù)的圖象,強(qiáng)化用二次函數(shù)的性質(zhì)推斷圖象的關(guān)鍵。進(jìn)而突破教學(xué)難點(diǎn)。讓學(xué)生真正實(shí)現(xiàn)知識(shí)的遷移,完成整個(gè)探究過(guò)程,形成較為完整的新的認(rèn)知體系.當(dāng)然,在這個(gè)過(guò)程中可能會(huì)有學(xué)生提出圖象為什么是曲線(xiàn)而不是直線(xiàn)等問(wèn)題,為了消除學(xué)生的疑惑,進(jìn)入第4個(gè)環(huán)節(jié):教師要簡(jiǎn)單說(shuō)明這是研究函數(shù)要考慮的一個(gè)重要的性質(zhì),是函數(shù)的凹凸性,后面我們將要給大家介紹,同學(xué)們可以閱讀課本第110頁(yè)的.探索與研究。這樣也給學(xué)生留下一個(gè)思考與探索的空間,培養(yǎng)學(xué)生課外閱讀、自主研究的能力,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性.

  在以上環(huán)節(jié)完成后,進(jìn)入第5個(gè)環(huán)節(jié):讓學(xué)生對(duì)利用解析式分析性質(zhì)然后推斷函數(shù)圖象的研究過(guò)程進(jìn)行梳理并加以提煉、抽象、概括,得出研究函數(shù)的具體操作過(guò)程,使問(wèn)題得以升華,拓寬學(xué)生的思維,將新知識(shí)內(nèi)化到自己的認(rèn)知結(jié)構(gòu)中去.最終尋求到解決問(wèn)題的方法。

  教學(xué)的最終目標(biāo)應(yīng)該落實(shí)到每一個(gè)學(xué)生個(gè)體的內(nèi)化與發(fā)展,由此讓引導(dǎo)學(xué)生進(jìn)入獨(dú)立探究,鞏固方法的階段。例2在題目的設(shè)置上變換二次函數(shù)的開(kāi)口方向,目的是一方面使學(xué)生加深對(duì)知識(shí)的理解,完善知識(shí)結(jié)構(gòu),另一方面使學(xué)生由簡(jiǎn)單地模仿和接受,變?yōu)閷?duì)知識(shí)的主動(dòng)認(rèn)識(shí),從而進(jìn)一步提高分析、類(lèi)比和綜合的能力.學(xué)生在例1的基礎(chǔ)上將會(huì)目標(biāo)明確地進(jìn)行函數(shù)性質(zhì)的研究,然后推斷出比較準(zhǔn)確的函數(shù)圖象,使新知得到有效鞏固.

  通過(guò)前面三個(gè)階段的學(xué)習(xí),學(xué)生應(yīng)該基本掌握了本節(jié)課的相關(guān)知識(shí)。但對(duì)二次函數(shù)中系數(shù)a、b、c的對(duì)二次函數(shù)的影響還有待提高,為此我把課本中的例3進(jìn)行改編,引導(dǎo)學(xué)生進(jìn)入強(qiáng)化訓(xùn)練,加深理解階段。一方面可以解決學(xué)生對(duì)奇偶性的質(zhì)疑,另一方面也可以把學(xué)生對(duì)二次函數(shù)的認(rèn)識(shí)提到新的高度。

  第五個(gè)階段:小結(jié)歸納,拓展深化。為了讓學(xué)生能夠站在更高的角度認(rèn)識(shí)二次函數(shù)和掌握函數(shù)的一般研究方法,教師引導(dǎo)學(xué)生從兩個(gè)方面總結(jié)。在你對(duì)函數(shù)圖象與性質(zhì)的關(guān)系有怎樣的理解方面教師要引導(dǎo)、拓展,明確今天所學(xué)習(xí)的方法實(shí)際上是研究函數(shù)性質(zhì)圖象的一般方法,對(duì)于一些陌生的或較為復(fù)雜的函數(shù)只要借助于適當(dāng)?shù)姆椒ǖ玫较嚓P(guān)的性質(zhì)就可以推斷出函數(shù)的圖象,從而把學(xué)生的認(rèn)知水平定格在一個(gè)新的高度去理解和認(rèn)識(shí)函數(shù)問(wèn)題。

  最后一個(gè)階段是布置作業(yè),提高升華,作業(yè)的設(shè)置是分層落實(shí).鞏固題讓學(xué)生復(fù)習(xí)解題思路,準(zhǔn)確應(yīng)用,以便舉一反三.探究題通過(guò)對(duì)教材例題的改編,供學(xué)有余力的學(xué)生自主探索,提高他們分析問(wèn)題、解決問(wèn)題的能力.

  以上六個(gè)階段環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學(xué)生的交流互動(dòng),在教師的整體調(diào)控下,學(xué)生通過(guò)動(dòng)手操作,動(dòng)眼觀(guān)察,動(dòng)腦思考,親身經(jīng)歷了知識(shí)的形成和發(fā)展過(guò)程,并得以遷移內(nèi)化。而最終的探究作業(yè)又將激發(fā)學(xué)生興趣,帶領(lǐng)學(xué)生進(jìn)入對(duì)二次函數(shù)更進(jìn)一步的思考和研究之中,從而達(dá)到知識(shí)在課堂以外的延伸?傊@節(jié)課是本著“授之以漁”而非“授之以魚(yú)”的理念來(lái)設(shè)計(jì)的。

二次函數(shù)教案3

  【知識(shí)與技能】

  1.會(huì)用描點(diǎn)法畫(huà)二次函數(shù)=ax2+bx+c的圖象.

  2.會(huì)用配方法求拋物線(xiàn)=ax2+bx+c的頂點(diǎn)坐標(biāo)、開(kāi)口方向、對(duì)稱(chēng)軸、隨x的增減性.

  3.能通過(guò)配方求出二次函數(shù)=ax2+bx+c(a≠0)的最大或最小值;能利用二次函數(shù)的性質(zhì)求實(shí)際問(wèn)題中的最大值或最小值.

  【過(guò)程與方法】

  1.經(jīng)歷探索二次函數(shù)=ax2+bx+c(a≠0)的圖象的作法和性質(zhì)的過(guò)程,體會(huì)建立二次函數(shù)=ax2+bx+c(a≠0)對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)公式的必要性.

  2.在學(xué)習(xí)=ax2+bx+c(a≠0)的性質(zhì)的過(guò)程中,滲透轉(zhuǎn)化(化歸)的思想.

  【情感態(tài)度】

  進(jìn)一步體會(huì)由特殊到一般的化歸思想,形成積極參與數(shù)學(xué)活動(dòng)的意識(shí).

  【教學(xué)重點(diǎn)】

 、儆门浞椒ㄇ=ax2+bx+c的頂點(diǎn)坐標(biāo);②會(huì)用描點(diǎn)法畫(huà)=ax2+bx+c的圖象并能說(shuō)出圖象的性質(zhì).

  【教學(xué)難點(diǎn)】

  能利用二次函數(shù)=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)公式,解決一些問(wèn)題,能通過(guò)對(duì)稱(chēng)性畫(huà)出二次函數(shù)=ax2+bx+c(a≠0)的圖象.

  一、情境導(dǎo)入,初步認(rèn)識(shí)

  請(qǐng)同學(xué)們完成下列問(wèn)題.

  1.把二次函數(shù)=-2x2+6x-1化成=a(x-h)2+的形式.

  2.寫(xiě)出二次函數(shù)=-2x2+6x-1的開(kāi)口方向,對(duì)稱(chēng)軸及頂點(diǎn)坐標(biāo).

  3.畫(huà)=-2x2+6x-1的`圖象.

  4.拋物線(xiàn)=-2x2如何平移得到=-2x2+6x-1的圖象.

  5.二次函數(shù)=-2x2+6x-1的隨x的增減性如何?

  【教學(xué)說(shuō)明】上述問(wèn)題教師應(yīng)放手引導(dǎo)學(xué)生逐一完成,從而領(lǐng)會(huì)=ax2+bx+c與=a(x-h)2+的轉(zhuǎn)化過(guò)程.

  二、思考探究,獲取新知

  探究1 如何畫(huà)=ax2+bx+c圖象,你可以歸納為哪幾步?

  學(xué)生回答、教師點(diǎn)評(píng):

  一般分為三步:

  1.先用配方法求出=ax2+bx+c的對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo).

  2.列表,描點(diǎn),連線(xiàn)畫(huà)出對(duì)稱(chēng)軸右邊的部分圖象.

  3.利用對(duì)稱(chēng)點(diǎn),畫(huà)出對(duì)稱(chēng)軸左邊的部分圖象.

  探究2 二次函數(shù)=ax2+bx+c圖象的性質(zhì)有哪些?你能試著歸納嗎?

二次函數(shù)教案4

  一、重視每一堂復(fù)習(xí)課

  數(shù)學(xué)復(fù)習(xí)課不比新課,講的都是已經(jīng)學(xué)過(guò)的東西,我想許多老師都和我有相同的體會(huì),那就是復(fù)習(xí)課比新課難上。

  二、重視每一個(gè)學(xué)生

  學(xué)生是課堂的主體,離開(kāi)學(xué)生談?wù)n堂效率肯定是行不通的。而我校的學(xué)生數(shù)學(xué)基礎(chǔ)大多不太好,上課的積極性普遍不高,對(duì)學(xué)習(xí)的熱情也不是很高,這些都是十分現(xiàn)實(shí)的事情,既然現(xiàn)狀無(wú)法更改,那么我們只能去適應(yīng)它,這就對(duì)我們老師提出了更高的要求

  三、做好課外與學(xué)生的溝通

  學(xué)生對(duì)你教學(xué)理念認(rèn)同和教學(xué)常規(guī)配合與否,功夫往往在課外,只有在課外與學(xué)生多進(jìn)行交流和溝通,和學(xué)生建立起比較深厚的師生情誼,那么最頑皮的學(xué)生也能在他喜歡的老師的課堂上聽(tīng)進(jìn)一點(diǎn)

  四、要多了解學(xué)生

  你對(duì)學(xué)生的了解更有助于你的教學(xué),特別是在初三總復(fù)習(xí)間斷,及時(shí)了解每個(gè)學(xué)生的復(fù)習(xí)情況有助于你更好的制定復(fù)習(xí)計(jì)劃和備下一堂課,也有利于你更好的改進(jìn)教學(xué)方法。

  二次函數(shù)教學(xué)方法一

  一、立足教材,夯實(shí)雙基:

  進(jìn)行中考數(shù)學(xué)復(fù)習(xí)的時(shí)候,要立足于教材,重新梳理教材中的典例和習(xí)題,就顯得尤為重要。并且要讓學(xué)生在掌握的基礎(chǔ)上,能夠做到知識(shí)的延伸和遷移,讓解題方法、技巧在學(xué)生遇到相似問(wèn)題時(shí),能在頭腦中再現(xiàn)

  二、立足課堂,提高效率:

