當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>說(shuō)課稿> 二次函數(shù)概念說(shuō)課稿

二次函數(shù)概念說(shuō)課稿

時(shí)間:2024-11-03 09:49:50 說(shuō)課稿 我要投稿
  • 相關(guān)推薦

二次函數(shù)概念說(shuō)課稿

  作為一無(wú)名無(wú)私奉獻(xiàn)的教育工作者,往往需要進(jìn)行說(shuō)課稿編寫工作,借助說(shuō)課稿可以有效提高教學(xué)效率。那要怎么寫好說(shuō)課稿呢?下面是小編為大家收集的二次函數(shù)概念說(shuō)課稿,供大家參考借鑒,希望可以幫助到有需要的朋友。

二次函數(shù)概念說(shuō)課稿

二次函數(shù)概念說(shuō)課稿1

  一、說(shuō)課內(nèi)容:

  蘇教版九年級(jí)數(shù)學(xué)下冊(cè)第六章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題

  二、教材分析:

  1、教材的地位和作用

  這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來(lái)學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個(gè)具體的函數(shù),也是最重要的,在歷年來(lái)的中考題中占有較大比例。同時(shí),二次函數(shù)和以前學(xué)過(guò)的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解“數(shù)形結(jié)合”的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來(lái)學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個(gè)教材中具有承上啟下的重要作用。

  2、教學(xué)目標(biāo)和要求:

 。1)知識(shí)與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實(shí)際問(wèn)題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實(shí)際問(wèn)題確定自變量的取值范圍。

  (2)過(guò)程與方法:復(fù)習(xí)舊知,通過(guò)實(shí)際問(wèn)題的引入,經(jīng)歷二次函數(shù)概念的探索過(guò)程,提高學(xué)生解決問(wèn)題的能力.

 。3)情感、態(tài)度與價(jià)值觀:通過(guò)觀察、操作、交流歸納等數(shù)學(xué)活動(dòng)加深對(duì)二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心.

  3、教學(xué)重點(diǎn):對(duì)二次函數(shù)概念的理解。

  4、教學(xué)難點(diǎn):由實(shí)際問(wèn)題確定函數(shù)解析式和確定自變量的取值范圍。

  三、教法學(xué)法設(shè)計(jì):

  1、從創(chuàng)設(shè)情境入手,通過(guò)知識(shí)再現(xiàn),孕伏教學(xué)過(guò)程

  2、從學(xué)生活動(dòng)出發(fā),通過(guò)以舊引新,順勢(shì)教學(xué)過(guò)程

  3、利用探索、研究手段,通過(guò)思維深入,領(lǐng)悟教學(xué)過(guò)程

  四、教學(xué)過(guò)程:

 。ㄒ唬⿵(fù)習(xí)提問(wèn)

  1.什么叫函數(shù)?我們之前學(xué)過(guò)了那些函數(shù)?

 。ㄒ淮魏瘮(shù),正比例函數(shù),反比例函數(shù))

  2.它們的形式是怎樣的?

  (=x+b,≠0;=x ,≠0;= , ≠0)

  3.一次函數(shù)(=x+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有≠0的條件? 值對(duì)函數(shù)性質(zhì)有什么影響?

  【設(shè)計(jì)意圖】復(fù)習(xí)這些問(wèn)題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對(duì)函數(shù)定義的理解.強(qiáng)調(diào)≠0的條件,以備與二次函數(shù)中的a進(jìn)行比較.

 。ǘ┮胄抡n

  函數(shù)是研究?jī)蓚(gè)變量在某變化過(guò)程中的相互關(guān)系,我們已學(xué)過(guò)正比例函數(shù),反比例函數(shù)和一次函數(shù)。看下面三個(gè)例子中兩個(gè)變量之間存在怎樣的關(guān)系。(電腦演示)

  例1、(1)圓的半徑是r(c)時(shí),面積s (c)與半徑之間的關(guān)系是什么?

  解:s=πr(r>0)

  例2、用周長(zhǎng)為20的籬笆圍成矩形場(chǎng)地,場(chǎng)地面積()與矩形一邊長(zhǎng)x()之間的關(guān)系是什么?