  做到教師入題海,學(xué)生出題海。教師應(yīng)多做題、多研究近幾年的中考試題,并根據(jù)本班學(xué)生的實(shí)際情況,從眾多復(fù)習(xí)資料中,選擇適合本班學(xué)生的最佳練習(xí),也可通過(guò)對(duì)題目的重組。

  三、教師在設(shè)計(jì)教學(xué)目標(biāo)時(shí),要做到胸中有書(shū),目中有人

  讓每一節(jié)課都給學(xué)生留有時(shí)間,讓他們有獨(dú)立思考、合作探究交流的過(guò)程,最大限度的調(diào)動(dòng)學(xué)生的參與度,激發(fā)他們的學(xué)習(xí)興趣,達(dá)到最佳的復(fù)習(xí)效果。

  四、激發(fā)興趣,提高質(zhì)量:

  興趣是學(xué)習(xí)最好的動(dòng)力,在上復(fù)習(xí)課時(shí)尤為重要。因此,我們?cè)谑谡n的過(guò)程中,在關(guān)注知識(shí)復(fù)習(xí)的同時(shí),也要關(guān)注學(xué)生的學(xué)習(xí)欲望和學(xué)習(xí)效果,要讓學(xué)生在學(xué)習(xí)的過(guò)程中體驗(yàn)成功的.快感。這樣他們才會(huì)更有興趣的學(xué)習(xí)下去。

  二次函數(shù)教學(xué)方法二

  1、質(zhì)疑問(wèn)難是學(xué)生自主學(xué)習(xí)的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學(xué)生的主體意識(shí),必須鼓勵(lì)學(xué)生質(zhì)疑問(wèn)難。教師要?jiǎng)?chuàng)造和諧融合的課堂氣氛,允許學(xué)生隨時(shí)“插嘴”、提問(wèn)、爭(zhēng)辯,甚至提出與教師不同的看法。

  2、二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學(xué)生要學(xué)習(xí)的最后一類(lèi)重要的代數(shù)函數(shù),它也是描述現(xiàn)實(shí)世界變量之間關(guān)系的重要的數(shù)學(xué)模型。

  3、生有疑而問(wèn)、質(zhì)疑問(wèn)難,是用心思考、自主學(xué)習(xí)、主動(dòng)探究的可貴表現(xiàn),理應(yīng)得到老師的熱情鼓勵(lì)和贊揚(yáng),F(xiàn)在對(duì)學(xué)生的隨時(shí)“插嘴”,提出的各種疑難問(wèn)題,應(yīng)抱歡迎、鼓勵(lì)的態(tài)度給與肯定,并做出正確的解釋。

  4、初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀(guān)點(diǎn)審視一元二次方程,用二次函數(shù)的相關(guān)知識(shí)分析和解決簡(jiǎn)單的實(shí)際問(wèn)題。

  4二次函數(shù)教學(xué)方法三

  1、教學(xué)案例、教學(xué)設(shè)計(jì)、教學(xué)實(shí)錄、教學(xué)敘事的區(qū)別:教學(xué)案例與教案:教案(教學(xué)設(shè)計(jì))是事先設(shè)想的教育教學(xué)思路,是對(duì)準(zhǔn)備實(shí)施的教育措施的簡(jiǎn)要說(shuō)明,反映的是教學(xué)預(yù)期;而教學(xué)案例則是對(duì)已發(fā)生的教育教學(xué)過(guò)程的描述,反映的是教學(xué)結(jié)果。

  2、教學(xué)案例與教學(xué)實(shí)錄:它們同樣是對(duì)教育教學(xué)情境的描述,但教學(xué)實(shí)錄是有聞必錄(事實(shí)判斷),而教學(xué)案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價(jià)值判斷)。

  3、教學(xué)案例與敘事研究的聯(lián)系與區(qū)別:從“情景故事”的意義上講,教育敘事研究報(bào)告也是一種“教育案例”,但“教學(xué)案例”特指有典型意義的、包含疑難問(wèn)題的、多角度描述的經(jīng)過(guò)研究并加上作者反思(或自我點(diǎn)評(píng))的教學(xué)敘事;

  4、教學(xué)案例必須從教學(xué)任務(wù)分析的目標(biāo)出發(fā),有意識(shí)地選擇有關(guān)信息,必須事先進(jìn)行實(shí)地作業(yè),因此日常教育敘事日志可以作為寫(xiě)作教學(xué)案例的素材積累。

二次函數(shù)教案5

  教學(xué)目標(biāo):

  1.經(jīng)歷探索二次函數(shù)y=ax2的圖象的作法和性質(zhì)的過(guò)程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗(yàn)。

  2.能夠利用描點(diǎn)法作出函數(shù)y=ax2的圖象,并能根據(jù)圖象認(rèn)識(shí)和理解二次函數(shù)y=ax2的性質(zhì),初步建立二次函數(shù)表達(dá)式與圖象之間的聯(lián)系。

  3.能根據(jù)二次函數(shù)y=ax2的圖象,探索二次函數(shù)的性質(zhì)(開(kāi)口方向、對(duì)稱(chēng)軸、頂點(diǎn)坐標(biāo))。

  教學(xué)重點(diǎn):二次函數(shù)y=ax2的圖象的作法和性質(zhì)

  教學(xué)難點(diǎn):建立二次函數(shù)表達(dá)式與圖象之間的聯(lián)系

  教學(xué)方法:自主探索,數(shù)形結(jié)合

  教學(xué)建議:

  利用具體的二次函數(shù)圖象討論二次函數(shù)y=ax2的性質(zhì)時(shí),應(yīng)盡可能多地運(yùn)用小組活動(dòng)的形式,通過(guò)學(xué)生之間的合作與交流,進(jìn)行圖象和圖象之間的比較,表達(dá)式和表達(dá)式之間的比較,建立圖象和表達(dá)式之間的聯(lián)系,以達(dá)到學(xué)生對(duì)二次函數(shù)性質(zhì)的真正理解。

  教學(xué)過(guò)程:

  一 、認(rèn)知準(zhǔn)備:

  1.正比例函數(shù)、一次函數(shù)、反比例函數(shù)的圖象分別是什么?

  2.畫(huà)函數(shù)圖象的方法和步驟是什么?(學(xué)生口答)

  你會(huì)作二次函數(shù)y=ax2的圖象嗎?你想直觀(guān)地了解它的性質(zhì)嗎?本節(jié)課我們一起探索。

  二 、 新授:

  (一)動(dòng)手實(shí)踐:作二次函數(shù) y=x2和y=-x2的圖象

  (同桌二人,南邊作二次函數(shù) y=x2的圖象,北邊作二次函數(shù)y=-x2的圖象,兩名學(xué)生黑板完成)

  (二)對(duì)照黑板圖象 議一議:(先由學(xué)生獨(dú)立思考,再小組交流)

  1.你能描述該圖象的形狀嗎?

  2.該圖象與x軸有公共點(diǎn)嗎?如果有公共點(diǎn)坐標(biāo)是什么?

  3. 當(dāng)x0時(shí),隨著x的增大,y如何變化?當(dāng)x0時(shí)呢?

  4.當(dāng)x取什么值時(shí),y值最小?最小值是什么?你是如何知道的.?

  5.該圖象是軸對(duì)稱(chēng)圖形嗎?如果是,它的對(duì)稱(chēng)軸是什么?請(qǐng)你找出幾對(duì)對(duì)稱(chēng)點(diǎn)。

  (三) 學(xué)生交流:

  1.交流上面的五個(gè)問(wèn)題(由問(wèn)題1引出拋物線(xiàn)的概念,由問(wèn)題2引出拋物線(xiàn)的頂點(diǎn))

  2.二次函數(shù) y=x2 和y=-x2的圖象有哪些相同點(diǎn)和不同點(diǎn)?

  3.教師出示同一直角坐標(biāo)系中的 兩個(gè)函數(shù)y=x2 和y=-x2 圖象,根據(jù)圖象回答:

  (1)二次函數(shù) y=x2和y=-x2 的圖象關(guān)于哪條直線(xiàn)對(duì)稱(chēng)?

  (2)兩個(gè)圖象關(guān)于哪個(gè)點(diǎn)對(duì)稱(chēng)?

  (3)由 y=x2 的圖象如何得到 y=-x2 的圖象?

  (四) 動(dòng)手做一做:

  1.作出函數(shù)y=2 x2 和 y= -2 x2的圖象

  (同桌二人,南邊作二次函數(shù) y= -2 x2的圖象,北邊作二次函數(shù)y=2 x2的圖象,兩名學(xué)生黑板完成)

  2.對(duì)照黑板圖象,數(shù)形結(jié)合,研討性質(zhì):

  (1)你能說(shuō)出二次函數(shù)y=2 x2具有哪些性質(zhì)嗎?

  (2)你能說(shuō)出二次函數(shù) y= -2 x2具有哪些性質(zhì)嗎?

  (3)你能發(fā)現(xiàn)二次函數(shù)y=a x2的圖象有什么性質(zhì)嗎?

  (學(xué)生分小組活動(dòng),交流各自的發(fā)現(xiàn))

  3.師生歸納總結(jié)二次函數(shù)y=a x2的圖象及性質(zhì):

  (1)二次函數(shù)y=a x2的圖象是一條拋物線(xiàn)

  (2)性質(zhì)

  a:開(kāi)口方向:a0,拋物線(xiàn)開(kāi)口向上,a〈 0,拋物線(xiàn)開(kāi)口向下[

  b:頂點(diǎn)坐標(biāo)是(0,0)

  c:對(duì)稱(chēng)軸是y軸

  d:最值 :a0,當(dāng)x=0時(shí),y的最小值=0,a〈0,當(dāng)x=0時(shí),y的最大值=0

  e:增減性:a0時(shí),在對(duì)稱(chēng)軸的左側(cè)(X0),y隨x的增大而減小,在對(duì)稱(chēng)軸的右側(cè)(x0),y隨x的增大而增大,a〈0時(shí),在對(duì)稱(chēng)軸的左側(cè)(X0),y隨x的增大而增大,在對(duì)稱(chēng)軸的右側(cè)(x0),y隨x的增大而減小。

  4.應(yīng)用:(1)說(shuō)出二次函數(shù)y=1/3 x2 和 y= -5 x2 有哪些性質(zhì)

  (2)說(shuō)出二次函數(shù)y=4 x2 和 y= -1/4 x2有哪些相同點(diǎn)和不同點(diǎn)?

  三、小結(jié):

  通過(guò)本節(jié)課學(xué)習(xí),你有哪些收獲?(學(xué)生小結(jié))

  1.會(huì)畫(huà)二次函數(shù)y=a x2的圖象,知道它的圖象是一條拋物線(xiàn)

  2.知道二次函數(shù)y=a x2的性質(zhì):

  a:開(kāi)口方向:a0,拋物線(xiàn)開(kāi)口向上,a〈0,拋物線(xiàn)開(kāi)口向下

  b:頂點(diǎn)坐標(biāo)是(0,0)

  c:對(duì)稱(chēng)軸是y軸

  d:最值 :a0,當(dāng)x=0時(shí),y的最小值=0,a〈0,當(dāng)x=0時(shí),y的最大值=0

  e:增減性:a0時(shí),在對(duì)稱(chēng)軸的左側(cè)(X0=,y隨x的增大而減小,在對(duì)稱(chēng)軸的右側(cè)(x0),y隨x的增大而增大,a〈0時(shí),在對(duì)稱(chēng)軸的左側(cè)(X0),y隨x的增大而增大,在對(duì)稱(chēng)軸的右側(cè)(x0),y隨x的增大而減小。

二次函數(shù)教案6

  教學(xué)目標(biāo)

  1、經(jīng)歷用三種方式表示變量之間二次函數(shù)關(guān)系的過(guò)程,體會(huì)三種方式之間的聯(lián)系與各自不同的特點(diǎn)

  2、能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問(wèn)題

  3、能夠根據(jù)二次函數(shù)的不同表示方式,從不同的側(cè)面對(duì)函數(shù)性質(zhì)進(jìn)行研究

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):用三種方式表示變量之間二次函數(shù)關(guān)系

  難點(diǎn):根據(jù)二次函數(shù)的不同表示方式,從不同的側(cè)面對(duì)函數(shù)性質(zhì)進(jìn)行研究

  教學(xué)過(guò)程設(shè)計(jì)

  一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問(wèn)題

  這節(jié)課,我們來(lái)學(xué)習(xí)二次函數(shù)的`三種表達(dá)方式。

  二、師生共同研究形成概念

  1、用函數(shù)表達(dá)式表示

  ☆做一做書(shū)本P56矩形的周長(zhǎng)與邊長(zhǎng)、面積的關(guān)系

  鼓勵(lì)學(xué)生間的互相交流,一定要讓學(xué)生理解周長(zhǎng)與邊長(zhǎng)、面積的關(guān)系。

  比較全面、完整、簡(jiǎn)單地表示出變量之間的關(guān)系

  2、用表格表示

  ☆做一做書(shū)本P56填表

  由于運(yùn)算量比較大,學(xué)生的運(yùn)算能力又一般,因此,建議把這個(gè)表格的一部分?jǐn)?shù)據(jù)先給出來(lái),讓學(xué)生完成未完成的部分空格。

  表格表示可以清楚、直接地表示出變量之間的數(shù)值對(duì)應(yīng)關(guān)系

  3、用圖象表示

  ☆議一議書(shū)本P56議一議

  關(guān)于自變量的問(wèn)題,學(xué)生往往比較難理解,講解時(shí),可適當(dāng)多花時(shí)間講解。

  可以直觀(guān)地表示出函數(shù)的變化過(guò)程和變化趨勢(shì)

  ☆做一做書(shū)本P57

  4、三種方法對(duì)比

  ☆議一議書(shū)本P58議一議

  函數(shù)的表格表示可以清楚、直接地表示出變量之間的數(shù)值對(duì)應(yīng)關(guān)系;函數(shù)的圖象表示可以直觀(guān)地表示出函數(shù)的變化過(guò)程和變化趨勢(shì);函數(shù)的表達(dá)式可以比較全面、完整、簡(jiǎn)單地表示出變量之間的關(guān)系。這三種表示方式積壓自有各自的優(yōu)點(diǎn),它們服務(wù)于不同的需要。

  在對(duì)三種表示方式進(jìn)行比較時(shí),學(xué)生的看法可能多種多樣。只要他們的想法有一定的道理,教師就應(yīng)予以肯定和鼓勵(lì)。

二次函數(shù)教案7

  【知識(shí)與技能】

  1.理解具體情景中二次函數(shù)的意義,理解二次函數(shù)的概念,掌握二次函數(shù)的一般形式.

  2.能夠表示簡(jiǎn)單變量之間的二次函數(shù)關(guān)系式,并能根據(jù)實(shí)際問(wèn)題確定自變量的取值范圍.

  【過(guò)程與方法】

  經(jīng)歷探索,分析和建立兩個(gè)變量之間的二次函數(shù)關(guān)系的過(guò)程,進(jìn)一步體驗(yàn)如何用數(shù)學(xué)的方法描述變量之間的數(shù)量關(guān)系.

  【情感態(tài)度】

  體會(huì)數(shù)學(xué)與實(shí)際生活的密切聯(lián)系,學(xué)會(huì)與他人合作交流,培養(yǎng)合作意識(shí).

  【教學(xué)重點(diǎn)】

  二次函數(shù)的概念.

  【教學(xué)難點(diǎn)】

  在實(shí)際問(wèn)題中,會(huì)寫(xiě)簡(jiǎn)單變量之間的二次函數(shù)關(guān)系式教學(xué)過(guò)程.

  一、情境導(dǎo)入,初步認(rèn)識(shí)

  1.教材P2“動(dòng)腦筋”中的兩個(gè)問(wèn)題:矩形植物園的面積S(2)與相鄰于圍墻面的每一面墻的長(zhǎng)度x()的關(guān)系式是S=-2x2+100x,(0

  2.對(duì)于實(shí)際問(wèn)題中的.二次函數(shù),自變量的取值范圍是否會(huì)有一些限制呢?有.

  二、思考探究,獲取新知

  二次函數(shù)的概念及一般形式

  在上述學(xué)生回答后,教師給出二次函數(shù)的定義:一般地,形如=ax2+bx+c(a,

  b,c是常數(shù),a≠0)的函數(shù),叫做二次函數(shù),其中x是自變量,a,b,c分別是函數(shù)解析式的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng).

  注意:①二次函數(shù)中二次項(xiàng)系數(shù)不能為0.②在指出二次函數(shù)中各項(xiàng)系數(shù)時(shí),要連同符號(hào)一起指出.

二次函數(shù)教案8

  教學(xué)目標(biāo):

  1. 1. 理解二次函數(shù)的意義;會(huì)用描點(diǎn)法畫(huà)出函數(shù)y=ax2的圖象,知道拋物線(xiàn)的有關(guān)概念;

  2. 2. 通過(guò)變式教學(xué),培養(yǎng)學(xué)生思維的敏捷性、廣闊性、深刻性;

  3. 3. 通過(guò)二次函數(shù)的教學(xué)讓學(xué)生進(jìn)一步體會(huì)研究函數(shù)的一般方法;加深對(duì)于數(shù)形結(jié)合思想認(rèn)識(shí)。

  教學(xué)重點(diǎn):二次函數(shù)的意義;會(huì)畫(huà)二次函數(shù)圖象。

  教學(xué)難點(diǎn):描點(diǎn)法畫(huà)二次函數(shù)y=ax2的圖象,數(shù)與形相互聯(lián)系。

  教學(xué)過(guò)程設(shè)計(jì):

  一. 創(chuàng)設(shè)情景、建模引入

  我們已學(xué)習(xí)了正比例函數(shù)及一次函數(shù),現(xiàn)在來(lái)看看下面幾個(gè)例子:

  1.寫(xiě)出圓的半徑是R(CM),它的面積S(CM2)與R的關(guān)系式

  答:S=πR2. ①

  2.寫(xiě)出用總長(zhǎng)為60M的籬笆圍成矩形場(chǎng)地,矩形面積S(M2)與矩形一邊長(zhǎng)L(M)之間的'關(guān)系

  答:S=L(30-L)=30L-L2 ②

  分析:①②兩個(gè)關(guān)系式中S與R、L之間是否存在函數(shù)關(guān)系?

  S是否是R、L的一次函數(shù)?

  由于①②兩個(gè)關(guān)系式中S不是R、L的一次函數(shù),那么S是R、L的什么函數(shù)呢?這樣的函數(shù)大家能不能猜想一下它叫什么函數(shù)呢?

  答:二次函數(shù)。

  這一節(jié)課我們將研究二次函數(shù)的有關(guān)知識(shí)。(板書(shū)課題)

  二. 歸納抽象、形成概念

  一般地,如果y=ax2+bx+c(a,b,c是常數(shù),a≠0) ,

  那么,y叫做x的二次函數(shù).

  注意:(1)必須a≠0,否則就不是二次函數(shù)了.而b,c兩數(shù)可以是零.(2) 由于二次函數(shù)的解析式是整式的形式,所以x的取值范圍是任意實(shí)數(shù).

  練習(xí):1.舉例子:請(qǐng)同學(xué)舉一些二次函數(shù)的例子,全班同學(xué)判斷是否正確。

  2.出難題:請(qǐng)同學(xué)給大家出示一個(gè)函數(shù),請(qǐng)同學(xué)判斷是否是二次函數(shù)。

 。ㄈ魧W(xué)生考慮不全,教師給予補(bǔ)充。如: ; ; ; 的形式。)

 。ㄍㄟ^(guò)學(xué)生觀(guān)察、歸納定義加深對(duì)概念的理解,既培養(yǎng)了學(xué)生的實(shí)踐能力,有培養(yǎng)了學(xué)生的探究精神。并通過(guò)開(kāi)放性的練習(xí)培養(yǎng)學(xué)生思維的發(fā)散性、開(kāi)放性。題目用了一些人性化的詞語(yǔ),也增添了課堂的趣味性。)

  由前面一次函數(shù)的學(xué)習(xí),我們已經(jīng)知道研究函數(shù)一般應(yīng)按照定義、圖象、性質(zhì)、求解析式幾個(gè)方面進(jìn)行研究。二次函數(shù)我們也會(huì)按照定義、圖象、性質(zhì)、求解析式幾個(gè)方面進(jìn)行研究。

 。ㄔ谶@里指出學(xué)習(xí)函數(shù)的一般方法,旨在及時(shí)進(jìn)行學(xué)法指導(dǎo);并將此方法形成技能,以指導(dǎo)今后的學(xué)習(xí);進(jìn)一步培養(yǎng)終身學(xué)習(xí)的能力。)

  三. 嘗試模仿、鞏固提高

  讓我們先從最簡(jiǎn)單的二次函數(shù)y=ax2入手展開(kāi)研究

  1. 1. 嘗試:大家知道一次函數(shù)的圖象是一條直線(xiàn),那么二次函數(shù)的圖象是什么呢?

  請(qǐng)同學(xué)們畫(huà)出函數(shù)y=x2的圖象。

 。▽W(xué)生分別畫(huà)圖,教師巡視了解情況。)

二次函數(shù)教案9

  一、教學(xué)目標(biāo):

  1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過(guò)程,體會(huì)方程與函數(shù)之間的聯(lián)系.

  2.理解拋物線(xiàn)交x軸的點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,理解何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)數(shù)和沒(méi)有實(shí)根.

  3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

  二、教學(xué)重點(diǎn)、難點(diǎn):

  教學(xué)重點(diǎn):

  1.體會(huì)方程與函數(shù)之間的聯(lián)系。

  2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

  教學(xué)難點(diǎn):

  1.探索方程與函數(shù)之間關(guān)系的過(guò)程。

  2.理解二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的`個(gè)數(shù)之間的關(guān)系。

  三、教學(xué)方法:啟發(fā)引導(dǎo) 合作交流

  四:教具、學(xué)具:課件

  五、教學(xué)媒體:計(jì)算機(jī)、實(shí)物投影。

  六、教學(xué)過(guò)程:

  檢查預(yù)習(xí) 引出課題

  預(yù)習(xí)作業(yè):

  1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.