  解: =x(20/2-x)=x(10-x)=-x+10x (0

  例3、設(shè)人民幣一年定期儲(chǔ)蓄的年利率是x,一年到期后,銀行將本金和利息自動(dòng)按一年定期儲(chǔ)蓄轉(zhuǎn)存。如果存款額是100元,那么請(qǐng)問(wèn)兩年后的本息和(元)與x之間的關(guān)系是什么(不考慮利息稅)?

  解: =100(1+x)

  =100(x+2x+1)

  = 100x+200x+100(0

  教師提問(wèn):以上三個(gè)例子所列出的函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?

  【設(shè)計(jì)意圖】通過(guò)具體事例,讓學(xué)生列出關(guān)系式,啟發(fā)學(xué)生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系: (1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。

 。ㄈ┲v解新課

  以上函數(shù)不同于我們所學(xué)過(guò)的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。

  二次函數(shù)的定義:形如=ax2+bx+c (a≠0,a, b, c為常數(shù)) 的函數(shù)叫做二次函數(shù)。

  鞏固對(duì)二次函數(shù)概念的理解:

  1、強(qiáng)調(diào)“形如”,即由形來(lái)定義函數(shù)名稱。二次函數(shù)即 是關(guān)于x的二次多項(xiàng)式(關(guān)于的x代數(shù)式一定要是整式)。

  2、在 =ax2+bx+c 中自變量是x ,它的取值范圍是一切實(shí)數(shù)。但在實(shí)際問(wèn)題中,自變量的取值范圍是使實(shí)際問(wèn)題有意義的'值。(如例1中要求r>0)

  3、為什么二次函數(shù)定義中要求a≠0 ?

  (若a=0,ax2+bx+c就不是關(guān)于x的二次多項(xiàng)式了)

  4、在例3中,二次函數(shù)=100x2+200x+100中, a=100, b=200, c=100.

  5、b和c是否可以為零?

  由例1可知,b和c均可為零.

  若b=0,則=ax2+c;

  若c=0,則=ax2+bx;

  若b=c=0,則=ax2.

  注明:以上三種形式都是二次函數(shù)的特殊形式,而=ax2+bx+c是二次函數(shù)的一般形式.

  【設(shè)計(jì)意圖】這里強(qiáng)調(diào)對(duì)二次函數(shù)概念的理解,有助于學(xué)生更好地理解,掌握其特征,為接下來(lái)的判斷二次函數(shù)做好鋪墊。

  判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.

  (1)=3(x-1)+1 (2)

  (3)s=3-2t (4)=(x+3)- x

  (5) s=10πr (6) =2+2x

  (8)=x4+2x2+1(可指出是關(guān)于x2的二次函數(shù))

  【設(shè)計(jì)意圖】理論學(xué)習(xí)完二次函數(shù)的概念后,讓學(xué)生在實(shí)踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識(shí)應(yīng)用到實(shí)踐操作中。

 。ㄋ模╈柟叹毩(xí)

  1.已知一個(gè)直角三角形的兩條直角邊長(zhǎng)的和是10c。

 。1)當(dāng)它的一條直角邊的長(zhǎng)為4.5c時(shí),求這個(gè)直角三角形的面積;

 。2)設(shè)這個(gè)直角三角形的面積為Sc2,其中一條直角邊為xc,求S關(guān)

  于x的函數(shù)關(guān)系式。

  【設(shè)計(jì)意圖】此題由具體數(shù)據(jù)逐步過(guò)渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過(guò)程,從而降低學(xué)生學(xué)習(xí)的難度。

  2.已知正方體的棱長(zhǎng)為xc,它的表面積為Sc2,體積為Vc3。

 。1)分別寫出S與x,V與x之間的函數(shù)關(guān)系式子;

  (2)這兩個(gè)函數(shù)中,那個(gè)是x的二次函數(shù)?

  【設(shè)計(jì)意圖】簡(jiǎn)單的實(shí)際問(wèn)題,學(xué)生會(huì)很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個(gè)是二次函數(shù)。通過(guò)簡(jiǎn)單題目的練習(xí),讓學(xué)生體驗(yàn)到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。

  3.設(shè)圓柱的高為h(c)是常量,底面半徑為rc,底面周長(zhǎng)為Cc,圓柱的體積為Vc3

  (1)分別寫出C關(guān)于r;V關(guān)于r的函數(shù)關(guān)系式;

  (2)兩個(gè)函數(shù)中,都是二次函數(shù)嗎?