  2. 回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.

  師生行為:教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評(píng)價(jià)。

  教師重點(diǎn)關(guān)注:學(xué)生回答問(wèn)題結(jié)論準(zhǔn)確性,能否把前后知識(shí)聯(lián)系起來(lái),2題的格式要規(guī)范。

  設(shè)計(jì)意圖:這兩道預(yù)習(xí)題目是對(duì)舊知識(shí)的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個(gè)方程是課本中觀(guān)察欄目中的三個(gè)函數(shù)式的變式,這三個(gè)方程把二次方程的根的三種情況體現(xiàn)出來(lái),讓學(xué)生回顧二次方程的相關(guān)知識(shí);2題是一次函數(shù)與一元一次方程的關(guān)系的問(wèn)題,這題的設(shè)計(jì)是讓學(xué)生用學(xué)過(guò)的熟悉的知識(shí)類(lèi)比探究本課新知識(shí)。

二次函數(shù)教案10

  通過(guò)學(xué)生的討論,使學(xué)生更清楚以下事實(shí):

  (1)分解因式與整式的乘法是一種互逆關(guān)系;

  (2)分解因式的結(jié)果要以積的形式表示;

  (3)每個(gè)因式必須是整式,且每個(gè)因式的次數(shù)都必須低于原來(lái)的多項(xiàng)式 的次數(shù);

  (4)必須分解到每個(gè)多項(xiàng)式不能再分解為止。

  活動(dòng)5:應(yīng)用新知

  例題學(xué)習(xí):

  P166例1、例2(略)

  在教師的引導(dǎo)下,學(xué)生應(yīng)用提公因式法共同完成例題。

  讓學(xué)生進(jìn)一步理解提公因式法進(jìn)行因式分解。

  活動(dòng)6:課堂練習(xí)

  1.P167練習(xí);

  2. 看誰(shuí)連得準(zhǔn)

  x2-y2 (x+1)2

  9-25 x 2 y(x -y)

  x 2+2x+1 (3-5 x)(3+5 x)

  xy-y2 (x+y)(x-y)

  3.下列哪些變形是因式分解,為什么?

  (1)(a+3)(a -3)= a 2-9

  (2)a 2-4=( a +2)( a -2)

  (3)a 2-b2+1=( a +b)( a -b)+1

  (4)2πR+2πr=2π(R+r)

  學(xué)生自主完成練習(xí)。

  通過(guò)學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對(duì)因式分解意義的理解是否到位,以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏。

  活動(dòng)7:課堂小結(jié)

  從今天的課程中,你學(xué)到了哪些知識(shí)?掌握了哪些方法?明白了哪些道理?

  學(xué)生發(fā)言。

  通過(guò)學(xué)生的回顧與反思,強(qiáng)化學(xué)生對(duì)因式分解意義的理解,進(jìn)一步清楚地了解分解因式與整式的乘法的`互逆關(guān)系,加深對(duì)類(lèi)比的數(shù)學(xué)思想的理解。

  活動(dòng)8:課后作業(yè)

  課本P170習(xí)題的第1、4大題。

  學(xué)生自主完成

  通過(guò)作業(yè)的鞏固對(duì)因式分解,特別是提公因式法理解并學(xué)會(huì)應(yīng)用。

  板書(shū)設(shè)計(jì)(需要一直留在黑板上主板書(shū))

  15.4.1提公因式法 例題

  1.因式分解的定義

  2.提公因式法

二次函數(shù)教案11

  教學(xué)目標(biāo)

  1·從具體函數(shù)的圖象中認(rèn)識(shí)二次函數(shù)的基本性質(zhì),了解二次函數(shù)與二次方程的相互關(guān)系·

  2·探索二次函數(shù)的變化規(guī)律,掌握函數(shù)的最大值(或最小值)及函數(shù)的增減性的概念·能夠利用二次函數(shù)的圖象求一元二次方程的近似根·

  3·通過(guò)具體實(shí)例,讓學(xué)生經(jīng)歷概念的形成過(guò)程,使學(xué)生體會(huì)到函數(shù)能夠反映實(shí)際事物的變化規(guī)律,體驗(yàn)數(shù)學(xué)來(lái)源于生活,服務(wù)于生活的辯證觀(guān)點(diǎn)·

  教學(xué)重點(diǎn)

  二次函數(shù)的最大值,最小值及增減性的理解和求法·

  教學(xué)難點(diǎn)

  二次函數(shù)的性質(zhì)的應(yīng)用·

  《22·2二次函數(shù)與一元二次方程》同步練習(xí)

  三、解答題

  7·(1)請(qǐng)?jiān)谧鴺?biāo)系中畫(huà)出二次函數(shù)y=x2—2x的大致圖象;

 。2)根據(jù)方程的.根與函數(shù)圖象的關(guān)系,將方程x2—2x=1的根在圖上近似地表示出來(lái)(描點(diǎn));

 。3)觀(guān)察圖象,直接寫(xiě)出方程x2—2x=1的根(精確到0·1)·

  《22·2二次函數(shù)與一元二次方程》練習(xí)題

  16·(杭州中考)把一個(gè)足球垂直水平地面向上踢,時(shí)間為t(秒)時(shí)該足球距離地面的高度h(米)適用公式h=20t—5t2(0≤t≤4)·

 。1)當(dāng)t=3時(shí),求足球距離地面的高度;

 。2)當(dāng)足球距離地面的高度為10米時(shí),求t;

  (3)若存在實(shí)數(shù)t1,t2(t1≠t2),當(dāng)t=t1或t2時(shí),足球距離地面的高度都為m(米),求m的取值范圍·

二次函數(shù)教案12

  目標(biāo)設(shè)計(jì)

  1.知識(shí)與技能:通過(guò)本節(jié)學(xué)習(xí),鞏固二次函數(shù)y=ax2+bx+c(a≠0)的圖象與性質(zhì),理解頂點(diǎn)與最值的關(guān)系,會(huì)用頂點(diǎn)的性質(zhì)求解最值問(wèn)題。

  能力訓(xùn)練要求

  1、能夠分析實(shí)際問(wèn)題中變量之間的二次函數(shù)關(guān)系,并運(yùn)用二次函數(shù)的知識(shí)求出實(shí)際問(wèn)題的最大(小)值發(fā)展學(xué)生解決問(wèn)題的能力, 學(xué)會(huì)用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問(wèn)題。

  2、通過(guò)觀(guān)察圖象,理解頂點(diǎn)的特殊性,會(huì)把實(shí)際問(wèn)題中的最值轉(zhuǎn)化為二次函數(shù)的最值問(wèn)題,通過(guò)動(dòng)手動(dòng)腦,提高分析解決問(wèn)題的能力,并體會(huì)一般與特殊的關(guān)系,培養(yǎng)數(shù)形結(jié)合思想,函數(shù)思想。

  情感與價(jià)值觀(guān)要求

  1、在進(jìn)行探索的活動(dòng)過(guò)程中發(fā)展學(xué)生的探究意識(shí),逐步養(yǎng)成合作交流的習(xí)慣。

  2、培養(yǎng)學(xué)生學(xué)以致用的習(xí)慣,體會(huì)體會(huì)數(shù)學(xué)在生活中廣泛的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、增強(qiáng)自信心。

  方法設(shè)計(jì)

  由于本節(jié)課是應(yīng)用問(wèn)題,重在通過(guò)學(xué)習(xí)總結(jié)解決問(wèn)題的方法,故而本節(jié)課以“啟發(fā)探究式”為主線(xiàn)開(kāi)展教學(xué)活動(dòng),解決問(wèn)題以學(xué)生動(dòng)手動(dòng)腦探究為主,必要時(shí)加以小組合作討論,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性和主動(dòng)性,突出學(xué)生的主體地位,達(dá)到“不但使學(xué)生學(xué)會(huì),而且使學(xué)生會(huì)學(xué)”的目的。為了提高課堂效率,展示學(xué)生的學(xué)習(xí)效果,適當(dāng)?shù)剌o以電腦多媒體技術(shù)。

  教學(xué)過(guò)程

  導(dǎo)學(xué)提綱

  設(shè)計(jì)思路:最值問(wèn)題又是生活中利用二次函數(shù)知識(shí)解決最常見(jiàn)、最有實(shí)際應(yīng)用價(jià)值的問(wèn)題之一,它生活背景豐富 ,學(xué)生比較感興趣,對(duì)九年級(jí)學(xué)生來(lái)說(shuō),在學(xué)習(xí)了一次函數(shù)和二次函數(shù)圖象與性質(zhì)以后,對(duì)函數(shù)的思想已有初步認(rèn)識(shí),對(duì)分析問(wèn)題的方法已會(huì)初步模仿,能識(shí)別圖象的增減性和最值,但在變量超過(guò)兩個(gè)的實(shí)際問(wèn)題中,還不能熟練地應(yīng)用知識(shí)解決問(wèn)題,而面積問(wèn)題學(xué)生易于理解和接受 ,故而在這兒作此調(diào)整,為求解最大利潤(rùn)等問(wèn)題奠定基礎(chǔ)。從而進(jìn)一步培養(yǎng)學(xué)生利用所學(xué)知識(shí)構(gòu)建數(shù)學(xué)模型,解決實(shí)際問(wèn)題的能力,這也符合新課標(biāo)中知識(shí)與技能呈螺旋式上升的規(guī)律。目的在于讓學(xué)生通過(guò)掌握求面積最大這一類(lèi)題,學(xué)會(huì)用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問(wèn)題,此部分內(nèi)容既是學(xué)習(xí)一次函數(shù)及其應(yīng)用后的鞏固與延伸,又為高中乃至以后學(xué)習(xí)更多函數(shù)打下堅(jiān)實(shí)的理論和思想方法基礎(chǔ)。

  (一)前情回顧:

  1.復(fù)習(xí)二次函數(shù)y=ax2+bx+c(a≠0)的圖象、頂點(diǎn)坐標(biāo)、對(duì)稱(chēng)軸和最值

  2.(1)求函數(shù)y=x2+ 2x-3的最值。

 。2)求函數(shù)y=x2+2x-3的最值。(0≤x ≤ 3)

  3、拋物線(xiàn)在什么位置取最值?

  (二)適當(dāng)點(diǎn)撥,自主探究

  1.在創(chuàng)設(shè)情境中發(fā)現(xiàn)問(wèn)題

  請(qǐng)你畫(huà)一個(gè)周長(zhǎng)為40厘米的矩形,算算它的面積是多少?再和同學(xué)比比,發(fā)現(xiàn)了什么?誰(shuí)的面積最大?

  2、在解決問(wèn)題中找出方法

  某工廠(chǎng)為了存放材料,需要圍一個(gè)周長(zhǎng)40米的矩形場(chǎng)地,問(wèn)矩形的長(zhǎng)和寬各取多少米,才能使存放場(chǎng)地的面積最大?

 。▎(wèn)題設(shè)計(jì)思路:把前面矩形的周長(zhǎng)40厘米改為40米,變成一個(gè)實(shí)際問(wèn)題, 目的在于讓學(xué)生體會(huì)其應(yīng)用價(jià)值??我們要學(xué)有用的數(shù)學(xué)知識(shí)。學(xué)生在前面探究問(wèn)題時(shí),已經(jīng)發(fā)現(xiàn)了面積不唯一,并急于找出最大的,而且要有理 論依據(jù),這樣首先要建立函數(shù)模型,合作探究中在選取變量時(shí)學(xué)生可能會(huì)有困難,這時(shí)教師要引導(dǎo)學(xué)生關(guān)注哪兩個(gè)變量,就把其中的一個(gè)主要變量設(shè)為x,另一個(gè)設(shè)為y,其它變量用含x的代數(shù)式表示,找等量關(guān)系,建立函數(shù)模型,實(shí)際問(wèn)題還要考慮定義域,畫(huà)圖象觀(guān)察最值點(diǎn),這樣一步步突破難點(diǎn),從而讓學(xué)生在不斷探究中悟出利用函數(shù)知識(shí)解決問(wèn)題的一套思路和方法,而不是為了做題而做題,為以后的學(xué)習(xí)奠定思想方法基礎(chǔ)。)

  3、在鞏固與應(yīng)用中提高技能

  例1:小明的家門(mén)前有一塊空地,空地外有一面長(zhǎng)10米的圍墻,為了美化生活環(huán)境,小明的爸爸準(zhǔn)備靠墻修建一個(gè)矩形花圃 ,他買(mǎi)回了32米長(zhǎng)的`不銹鋼管準(zhǔn)備作為花圃的圍欄(如圖所示),花圃的寬AD究竟應(yīng)為多少米才能使花圃的面積最大?

  (設(shè)計(jì)思路:例1的設(shè)計(jì)也是尋找了學(xué)生熟悉的家門(mén)口的生活背景,從知識(shí)的角度來(lái)看,求矩形面積也較容易,我在此設(shè)計(jì)了一個(gè)條件墻長(zhǎng)10米來(lái)限制定義域,目的在于告訴學(xué)生一個(gè)道理,數(shù)學(xué)不能脫離生活實(shí)際,估計(jì)大部分學(xué)生在求解時(shí)還會(huì)在頂點(diǎn)處找最值,導(dǎo)致錯(cuò)解,此時(shí)教師再提醒學(xué)生通過(guò)畫(huà)函數(shù)的圖象輔助觀(guān)察、理解最值的實(shí)際意義,體會(huì)頂點(diǎn)與端點(diǎn)的不同作用,加深對(duì)知識(shí)的理解,做到數(shù)與形的完美結(jié)合,通過(guò)此題的有意訓(xùn)練,學(xué)生必然會(huì)對(duì)定義域的意義有更加深刻的理解,這樣既培養(yǎng)了學(xué)生思維的嚴(yán)密性,又為今后能靈活地運(yùn)用知識(shí)解決問(wèn)題奠定了堅(jiān)實(shí)的基礎(chǔ)。)

  解:設(shè)垂直于墻的邊AD=x米,則AB=(32-2x) 米,設(shè)矩形面積為y米2,得到:

  Y=x(32-2x)= -2x2+32x

 。坼e(cuò)解]由頂點(diǎn)公式得:

  x=8米時(shí),y最大=128米2

  而實(shí)際上定義域?yàn)?1≤x ?16,由圖象或增減性可知x=11米時(shí), y最大=110米2

 。ㄔO(shè)計(jì)思路:例1的設(shè)計(jì)也是尋找了學(xué)生熟悉的家門(mén)口的生活背景,從知識(shí)的角度來(lái)看,求矩形面積也較容易,我在此設(shè)計(jì)了一個(gè)條件墻長(zhǎng)10米來(lái)限制定義域,目的在于告訴學(xué)生一個(gè)道理,數(shù)學(xué)不能脫離生活實(shí)際,估計(jì)大部分學(xué)生在求解時(shí)還會(huì)在頂點(diǎn)處找最值,導(dǎo)致錯(cuò) 解,此時(shí)教師再提醒學(xué)生通過(guò)畫(huà)函數(shù)的圖象輔助觀(guān)察、理解最值的實(shí)際意義,體會(huì)頂點(diǎn)與端點(diǎn)的不同作用,加深對(duì)知識(shí)的理解,做到數(shù)與 形的完美結(jié)合,通過(guò)此題的有意訓(xùn)練,學(xué)生必然會(huì)對(duì)定義域的意義有更加深刻的理解,這樣既培養(yǎng)了學(xué)生思維的嚴(yán)密性,又為今后能靈活地運(yùn)用知識(shí)解決問(wèn)題奠定了堅(jiān)實(shí)的基礎(chǔ)。)

  (三)總結(jié)交流:

 。1)同學(xué)們經(jīng)歷剛才的探究過(guò)程,想想解決此類(lèi)問(wèn)題的思路是什么?.

  引導(dǎo)學(xué)生分析解題循環(huán)圖:

  (2)在探究發(fā)現(xiàn)這些判定方法的過(guò)程中運(yùn)用了什么樣的數(shù)學(xué)方法?

  (四)掌握應(yīng)用:

  圖中窗戶(hù)邊框的 上半部分是由四個(gè)全等扇形組成的半圓,下部分是矩形。如果制作一個(gè)窗戶(hù)邊框的材料總長(zhǎng)為15米,那么如何設(shè)計(jì)這個(gè)窗戶(hù)邊框的尺寸,使透光面積最大(結(jié)果精確到0.01m2)?(設(shè)計(jì)思路:先出示如圖圖形,然后引伸到課本中的圖形,讓學(xué)生有一個(gè)思考遞進(jìn)的空間。)

  (五)我來(lái)試一試:

  如圖在Rt△ABC中,點(diǎn)P在斜邊AB上移動(dòng),PM⊥BC,PN⊥AC,M,N分別為垂足,已知AC=1,AB=2,求:

 。1)何時(shí)矩形PMCN的面積最大,把最大面積是多少?

 。2)當(dāng)AM平分∠CAB時(shí),矩形PMCN的面積.

 。┲橇﹃J關(guān):

  如圖,用長(zhǎng)20cm的籬笆,一面靠墻圍成一個(gè)長(zhǎng)方形的園子,怎樣圍才能使園子的面積最大?最 大面積是多少?

  作業(yè):課本隨堂練習(xí) 、習(xí)題1,2,3

  板書(shū)設(shè)計(jì)

  二次函數(shù)的應(yīng)用??面積最大問(wèn)題

  課后反思

  二次函數(shù)的應(yīng)用本身是學(xué)習(xí)二次函數(shù)的圖象與性質(zhì)后,檢驗(yàn)學(xué)生應(yīng)用所學(xué)知識(shí)解決實(shí)際問(wèn)題能力的一個(gè)綜合考查。新課標(biāo)中要求學(xué)生能通過(guò)對(duì)實(shí)際問(wèn)題的情境的分析確定二次函數(shù)的表達(dá)式,體會(huì)其意義,能根據(jù)圖象的性質(zhì)解決簡(jiǎn)單的實(shí)際問(wèn)題。 本節(jié)課充分運(yùn)用導(dǎo)學(xué)提綱,教師提前通過(guò)一系列問(wèn)題串的設(shè)置,引導(dǎo)學(xué)生課前預(yù)習(xí),在課堂上通過(guò)對(duì)一系列問(wèn)題串的解決與交流, 讓學(xué)生通過(guò)掌握 求面積最大這一類(lèi)題,學(xué)會(huì)用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問(wèn)題。

  教材中設(shè)計(jì)先探索最大利潤(rùn)問(wèn)題,對(duì)九年級(jí)學(xué)生來(lái)說(shuō),在學(xué)習(xí)了一次函數(shù)和二次函數(shù)圖象與性質(zhì)以后,對(duì)函數(shù)的思想已有初步認(rèn)識(shí),對(duì)分析問(wèn)題的方法已會(huì)初步模仿,能識(shí)別圖象的增減性和最值,但在變量超過(guò)兩個(gè)的實(shí)際問(wèn)題中,還不能熟練地應(yīng)用知識(shí)解決問(wèn)題,而面積問(wèn)題學(xué)生易于理解和接受,故而在這兒作此調(diào)整,為求解最大利潤(rùn)等問(wèn)題奠定基礎(chǔ)。從而進(jìn)一步培養(yǎng)學(xué)生利用所學(xué)知識(shí)構(gòu)建數(shù)學(xué)模型,解決實(shí)際問(wèn)題的能力,這也符合新課標(biāo)中知識(shí)與技能呈螺旋式上升的規(guī)律。所以在例題的處理中適當(dāng)?shù)慕档土颂荻,讓學(xué)生思維有一個(gè)拓展的空間,也有收獲快樂(lè) 和成就感。在訓(xùn)練的過(guò)程中,通過(guò)學(xué)生的獨(dú)立思考與小組合作探究相結(jié)合,使學(xué)生的分析能力、表達(dá)能力及思維能力都得到訓(xùn)練和提高。同時(shí)也注重對(duì)解題方法與解題 模式的歸納與總結(jié),并適當(dāng)?shù)貪B透轉(zhuǎn)化、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法。

二次函數(shù)教案13

  教學(xué)目標(biāo)

  【知識(shí)與技能】

  使學(xué)生會(huì)用描點(diǎn)法畫(huà)出函數(shù)y=ax2的圖象,理解并掌握拋物線(xiàn)的有關(guān)概念及其性質(zhì).

  【過(guò)程與方法】

  使學(xué)生經(jīng)歷探索二次函數(shù)y=ax2的圖象及性質(zhì)的過(guò)程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗(yàn),培養(yǎng)學(xué)生分析、解決問(wèn)題的能力.

  【情感、態(tài)度與價(jià)值觀(guān)】

  使學(xué)生經(jīng)歷探索二次函數(shù)y=ax2的圖象和性質(zhì)的過(guò)程,培養(yǎng)學(xué)生觀(guān)察、思考、歸納的良好思維品質(zhì).

  重點(diǎn)難點(diǎn)

  【重點(diǎn)】

  使學(xué)生理解拋物線(xiàn)的有關(guān)概念及性質(zhì),會(huì)用描點(diǎn)法畫(huà)出二次函數(shù)y=ax2的圖象.

  【難點(diǎn)】

  用描點(diǎn)法畫(huà)出二次函數(shù)y=ax2的圖象以及探索二次函數(shù)的性質(zhì).

  教學(xué)過(guò)程

  一、問(wèn)題引入

  1.一次函數(shù)的圖象是什么?反比例函數(shù)的圖象是什么?

  (一次函數(shù)的圖象是一條直線(xiàn),反比例函數(shù)的圖象是雙曲線(xiàn).)

  2.畫(huà)函數(shù)圖象的一般步驟是什么?