  【設(shè)計(jì)意圖】此題要求學(xué)生熟記圓柱體積和底面周長(zhǎng)公式,在這兒相當(dāng)于做了一次復(fù)習(xí),并與今天所學(xué)知識(shí)聯(lián)系起來(lái)。

  4. 籬笆墻長(zhǎng)30,靠墻圍成一個(gè)矩形花壇,寫出花壇面積(2)與長(zhǎng)x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.

  【設(shè)計(jì)意圖】此題較前面幾題稍微復(fù)雜些,旨在讓學(xué)生能夠開(kāi)動(dòng)腦筋,積極思考,讓學(xué)生能夠“跳一跳,夠得到”。

  (五)拓展延伸

  1. 已知二次函數(shù)=ax2+bx+c,當(dāng) x=0時(shí),=0;x=1時(shí),=2;x= -1時(shí),=1.求a、b、c,并寫出函數(shù)解析式.

  【設(shè)計(jì)意圖】在此稍微滲透簡(jiǎn)單的用待定系數(shù)法求二次函數(shù)解析式的問(wèn)題,為下節(jié)課的教學(xué)做個(gè)鋪墊。

  2.確定下列函數(shù)中的值

  (1)如果函數(shù)= x^2-3+2 +x+1是二次函數(shù),則的值一定是______

  (2)如果函數(shù)=(-3)x^2-3+2+x+1是二次函數(shù),則的值一定是______

  【設(shè)計(jì)意圖】此題著重復(fù)習(xí)二次函數(shù)的特征:自變量的最高次數(shù)為2次,且二次項(xiàng)系數(shù)不為0.

 。 小結(jié)思考:

  本節(jié)課你有哪些收獲?還有什么不清楚的地方?

  【設(shè)計(jì)意圖】讓學(xué)生來(lái)談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識(shí)進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補(bǔ)充。

  (七) 作業(yè)布置:

  必做題:

  1. 正方形的邊長(zhǎng)為4,如果邊長(zhǎng)增加x,則面積增加,求關(guān)于x 的函數(shù)關(guān)系式。這個(gè)函數(shù)是二次函數(shù)嗎?

  2. 在長(zhǎng)20c,寬15c的矩形木板的四角上各鋸掉一個(gè)邊長(zhǎng)為xc的正方形,寫出余下木板的面積(c2)與正方形邊長(zhǎng)x(c)之間的函數(shù)關(guān)系,并注明自變量的取值范圍。

  選做題:

  1.已知函數(shù) 是二次函數(shù),求的值。

  2.試在平面直角坐標(biāo)系畫(huà)出二次函數(shù)=x2和=-x2圖象

  【設(shè)計(jì)意圖】作業(yè)中分為必做題與選做題,實(shí)施分層教學(xué),體現(xiàn)新課標(biāo)人人學(xué)有價(jià)值的數(shù)學(xué),不同的人得到不同的發(fā)展。另外補(bǔ)充第4題,旨在激發(fā)學(xué)生繼續(xù)學(xué)習(xí)二次函數(shù)圖象的興趣。

  五、教學(xué)設(shè)計(jì)思考

  以實(shí)現(xiàn)教學(xué)目標(biāo)為前提

  以現(xiàn)代教育理論為依據(jù)

  以現(xiàn)代信息技術(shù)為手段

  貫穿一個(gè)原則——以學(xué)生為主體的原則

  突出一個(gè)特色——充分鼓勵(lì)表?yè)P(yáng)的特色

  滲透一個(gè)意識(shí)——應(yīng)用數(shù)學(xué)的意識(shí)

二次函數(shù)概念說(shuō)課稿2

  一、說(shuō)課內(nèi)容:

  蘇教版九年級(jí)數(shù)學(xué)下冊(cè)第六章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題二、教材分析:

  1、教材的地位和作用這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來(lái)學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個(gè)具體的函數(shù),也是最重要的,在歷年來(lái)的中考題中占有較大比例。同時(shí),二次函數(shù)和以前學(xué)過(guò)的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解“數(shù)形結(jié)合”的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來(lái)學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個(gè)教材中具有承上啟下的重要作用。

  2、教學(xué)目標(biāo)和要求:

 。1)知識(shí)與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實(shí)際問(wèn)題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實(shí)際問(wèn)題確定自變量的取值范圍。

  (2)過(guò)程與方法:復(fù)習(xí)舊知,通過(guò)實(shí)際問(wèn)題的引入,經(jīng)歷二次函數(shù)概念的探索過(guò)程,提高學(xué)生解決問(wèn)題的能力。

  (3)情感、態(tài)度與價(jià)值觀:通過(guò)觀察、操作、交流歸納等數(shù)學(xué)活動(dòng)加深對(duì)二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心。

  3、教學(xué)重點(diǎn):對(duì)二次函數(shù)概念的理解。

  4、教學(xué)難點(diǎn):由實(shí)際問(wèn)題確定函數(shù)解析式和確定自變量的取值范圍。

  二、教法學(xué)法設(shè)計(jì):

  1、從創(chuàng)設(shè)情境入手,通過(guò)知識(shí)再現(xiàn),孕伏教學(xué)過(guò)程。

  2、從學(xué)生活動(dòng)出發(fā),通過(guò)以舊引新,順勢(shì)教學(xué)過(guò)程。

  3、利用探索、研究手段,通過(guò)思維深入,領(lǐng)悟教學(xué)過(guò)程四。

  三、教學(xué)過(guò)程:

  (一)復(fù)習(xí)提問(wèn)

  1.什么叫函數(shù)?我們之前學(xué)過(guò)了那些函數(shù)?(一次函數(shù),正比例函數(shù),反比例函數(shù))

  2.它們的形式是怎樣的?(y=kx+b,k≠0;y=kx,k≠0;y=,k≠0)3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k≠0的條件?k值對(duì)函數(shù)性質(zhì)有什么影響?

 。ǘ┰O(shè)計(jì)意圖

  復(fù)習(xí)這些問(wèn)題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對(duì)函數(shù)定義的理解.強(qiáng)調(diào)k≠0的條件,以備與二次函數(shù)中的a進(jìn)行比較。

  引入新課函數(shù)是研究?jī)蓚(gè)變量在某變化過(guò)程中的相互關(guān)系,我們已學(xué)過(guò)正比例函數(shù),反比例函數(shù)和一次函數(shù)。

  看下面三個(gè)例子中兩個(gè)變量之間存在怎樣的關(guān)系:

  例1、(1)圓的半徑是r(cm)時(shí),面積s(cm)與半徑之間的關(guān)系是什么?解:s=πr(r>0)。

  例2、用周長(zhǎng)為20m的籬笆圍成矩形場(chǎng)地,場(chǎng)地面積y(m)與矩形一邊長(zhǎng)x(m)之間的關(guān)系是什么?解:y=x(20/2-x)=x(10-x)=-x+10x(0

  例3、設(shè)人民幣一年定期儲(chǔ)蓄的年利率是x,一年到期后,銀行將本金和利息自動(dòng)按一年定期儲(chǔ)蓄轉(zhuǎn)存。如果存款額是100元,那么請(qǐng)問(wèn)兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?解:y=100(1+x)=100(x+2x+1)=100x+200x+100(0

  教師提問(wèn):以上三個(gè)例子所列出的函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?

  (三)講解新課以上函數(shù)不同于我們所學(xué)過(guò)的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。

  二次函數(shù)的定義:形如y=ax2+bx+c(a≠0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。

  鞏固對(duì)二次函數(shù)概念的理解:

  1、強(qiáng)調(diào)“形如”,即由形來(lái)定義函數(shù)名稱。二次函數(shù)即y是關(guān)于x的二次多項(xiàng)式(關(guān)于的x代數(shù)式一定要是整式)。

  2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實(shí)數(shù)。但在實(shí)際問(wèn)題中,自變量的取值范圍是使實(shí)際問(wèn)題有意義的值。(如例1中要求r>0)

  3、為什么二次函數(shù)定義中要求a≠0?(若a=0,ax2+bx+c就不是關(guān)于x的二次多項(xiàng)式了)

  4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.5、b和c是否可以為零?

 。ㄋ模╈柟叹毩(xí)

  已知一個(gè)直角三角形的兩條直角邊長(zhǎng)的和是10cm。

 。1)當(dāng)它的一條直角邊的長(zhǎng)為4.5cm時(shí),求這個(gè)直角三角形的面積;

  (2)設(shè)這個(gè)直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關(guān)于x的函數(shù)關(guān)系式。

  此題由具體數(shù)據(jù)逐步過(guò)渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的`過(guò)程,從而降低學(xué)生學(xué)習(xí)的難度。

  (五)小結(jié)思考:本節(jié)課你有哪些收獲?還有什么不清楚的地方?