  一般步驟:(1)列表(取幾組x,y的對(duì)應(yīng)值);(2)描點(diǎn)(根據(jù)表中x,y的數(shù)值在坐標(biāo)平面中描點(diǎn)(x,y));(3)連線(xiàn)(用平滑曲線(xiàn)).

  3.二次函數(shù)的圖象是什么形狀?二次函數(shù)有哪些性質(zhì)?

  (運(yùn)用描點(diǎn)法作二次函數(shù)的圖象,然后觀(guān)察、分析并歸納得到二次函數(shù)的性質(zhì).)

  二、新課教授

  【例1】 畫(huà)出二次函數(shù)y=x2的圖象.

  解:(1)列表中自變量x可以是任意實(shí)數(shù),列表表示幾組對(duì)應(yīng)值.

  (2)描點(diǎn):根據(jù)上表中x,y的數(shù)值在平面直角坐標(biāo)系中描點(diǎn)(x,y).

  (3)連線(xiàn):用平滑的曲線(xiàn)順次連接各點(diǎn),得到函數(shù)y=x2的圖象,如圖所示.

  思考:觀(guān)察二次函數(shù)y=x2的圖象,思考下列問(wèn)題:

  (1)二次函數(shù)y=x2的圖象是什么形狀?

  (2)圖象是軸對(duì)稱(chēng)圖形嗎?如果是,它的對(duì)稱(chēng)軸是什么?

  (3)圖象有最低點(diǎn)嗎?如果有,最低點(diǎn)的坐標(biāo)是什么?

  師生活動(dòng):

  教師引導(dǎo)學(xué)生在平面直角坐標(biāo)系中畫(huà)出二次函數(shù)y=x2的圖象,通過(guò)數(shù)形結(jié)合解決上面的3個(gè)問(wèn)題.

  學(xué)生動(dòng)手畫(huà)圖,觀(guān)察、討論并歸納,積極展示探究結(jié)果,教師評(píng)價(jià).

  函數(shù)y=x2的圖象是一條關(guān)于y軸(x=0)對(duì)稱(chēng)的曲線(xiàn),這條曲線(xiàn)叫做拋物線(xiàn).實(shí)際上二次函數(shù)的圖象都是拋物線(xiàn).二次函數(shù)y=x2的圖象可以簡(jiǎn)稱(chēng)為拋物線(xiàn)y=x2.

  由圖象可以看出,拋物線(xiàn)y=x2開(kāi)口向上;y軸是拋物線(xiàn)y=x2的對(duì)稱(chēng)軸:拋物線(xiàn)y=x2與它的對(duì)稱(chēng)軸的交點(diǎn)(0,0)叫做拋物線(xiàn)的頂點(diǎn),它是拋物線(xiàn)y=x2的最低點(diǎn).實(shí)際上每條拋物線(xiàn)都有對(duì)稱(chēng)軸,拋物線(xiàn)與對(duì)稱(chēng)軸的交點(diǎn)叫做拋物線(xiàn)的頂點(diǎn),頂點(diǎn)是拋物線(xiàn)的最低點(diǎn)或最高點(diǎn).

  【例2】 在同一直角坐標(biāo)系中,畫(huà)出函數(shù)y=x2及y=2x2的圖象.

  解:分別填表,再畫(huà)出它們的圖象.

  思考:函數(shù)y=x2、y=2x2的圖象與函數(shù)y=x2的圖象有什么共同點(diǎn)和不同點(diǎn)?

  師生活動(dòng):

  教師引導(dǎo)學(xué)生在平面直角坐標(biāo)系中畫(huà)出二次函數(shù)y=x2、y=2x2的圖象.

  學(xué)生動(dòng)手畫(huà)圖,觀(guān)察、討論并歸納,回答探究的思路和結(jié)果,教師評(píng)價(jià).

  拋物線(xiàn)y=x2、y=2x2與拋物線(xiàn)y=x2的開(kāi)口均向上,頂點(diǎn)坐標(biāo)都是(0,0),函數(shù)y=2x2的圖象的開(kāi)口較窄,y=x2的圖象的開(kāi)口較大.

  探究1:畫(huà)出函數(shù)y=-x2、y=-x2、y=-2x2的圖象,并考慮這些圖象有什么共同點(diǎn)和不同點(diǎn)。

  師生活動(dòng):

  學(xué)生在平面直角坐標(biāo)系中畫(huà)出函數(shù)y=-x2、y=-x2、y=-2x2的圖象,觀(guān)察、討論并歸納.教師巡視學(xué)生的探究情況,若發(fā)現(xiàn)問(wèn)題,及時(shí)點(diǎn)撥.

  學(xué)生匯報(bào)探究的思路和結(jié)果,教師評(píng)價(jià),給出圖形.

  拋物線(xiàn)y=-x2、y=-x2、y=-2x2開(kāi)口均向下,頂點(diǎn)坐標(biāo)都是(0,0),函數(shù)y=-2x2的圖象開(kāi)口最窄,y=-x2的圖象開(kāi)口最大.

  探究2:對(duì)比拋物線(xiàn)y=x2和y=-x2,它們關(guān)于x軸對(duì)稱(chēng)嗎?拋物線(xiàn)y=ax2和y=-ax2呢?

  師生活動(dòng):

  學(xué)生在平面直角坐標(biāo)系中畫(huà)出函數(shù)y=x2和y=-x2的圖象,觀(guān)察、討論并歸納.

  教師巡視學(xué)生的探究情況,發(fā)現(xiàn)問(wèn)題,及時(shí)點(diǎn)撥.

  學(xué)生匯報(bào)探究思路和結(jié)果,教師評(píng)價(jià),給出圖形.

  拋物線(xiàn)y=x2、y=-x2的圖象關(guān)于x軸對(duì)稱(chēng).一般地,拋物線(xiàn)y=ax2和y=-ax2的圖象也關(guān)于x軸對(duì)稱(chēng).

  教師引導(dǎo)學(xué)生小結(jié)(知識(shí)點(diǎn)、規(guī)律和方法).

  一般地,拋物線(xiàn)y=ax2的對(duì)稱(chēng)軸是y軸,頂點(diǎn)是原點(diǎn).當(dāng)a0時(shí),拋物線(xiàn)y=ax2的開(kāi)口向上,頂點(diǎn)是拋物線(xiàn)的最低點(diǎn),當(dāng)a越大時(shí),拋物線(xiàn)的開(kāi)口越小;當(dāng)a0時(shí),拋物線(xiàn)y=ax2的開(kāi)口向下,頂點(diǎn)是拋物線(xiàn)的最高點(diǎn),當(dāng)a越大時(shí),拋物線(xiàn)的開(kāi)口越大.

  從二次函數(shù)y=ax2的圖象可以看出:如果a0,當(dāng)x0時(shí),y隨x的增大而減小,當(dāng)x0時(shí),y隨x的增大而增大;如果a0,當(dāng)x0時(shí),y隨x的增大而增大,當(dāng)x0時(shí),y隨x的增大而減小.

  三、鞏固練習(xí)

  1.拋物線(xiàn)y=-4x2-4的開(kāi)口向,頂點(diǎn)坐標(biāo)是,對(duì)稱(chēng)軸是,當(dāng)x=時(shí),y有最值,是.

  【答案】下 (0,-4) x=0 0 大 -4

  2.當(dāng)m≠時(shí),y=(m-1)x2-3m是關(guān)于x的二次函數(shù).

  【答案】1

  3.已知拋物線(xiàn)y=-3x2上兩點(diǎn)A(x,-27),B(2,y),則x=,y=.

  【答案】-3或3 -12

  4.拋物線(xiàn)y=3x2與直線(xiàn)y=kx+3的交點(diǎn)坐標(biāo)為(2,b),則k=,b=.

  【答案】 12

  5.已知拋物線(xiàn)的頂點(diǎn)在原點(diǎn),對(duì)稱(chēng)軸為y軸,且經(jīng)過(guò)點(diǎn)(-1,-2),則拋物線(xiàn)的表達(dá)式為.

  【答案】y=-2x2

  6.在同一坐標(biāo)系中,圖象與y=2x2的圖象關(guān)于x軸對(duì)稱(chēng)的是()

  A.y=x2B.y=x2

  C.y=-2x2 D.y=-x2

  【答案】C

  7.拋物線(xiàn)y=4x2、y=-2x2、y=x2的圖象,開(kāi)口最大的是()

  A.y=x2 B.y=4x2

  C.y=-2x2 D.無(wú)法確定

  【答案】A

  8.對(duì)于拋物線(xiàn)y=x2和y=-x2在同一坐標(biāo)系中的'位置,下列說(shuō)法錯(cuò)誤的是()

  A.兩條拋物線(xiàn)關(guān)于x軸對(duì)稱(chēng)

  B.兩條拋物線(xiàn)關(guān)于原點(diǎn)對(duì)稱(chēng)

  C.兩條拋物線(xiàn)關(guān)于y軸對(duì)稱(chēng)

  D.兩條拋物線(xiàn)的交點(diǎn)為原點(diǎn)

  【答案】C

  四、課堂小結(jié)

  1.二次函數(shù)y=ax2的圖象過(guò)原點(diǎn)且關(guān)于y軸對(duì)稱(chēng),自變量x的取值范圍是一切實(shí)數(shù).

  2.二次函數(shù)y=ax2的性質(zhì):拋物線(xiàn)y=ax2的對(duì)稱(chēng)軸是y軸,頂點(diǎn)是原點(diǎn).當(dāng)a0時(shí),拋物線(xiàn)y=x2開(kāi)口向上,頂點(diǎn)是拋物線(xiàn)的最低點(diǎn),當(dāng)a越大時(shí),拋物線(xiàn)的開(kāi)口越小;當(dāng)a0時(shí),拋物線(xiàn)y=ax2開(kāi)口向下,頂點(diǎn)是拋物線(xiàn)的最高點(diǎn),當(dāng)a越大時(shí),拋物線(xiàn)的開(kāi)口越大.

  3.二次函數(shù)y=ax2的圖象可以通過(guò)列表、描點(diǎn)、連線(xiàn)三個(gè)步驟畫(huà)出來(lái).

  教學(xué)反思

  本節(jié)課的內(nèi)容主要研究二次函數(shù)y=ax2在a取不同值時(shí)的圖象,并引出拋物線(xiàn)的有關(guān)概念,再根據(jù)圖象總結(jié)拋物線(xiàn)的有關(guān)性質(zhì).整個(gè)內(nèi)容分成:(1)例1是基礎(chǔ);(2)在例1的基礎(chǔ)之上引入例2,讓學(xué)生體會(huì)a的大小對(duì)拋物線(xiàn)開(kāi)口寬闊程度的影響;(3)例2及后面的練習(xí)探究讓學(xué)生領(lǐng)會(huì)a的正負(fù)對(duì)拋物線(xiàn)開(kāi)口方向的影響;(4)最后讓學(xué)生比較例1和例2,練習(xí)歸納總結(jié).

二次函數(shù)教案14

  2.4二次函數(shù)=ax2+bx+c的圖象

  本節(jié)課在二次函數(shù)=ax2和=ax2+c的圖象的基礎(chǔ)上,進(jìn)一步研究=a(x-h)2和=a(x-h)2+的圖象,并探索它們之間的關(guān)系和各自的性質(zhì).旨在全面掌握所有二次函數(shù)的圖象和性質(zhì)的變化情況.同時(shí)對(duì)二次函數(shù)的研究,經(jīng)歷了從簡(jiǎn)單到復(fù)雜,從特殊到一般的過(guò)程:先是從=x2開(kāi)始,然后是=ax2,=ax2+c,最后是=a(x-h)2,=a(x-h)2+,=ax2+bx+c.符合學(xué)生的認(rèn)知特點(diǎn),體會(huì)建立二次函數(shù)對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)公式的必要性.

  在教學(xué)中,主要是讓學(xué)生自己動(dòng)手畫(huà)圖象,通過(guò)自己的觀(guān)察、交流、對(duì)比、概括和反思[

  等探索活動(dòng),使學(xué)生達(dá)到對(duì)拋物線(xiàn)自身特點(diǎn)的認(rèn)識(shí)和對(duì)二次函數(shù)性質(zhì)的理解.并能利用它的性質(zhì)解決問(wèn)題.

  2.4二次函數(shù)=ax2+bx+c的圖象(一)

  教學(xué)目標(biāo)

  (一)教學(xué)知識(shí)點(diǎn)[

  1.能夠作出函數(shù)=a(x-h)2和=a(x-h)2+的圖象,并能理解它與=ax2的圖象的關(guān)系.理解a,h,對(duì)二次函數(shù)圖象的影響.

  2.能夠正確說(shuō)出=a(x-h)2+圖象的開(kāi)口方向、對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo).

  (二)能力訓(xùn)練要求

  1.通過(guò)學(xué)生自己的探索活動(dòng),對(duì)二次函數(shù)性質(zhì)的研究,達(dá)到對(duì)拋物線(xiàn)自身特點(diǎn)的認(rèn)識(shí)和對(duì)二次函數(shù)性質(zhì)的理解.

  2.經(jīng)歷探索二次函數(shù)的圖象的作法和性質(zhì)的過(guò)程,培養(yǎng)學(xué)生的探索能力.

  (三)情感與價(jià)值觀(guān)要求

  1.經(jīng)歷觀(guān)察、猜想、總結(jié)等數(shù)學(xué)活動(dòng)過(guò)程,發(fā)展合情推理能力和初步的演繹推理能力,能有條理地、清晰地闡述自己的觀(guān)點(diǎn).

  2.讓學(xué)生學(xué)會(huì)與人合作,并能與他人交流思維的過(guò)程和結(jié)果.

  教學(xué)重點(diǎn)[:Wz5u.c]

  1.經(jīng)歷探索二次函數(shù)=ax2+bx+c的圖象的作法和性質(zhì)的過(guò)程.

  2.能夠作出=a(x-h)2和=a(x-h)2+的圖象,并能理解它與=ax2的圖象的關(guān)系,理解a、h、對(duì)二次函數(shù)圖象的影響.

  3.能夠正確說(shuō)出=a(x-h)2+圖象的開(kāi)口方向、對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo).

  教學(xué)難點(diǎn)

  能夠作出=a(x-h)2和=a(x-h)2+的圖象,并能夠理解它與=ax2的圖象的關(guān)系,理解a、h、對(duì)二次函數(shù)圖象的影響.

  教學(xué)方法

  探索——比較——總結(jié)法.

  教具準(zhǔn)備

  投影片四張

  第一張:(記作2.4.1 A)

  第二張:(記作2.4.1 B)

  第三張:(記作2.4.1 C)

  第四張:(記作2.4.1 D)

  教學(xué)過(guò)程

 、瘢畡(chuàng)設(shè)問(wèn)題情境、引入新課

  [師]我們已學(xué)習(xí)過(guò)兩種類(lèi)型的二次函數(shù),即=ax2與=ax2+c,知道它們都是軸對(duì)稱(chēng)圖形,對(duì)稱(chēng)軸都是軸,有最大值或最小值.頂點(diǎn)都是原點(diǎn).還知道=ax2+c的圖象是函數(shù)=ax2的圖象經(jīng)過(guò)上下移動(dòng)得到的,那么=ax2的圖象能否左右移動(dòng)呢?它左右移動(dòng)后又會(huì)得到什么樣的函數(shù)形式,它又有哪些性質(zhì)呢?本節(jié)課我們就來(lái)研究有關(guān)問(wèn)題.

 、颍抡n講解

  一、比較函數(shù)=3x2與=3(X-1)2的圖象的性質(zhì).

  投影片:(2.4 A)

  (1)完成下表,并比較3x2和3(x-1)2的值,

  它們之間有什么關(guān)系?

  X-3-2-101234

  3x2

  3(x-1)2

  (2)在下圖中作出二次函數(shù)=3(x-1)2的圖象.你是怎樣作的?

  (3)函數(shù)=3(x-1)2的圖象與=3x2的圖象有什么關(guān)系?它是軸對(duì)稱(chēng)圖形嗎?它的對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)分別是什么?

  (4)x取哪些值時(shí),函數(shù)=3(x-1)2的值隨x值的增大而增大?x取哪些值時(shí),函數(shù)=3(x-1)2的值隨x值的增大而減小?

  [師]請(qǐng)大家先自己填表,畫(huà)圖象,思考每一個(gè)問(wèn)題,然后互相討論,總結(jié).

  [生](1)第二行從左到右依次填:27.12,3,0,3, 12,27,48;第三行從左到右依次填48,27,12,3,0,3, 12,27.

  (2)用描點(diǎn)法作出=3(x-1)2的圖象,如上圖.

  (3)二次函數(shù))=3(x-1)2的圖象與=3x2的圖象形狀相同,開(kāi)口方向也相同,但對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)不同,=3(x-1)2的圖象的對(duì)稱(chēng)軸是直線(xiàn)x=1,頂點(diǎn)坐標(biāo)是(1,0).

  (4)當(dāng)x>1時(shí),函數(shù)=3(x-1)2的'值隨x值的增大而增大,x<1時(shí),=3(x-1)2的值隨x值的增大而減。

  [師]能否用移動(dòng)的觀(guān)點(diǎn)說(shuō)明函數(shù)=3x2與=3(x-1)2的圖象之間的關(guān)系呢?

  [生]=3(x-1)2的圖象可以看成是函數(shù))=3x2的圖象整體向右平移得到的.

  [師]能像上節(jié)課那樣比較它們圖象的性質(zhì)嗎?

  [生]相同點(diǎn):

  a.圖象都中拋物線(xiàn),且形狀相同,開(kāi)口方向相同.

  b. 都是軸對(duì)稱(chēng)圖形.

  c.都有最小值,最小值都為0.

  d.在對(duì)稱(chēng)軸左側(cè),都隨x的增大而減。趯(duì)稱(chēng)軸右側(cè),都隨x的增大而增大.

  不同點(diǎn):

  a.對(duì)稱(chēng)軸不同,=3x2的對(duì)稱(chēng)軸是軸=3(x-1)2的對(duì)稱(chēng)軸是x=1.

  b. 它們的位置不問(wèn).[:Wz5u.c]

  c. 它們的頂點(diǎn)坐標(biāo)不同. =3x2的頂點(diǎn)坐標(biāo)為(0,0),=3(x-1)2的頂點(diǎn)坐標(biāo)為(1,0),

  聯(lián)系:

  把函數(shù)=3x2的圖象向右移動(dòng)一個(gè)單位,則得到函數(shù)=3(x-1)2的圖像.

  二、做一做

  投影片:(2.4.1 B)

  在同一直角坐標(biāo)系中作出函數(shù)=3(x-1)2和=3(x-1)2+2的圖象.并比較它們圖象的性質(zhì).

  [生]圖象如下

  它們的圖象的性質(zhì)比較如下:

  相同點(diǎn):

  a.圖象都是拋物線(xiàn),且形狀相同,開(kāi)口方向相同.

  b. 都足軸對(duì)稱(chēng)圖形,對(duì)稱(chēng)軸都為x=1.

  c. 在對(duì)稱(chēng)軸左側(cè),都隨x的增大而減小,在對(duì)稱(chēng)軸右側(cè),都隨x的增大而增大.

  不同點(diǎn):

  a.它們的頂點(diǎn)不同,最值也不同.=3(x-1)2的頂點(diǎn)坐標(biāo)為(1.0),最小值為0.=3(x-1)2+2的頂點(diǎn)坐標(biāo)為(1,2),最小值為2.

  b. 它們的位置不同.

  聯(lián)系:

  把函數(shù)=3(x-1)2的圖象向上平移2個(gè)單位,就得到了函數(shù)=3(x-1)2+2的圖象.

  三、總結(jié)函數(shù)=3x2,=3(x-1)2,=3(x-1)2+2的圖象之間的關(guān)系.

  [師]通過(guò)上畫(huà)的討論,大家能夠總結(jié)出這三種函數(shù)圖象之間的關(guān)系嗎?

  [生]可以.

  二次函數(shù)=3x2,=3(x-1)2,=3(x-1)2+2的圖象都是拋物線(xiàn).并且形狀相同,開(kāi)口方向相同,只是位置不同,頂點(diǎn)不同,對(duì)稱(chēng)軸不同,將函數(shù)=3x2的圖象向右平移1個(gè)單位,就得到函數(shù)=3(x-1)2的圖象;再向上平移2個(gè)單位,就得到函數(shù)=3(x-1)2+2的圖象.

  [師]大家還記得=3x2與=3x2-1的圖象之間的關(guān)系嗎?

  [生]記得,把函數(shù)=3x2向下平移1個(gè)平位,就得到函數(shù)=3x2-1的圖象.

  [師]你能系統(tǒng)總結(jié)一下嗎?

  [生]將函數(shù)=3x2的圖象向下移動(dòng)1個(gè)單位,就得到了函數(shù)=3x2-1的圖象,向上移動(dòng)1個(gè)單位,就得到函數(shù)=3x2+1的圖象;將=3x2的圖象向右平移動(dòng)1個(gè)單位,就得到函數(shù)=3(x-1)2的圖象:向左移動(dòng)1個(gè)單位,就得到函數(shù)=3(x+1)2的圖象;由函數(shù)=3x2向右平移1個(gè)單位、再向上平移2個(gè)單位,就得到函數(shù)=3(x-1)2+2的圖象.

  [師]下面我們就一般形式來(lái)進(jìn)行總結(jié).

  投影片:(2.4.1 C)

  一般地,平移二次函數(shù)=ax2的圖象便可得到二次函數(shù)為=ax2+c,=a(x-h)2,=a(x-h)2+的圖象.

  (1)將=ax2的圖象上下移動(dòng)便可得到函數(shù)=ax2+c的圖象,當(dāng)c>0時(shí),向上移動(dòng),當(dāng)c<0時(shí),向下移動(dòng).