  讓學(xué)生來(lái)談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識(shí)進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補(bǔ)充。

 。┳鳂I(yè)布置

  必做題:

  正方形的邊長(zhǎng)為4,如果邊長(zhǎng)增加x,則面積增加y,求y關(guān)于x的函數(shù)關(guān)系式。這個(gè)函數(shù)是二次函數(shù)嗎?

  在長(zhǎng)20cm,寬15cm的矩形木板的四角上各鋸掉一個(gè)邊長(zhǎng)為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長(zhǎng)x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍?

  選做題:

  1.已知函數(shù)是二次函數(shù),求m的值?

  2.試在平面直角坐標(biāo)系畫(huà)出二次函數(shù)y=x2和y=-x2圖象?

  作業(yè)中分為必做題與選做題,實(shí)施分層教學(xué),體現(xiàn)新課標(biāo)人人學(xué)有價(jià)值的數(shù)學(xué),不同的人得到不同的發(fā)展。另外補(bǔ)充第4題,旨在激發(fā)學(xué)生繼續(xù)學(xué)習(xí)二次函數(shù)圖象的興趣。

二次函數(shù)概念說(shuō)課稿3

  一、說(shuō)課內(nèi)容:

  人教版九年級(jí)數(shù)學(xué)下冊(cè)的二次函數(shù)的概念及相關(guān)習(xí)題

  二、教材分析:

  1、教材的地位和作用

  這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來(lái)學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個(gè)具體的函數(shù),也是最重要的,在歷年來(lái)的中考題中占有較大比例。同時(shí),二次函數(shù)和以前學(xué)過(guò)的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解數(shù)形結(jié)合的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來(lái)學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個(gè)教材中具有承上啟下的重要作用。

  2、教學(xué)目標(biāo)和要求:

  (1)知識(shí)與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實(shí)際問(wèn)題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實(shí)際問(wèn)題確定自變量的取值范圍。

  (2)過(guò)程與方法:復(fù)習(xí)舊知,通過(guò)實(shí)際問(wèn)題的引入,經(jīng)歷二次函數(shù)概念的探索過(guò)程,提高學(xué)生解決問(wèn)題的能力.

  (3)情感、態(tài)度與價(jià)值觀:通過(guò)觀察、操作、交流歸納等數(shù)學(xué)活動(dòng)加深對(duì)二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心.

  3、教學(xué)重點(diǎn):對(duì)二次函數(shù)概念的理解。

  4、教學(xué)難點(diǎn):由實(shí)際問(wèn)題確定函數(shù)解析式和確定自變量的取值范圍。

  三、教法學(xué)法設(shè)計(jì):

  1、從創(chuàng)設(shè)情境入手,通過(guò)知識(shí)再現(xiàn),孕伏教學(xué)過(guò)程

  2、從學(xué)生活動(dòng)出發(fā),通過(guò)以舊引新,順勢(shì)教學(xué)過(guò)程

  3、利用探索、研究手段,通過(guò)思維深入,領(lǐng)悟教學(xué)過(guò)程

  四、教學(xué)過(guò)程:

  (一)復(fù)習(xí)提問(wèn)

  1.什么叫函數(shù)?我們之前學(xué)過(guò)了那些函數(shù)?

  (一次函數(shù),正比例函數(shù),反比例函數(shù))

  2.它們的形式是怎樣的?

  (y=kx+b,ky=kx ,ky= , k0)

  3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k0的條件? k值對(duì)函數(shù)性質(zhì)有什么影響?

  【設(shè)計(jì)意圖】復(fù)習(xí)這些問(wèn)題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對(duì)函數(shù)定義的理解.強(qiáng)調(diào)k0的條件,以備與二次函數(shù)中的a進(jìn)行比較.

  (二)引入新課

  函數(shù)是研究?jī)蓚(gè)變量在某變化過(guò)程中的相互關(guān)系,我們已學(xué)過(guò)正比例函數(shù),反比例函數(shù)和一次函數(shù)。看下面三個(gè)例子中兩個(gè)變量之間存在怎樣的關(guān)系。(電腦演示)

  例1、(1)圓的半徑是r(cm)時(shí),面積s (cm2)與半徑之間的關(guān)系是什么?