  (2)將函數(shù)=ax2的圖象左右移動(dòng)便可得到函數(shù)=a(x-h)2的圖象,當(dāng)h>0時(shí),向右移動(dòng),當(dāng)h<0時(shí),向左移動(dòng).

  (3)將函數(shù)=ax2的圖象既上下移,又左右移,便可得到函數(shù)=a(x-h)+的圖象.

  因此,這些函數(shù)的圖象都是一條拋物線(xiàn),它們的開(kāi)口方向,對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)與a,h,的值有關(guān).

  下面大家經(jīng)過(guò)討論之后,填寫(xiě)下表:

  =a(x-h)2+開(kāi)口方向?qū)ΨQ(chēng)軸頂點(diǎn)坐標(biāo)

  a>0

  a<0

  四、議一議

  投影片:(2,4.1 D)

  (1)二次函數(shù)=3(x+1)2的圖象與二次函數(shù)=3x2的圖象有什么關(guān)系?它是軸對(duì)稱(chēng)圖形嗎?它的對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)分別是什么?

  (2)二次函數(shù)=-3(x-2)2+4的圖象與二次函數(shù)=-3x2的圖象有什么關(guān)系?它是軸對(duì)稱(chēng)圖形嗎?它的對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)分別是什么?

  (3)對(duì)于二次函數(shù)=3(x+1)2,當(dāng)x取哪些值時(shí),的值隨x值的增大而增大?當(dāng)x取哪些值時(shí),的值隨x值的增大而減小?二次函數(shù)=3(x+1)2+4呢?

  [師]在不畫(huà)圖象的情況下,你能回答上面的問(wèn)題嗎?

  [生](1)二次函數(shù)=3(x+1)2的圖象與=3x2的圖象形狀相同,開(kāi)口方向也相同,但對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)不同,=3(x+1)2的圖象的對(duì)稱(chēng)軸是直線(xiàn)x=-1,頂點(diǎn)坐標(biāo)是(-1,0).只要將=3x2的圖象向左平移1個(gè)單位,就可以得到=3(x+1)2的圖象.

  (2)二次函數(shù)=-3(x-2)2+4的圖象與=-3x2的圖象形狀相同,只是位置不同,將函數(shù)=-3x2的圖象向右平移2個(gè)單位,就得到=-3(x-2)2的圖象,再向上平移4個(gè)單位,就得到=-3(x-2)2+4的圖象=-3(x-2)2+4的圖象的對(duì)稱(chēng)軸是直線(xiàn)x=2,頂點(diǎn)坐標(biāo)是(2,4).

  (3)對(duì)于二次函數(shù)=3(x+1)2和=3(x+1)2+4,它們的對(duì)稱(chēng)軸都是x=-1,當(dāng)x<-1時(shí),的值隨x值的增大而減小;當(dāng)x>-1時(shí),的值隨x值的增大而增大.

 、螅n堂練習(xí)

  隨堂練習(xí)

  Ⅳ.課時(shí)小結(jié)

  本節(jié)課進(jìn)一步探究了函數(shù)=3x2與=3(x-1)2,=3(x-1)2+2的圖象有什么關(guān)系,對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)分別是什么這些問(wèn)題.并作了歸納總結(jié).還能利用這個(gè)結(jié)果對(duì)其他的函數(shù)圖象進(jìn)行討論.

  Ⅴ.課后作業(yè)

  習(xí)題2.4

 、觯顒(dòng)與探究

  二次函數(shù)= (x+2)2-1與= (x-1)2+2的圖象是由函數(shù)= x2的圖象怎樣移動(dòng)得到的?它們之間是通過(guò)怎樣移動(dòng)得到的?

  解:= (x+2)2-1的圖象是由= x2的圖象向左平移2個(gè)單位,再向下平移1個(gè)單位得到的,= (x-1)2+2的圖象是由= x2的圖象向右平移1個(gè)單位,再向上平移2個(gè)單位得到的.

 。 (x+2)2-1的圖象向右平移3個(gè)單位,再向上平移3個(gè)單位得到= (x-1)2+2的圖象.

 。 (x-1)2+2的圖象向左平移3個(gè)單位,再向下平移3個(gè)單位得到= (x+2)2-1的圖象.

  板書(shū)設(shè)計(jì)

  4.2.1 二次函數(shù)=ax2+bx+c的圖象(一) 一、1. 比較函數(shù)=3x2與=3(x-1)2的

  圖象和性質(zhì)(投影片2.4.1 A)

  2.做一做(投影片2.4.1 B)

  3.總結(jié)函數(shù)=3x2,=3(x-1)2= 3(x-1)2+2的圖象之間的關(guān)系(投影片2.4.1 C)

  4.議一議(投影片2.4.1 D)

  二、課堂練習(xí)

  1.隨堂練習(xí)

  2.補(bǔ)充練習(xí)

  三、課時(shí)小結(jié)

  四、課后作業(yè)

  備課資料

  參考練習(xí)

  在同一直角坐標(biāo)系內(nèi)作出函數(shù)=- x2,=- x2-1,=- (x+1)2-1的圖象,并討論它們的性質(zhì)與位置關(guān)系.

  解:圖象略

  它們都是拋物線(xiàn),且開(kāi)口方向都向下;對(duì)稱(chēng)軸分別為軸軸,直線(xiàn)x=-1;頂點(diǎn)坐標(biāo)分別為(0,0),(0,-1),(-1,-1).

  =- x2的圖象向下移動(dòng)1個(gè)單位得到=- x2-1 的圖象;=- x2的圖象向左移動(dòng)1個(gè)單位,向下移動(dòng)1個(gè)單位,得到=- (x+1)2-1的圖象.

二次函數(shù)教案15

  目標(biāo):

  (1)能夠根據(jù)實(shí)際問(wèn)題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。

 。2)注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識(shí),培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣

  重點(diǎn)難點(diǎn):

  能夠根據(jù)實(shí)際問(wèn)題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。

  過(guò)程:

  一、試一試

  1.設(shè)矩形花圃的垂直于墻的一邊AB的長(zhǎng)為xm,先取x的一些值,算出矩形的另一邊BC的長(zhǎng),進(jìn)而得出矩形的面積ym2.試將計(jì)算結(jié)果填寫(xiě)在下表的空格 中,

  AB長(zhǎng)x(m)123456789

  BC長(zhǎng)(m)12

  面積y(m2)48

  2.x的值是否可以任意取?有限定范圍嗎?

  3.我們發(fā)現(xiàn),當(dāng)AB的長(zhǎng)(x)確定后,矩形的面積(y)也隨之確定, y是x的函數(shù),試寫(xiě)出這個(gè)函數(shù)的關(guān)系式,

  對(duì)于1.,可讓學(xué)生根據(jù)表中給出的AB的長(zhǎng),填出相應(yīng)的BC的長(zhǎng)和面積,然后引導(dǎo)學(xué)生觀(guān)察表格中數(shù)據(jù)的變化情況,提出問(wèn)題:(1)從所填表格中,你能發(fā)現(xiàn)什么?(2)對(duì)前面提出的問(wèn)題的解答能作出什么猜想?讓學(xué)生思考、交流、發(fā)表意見(jiàn),達(dá)成共識(shí):當(dāng)AB的長(zhǎng)為5cm,BC的長(zhǎng)為10m時(shí),圍成的矩形面積最大;最大面積為50m2。

  對(duì)于2,可讓學(xué)生分組討論、交流,然后各組派代表發(fā)表意見(jiàn)。形成共識(shí),x的值不可以任意取,有限定范圍,其范圍是0 <x <10。

  對(duì)于3,教師可提出問(wèn)題,(1)當(dāng)AB=xm時(shí),BC長(zhǎng)等于多少m?(2)面積y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函數(shù)關(guān)系式.

  二、提出問(wèn)題

  某商店將每 件進(jìn)價(jià)為8元的某種商品按每件10元出售,一天可銷(xiāo)出約100件.該店想通過(guò)降低售價(jià)、增加銷(xiāo)售量的`辦法來(lái)提高利潤(rùn),經(jīng)過(guò)市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每降低0.1元,其銷(xiāo)售量可增加10件。將這種商品的售價(jià)降低多少時(shí),能使銷(xiāo)售利潤(rùn)最大?

  在這個(gè)問(wèn)題中,可提出如下問(wèn)題供學(xué)生思考并 回答:

  1.商品的利潤(rùn)與售價(jià)、進(jìn)價(jià)以及銷(xiāo)售量之間有什么關(guān)系?

  2.如果不降低售價(jià),該商品每件利潤(rùn)是多少元?一天總的利潤(rùn)是多 少元?

  3.若每件商品降價(jià)x元,則每件商品的利潤(rùn)是多少元?一天可銷(xiāo)售約多少件商品?

  4.x的值是否可以任意取?如果不能任意取,請(qǐng)求出它的范圍,

  5.若設(shè)該商品每天的利潤(rùn)為y元,求y與x的函數(shù)關(guān)系式。

  將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:

  y=-2x2+20x (0<x<10)……………………………(1)

  將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:

  y =-100x2+100x+20D (0≤x≤2)……………………(2)

  三、觀(guān)察;概括

  1.教師引導(dǎo)學(xué)生觀(guān)察函數(shù)關(guān)系式(1)和(2),提出以下問(wèn)題讓學(xué)生思考回答;

  (1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個(gè)?

  (各有1個(gè))

  (2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式?

  (分別是二次多項(xiàng)式 )

  (3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)?

  (都是用自變量的二次多項(xiàng)式來(lái)表示的)

  (4)本章導(dǎo)圖中的問(wèn)題以及P1頁(yè)的問(wèn)題2有什么共同特點(diǎn) ?

  讓學(xué)生討論、交流,發(fā)表意見(jiàn),歸結(jié)為:自變量x為何值時(shí),函數(shù)y取得最大值。

  2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).

  四、課堂練習(xí)

  1.(口答)下列函數(shù)中,哪些是二次函數(shù)?

  (1)y= 5x+1 (2)y=4x2-1

  (3)y=2x3-3x2 (4)y=5x4-3x+1

  2.P3練習(xí)第1,2題。

  五、小結(jié)

  1.請(qǐng)敘述二次函數(shù)的定義.

  2,許多實(shí)際問(wèn)題可以轉(zhuǎn)化為二次函數(shù)來(lái)解決,請(qǐng)你聯(lián)系生活實(shí) 際,編一道二次函數(shù)應(yīng)用題,并寫(xiě)出函數(shù)關(guān)系式。

【二次函數(shù)教案】相關(guān)文章:

《二次函數(shù)》教案07-11

《二次函數(shù)》教案15篇02-21

二次函數(shù)教學(xué)反思02-13

《二次函數(shù)》教學(xué)反思07-19

二次函數(shù)說(shuō)課稿06-19

二次函數(shù)的教學(xué)反思08-28

二次函數(shù)概念說(shuō)課稿12-29

二次函數(shù)的教學(xué)反思05-21

二次函數(shù)教學(xué)反思05-27