  解:s=0)

  例2、用周長(zhǎng)為20m的籬笆圍成矩形場(chǎng)地,場(chǎng)地面積y(m2)與矩形一邊長(zhǎng)x(m)之間的關(guān)系是什么?

  解: y=x(20/2-x)=x(10-x)=-x2+10x (0

  例3、設(shè)人民幣一年定期儲(chǔ)蓄的年利率是x,一年到期后,銀行將本金和利息自動(dòng)按一年定期儲(chǔ)蓄轉(zhuǎn)存。如果存款額是100元,那么請(qǐng)問(wèn)兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?

  解: y=100(1+x)2

  =100(x2+2x+1)

  = 100x2+200x+100(0

  教師提問(wèn):以上三個(gè)例子所列出的函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?

  【設(shè)計(jì)意圖】通過(guò)具體事例,讓學(xué)生列出關(guān)系式,啟發(fā)學(xué)生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系: (1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。

  (三)講解新課

  以上函數(shù)不同于我們所學(xué)過(guò)的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。

  二次函數(shù)的定義:形如y=ax2+bx+c (a0,a, b, c為常數(shù)) 的函數(shù)叫做二次函數(shù)。

  鞏固對(duì)二次函數(shù)概念的理解:

  1、強(qiáng)調(diào)形如,即由形來(lái)定義函數(shù)名稱。二次函數(shù)即y 是關(guān)于x的二次多項(xiàng)式(關(guān)于的x代數(shù)式一定要是整式)。

  2、在 y=ax2+bx+c 中自變量是x ,它的`取值范圍是一切實(shí)數(shù)。但在實(shí)際問(wèn)題中,自變量的取值范圍是使實(shí)際問(wèn)題有意義的值。(如例1中要求r0)

  3、為什么二次函數(shù)定義中要求a?

  (若a=0,ax2+bx+c就不是關(guān)于x的二次多項(xiàng)式了)

  4、在例3中,二次函數(shù)y=100x2+200x+100中, a=100, b=200, c=100.

  5、b和c是否可以為零?

  由例1可知,b和c均可為零.

  若b=0,則y=ax2+c;

  若c=0,則y=ax2+bx;

  若b=c=0,則y=ax2.

  注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.

  【設(shè)計(jì)意圖】這里強(qiáng)調(diào)對(duì)二次函數(shù)概念的理解,有助于學(xué)生更好地理解,掌握其特征,為接下來(lái)的判斷二次函數(shù)做好鋪墊。

  判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.

  (1)y=3(x-1)2+1 (2)

  (3)s=3-2t2 (4)y=(x+3)2- x2

  (5) s=10r2 (6) y=22+2x

  (8)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))

  【設(shè)計(jì)意圖】理論學(xué)習(xí)完二次函數(shù)的概念后,讓學(xué)生在實(shí)踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識(shí)應(yīng)用到實(shí)踐操作中。

  (四)鞏固練習(xí)

  1.已知一個(gè)直角三角形的兩條直角邊長(zhǎng)的和是10cm。

  (1)當(dāng)它的一條直角邊的長(zhǎng)為4.5cm時(shí),求這個(gè)直角三角形的面積;

  (2)設(shè)這個(gè)直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關(guān)

  于x的函數(shù)關(guān)系式。

  【設(shè)計(jì)意圖】此題由具體數(shù)據(jù)逐步過(guò)渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過(guò)程,從而降低學(xué)生學(xué)習(xí)的難度。

  2.已知正方體的棱長(zhǎng)為xcm,它的表面積為Scm2,體積為Vcm3。

  (1)分別寫出S與x,V與x之間的函數(shù)關(guān)系式子;

  (2)這兩個(gè)函數(shù)中,那個(gè)是x的二次函數(shù)?

  【設(shè)計(jì)意圖】簡(jiǎn)單的實(shí)際問(wèn)題,學(xué)生會(huì)很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個(gè)是二次函數(shù)。通過(guò)簡(jiǎn)單題目的練習(xí),讓學(xué)生體驗(yàn)到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。

  3.設(shè)圓柱的高為h(cm)是常量,底面半徑為rcm,底面周長(zhǎng)為Ccm,圓柱的體積為Vcm3

  (1)分別寫出C關(guān)于r;V關(guān)于r的函數(shù)關(guān)系式;

  (2)兩個(gè)函數(shù)中,都是二次函數(shù)嗎?

  【設(shè)計(jì)意圖】此題要求學(xué)生熟記圓柱體積和底面周長(zhǎng)公式,在這兒相當(dāng)于做了一次復(fù)習(xí),并與今天所學(xué)知識(shí)聯(lián)系起來(lái)。

  4. 籬笆墻長(zhǎng)30m,靠墻圍成一個(gè)矩形花壇,寫出花壇面積y(m2)與長(zhǎng)x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.

  【設(shè)計(jì)意圖】此題較前面幾題稍微復(fù)雜些,旨在讓學(xué)生能夠開(kāi)動(dòng)腦筋,積極思考,讓學(xué)生能夠跳一跳,夠得到。

  (五)拓展延伸

  1. 已知二次函數(shù)y=ax2+bx+c,當(dāng) x=0時(shí),y=0;x=1時(shí),y=2;x= -1時(shí),y=1.求a、b、c,并寫出函數(shù)解析式.

  【設(shè)計(jì)意圖】在此稍微滲透簡(jiǎn)單的用待定系數(shù)法求二次函數(shù)解析式的問(wèn)題,為下節(jié)課的教學(xué)做個(gè)鋪墊。

  2.確定下列函數(shù)中k的值

  (1)如果函數(shù)y= xk^2-3k+2 +kx+1是二次函數(shù),則k的值一定是______

  (2)如果函數(shù)y=(k-3)xk^2-3k+2+kx+1是二次函數(shù),則k的值一定是______

  【設(shè)計(jì)意圖】此題著重復(fù)習(xí)二次函數(shù)的特征:自變量的最高次數(shù)為2次,且二次項(xiàng)系數(shù)不為0.

  (六) 小結(jié)思考:

  本節(jié)課你有哪些收獲?還有什么不清楚的地方?

  【設(shè)計(jì)意圖】讓學(xué)生來(lái)談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識(shí)進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補(bǔ)充。

  (七) 作業(yè)布置:

  必做題:

  1. 正方形的邊長(zhǎng)為4,如果邊長(zhǎng)增加x,則面積增加y,求y關(guān)于x 的函數(shù)關(guān)系式。這個(gè)函數(shù)是二次函數(shù)嗎?

  2. 在長(zhǎng)20cm,寬15cm的矩形木板的四角上各鋸掉一個(gè)邊長(zhǎng)為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長(zhǎng)x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍。

  選做題:

  1.已知函數(shù) 是二次函數(shù),求m的值。

  2.試在平面直角坐標(biāo)系畫(huà)出二次函數(shù)y=x2和y=-x2圖象

  【設(shè)計(jì)意圖】作業(yè)中分為必做題與選做題,實(shí)施分層教學(xué),體現(xiàn)新課標(biāo)人人學(xué)有價(jià)值的數(shù)學(xué),不同的人得到不同的發(fā)展。另外補(bǔ)充第4題,旨在激發(fā)學(xué)生繼續(xù)學(xué)習(xí)二次函數(shù)圖象的興趣。

  五、教學(xué)設(shè)計(jì)思考

  以實(shí)現(xiàn)教學(xué)目標(biāo)為前提

  以現(xiàn)代教育理論為依據(jù)

  以現(xiàn)代信息技術(shù)為手段

  貫穿一個(gè)原則以學(xué)生為主體的原則

  突出一個(gè)特色充分鼓勵(lì)表?yè)P(yáng)的特色

  滲透一個(gè)意識(shí)應(yīng)用數(shù)學(xué)的意識(shí)

【二次函數(shù)概念說(shuō)課稿】相關(guān)文章:

《函數(shù)的概念》說(shuō)課稿12-16

函數(shù)的概念說(shuō)課稿08-07

中職函數(shù)的概念的說(shuō)課稿06-22

《函數(shù)的概念》說(shuō)課稿(7篇)12-12

《函數(shù)概念》說(shuō)課稿7篇12-15

二次函數(shù)說(shuō)課稿06-19

(經(jīng)典)二次函數(shù)說(shuō)課稿15篇06-23

數(shù)學(xué)二次函數(shù)說(shuō)課稿09-08

《函數(shù)的概念》教案06-25