《一元一次方程》教案
作為一名為他人授業(yè)解惑的教育工作者,常常要寫一份優(yōu)秀的教案,借助教案可以更好地組織教學(xué)活動(dòng)。教案應(yīng)該怎么寫呢?下面是小編整理的《一元一次方程》教案,希望對大家有所幫助。
《一元一次方程》教案1
教學(xué)目標(biāo)
1.掌握解一元一次方程的一般步驟。
2.會(huì)根據(jù)一元一次方程的特點(diǎn)靈活處理解方程的步驟,化為ax=b(a≠0)的形式。
教學(xué)重、難點(diǎn)
重點(diǎn):掌握解一元一次方程的基本方法.
難點(diǎn):正確運(yùn)用去分母、去括號(hào)、移項(xiàng)等方法,靈活解一元一次方程.
教學(xué)過程
一激情引趣,導(dǎo)入新課
1解方程:4x-3(20-x)=6x-7(9-x)
思考:解一元一次方程時(shí),去括號(hào)要注意什么?移項(xiàng)要注意什么?
2求下列各數(shù)的最少公倍數(shù):(1)12,24,36(2)18,16,24
二合作交流,探究新知
1動(dòng)腦筋:
一件工作,甲單獨(dú)做需要15天完成,乙單獨(dú)做需要12天完成,現(xiàn)在甲先單獨(dú)做1天,接著乙又單獨(dú)做4天,剩下的工作由甲、乙兩人合做,問合做多少天可以完成全部工作任務(wù)?
(先獨(dú)立做,做完后交流做法,認(rèn)真聽出同學(xué)意見,老師點(diǎn)評)
通過這個(gè)問題,請你歸納解一元一次方程有哪些步驟?
先去____,后去_____,再_____、_______得到標(biāo)準(zhǔn)形式ax=b(a≠0),最后兩邊同除以______的'系數(shù)。
考考你:
下面各題中的去分母對嗎?如不對,請改正。
(1)去分母得5x-2x+3=2(2)去分母得2x-(2x+1)=6
(3)去分母得4(3x+1)+25x=80
2嘗試練習(xí)(注意養(yǎng)成口算經(jīng)驗(yàn)的好習(xí)慣)
解方程:
3比一比,看誰算得準(zhǔn)(注意養(yǎng)成口算經(jīng)驗(yàn)的好習(xí)慣)
解方程:(1),(2)
三應(yīng)用遷移,鞏固提高
1化繁為簡
例1解方程:
2化為一元一次方程求解
例2若關(guān)于x的一元一次方程的解是x=-1,則k的值是()
AB1CD0
3實(shí)踐應(yīng)用
例3學(xué)校準(zhǔn)備組織教師和優(yōu)秀學(xué)生去大洪山春游,其中教師22名現(xiàn)有甲乙兩家旅行社,兩家定價(jià)相同,但優(yōu)惠方式不同,甲旅行社表示教師免費(fèi),學(xué)生按八折收費(fèi),乙旅行社表示教師和學(xué)生一律按七五折收費(fèi),學(xué)校領(lǐng)導(dǎo)經(jīng)過核算后認(rèn)為甲乙兩家旅行社收費(fèi)一樣,請你算出有多少名學(xué)生參加春游。
四沖刺奧賽,培養(yǎng)智力
例4解方程:
五課堂練習(xí)鞏固提高解方程
六反思小結(jié)拓展提高
解一元一次方程的一般步驟是什么?要注意什么?
作業(yè):p1198,9
《一元一次方程》教案2
教學(xué)目標(biāo)
1.在具體情境中,進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的重要數(shù)學(xué)模型。
2.知道什么是一元一次方程的標(biāo)準(zhǔn)形式,會(huì)通過移項(xiàng)、合并同類項(xiàng)把方程化為標(biāo)準(zhǔn)形式,然后利用等式的性質(zhì)解方程。
教學(xué)重、難點(diǎn)
重點(diǎn):把方程轉(zhuǎn)化為標(biāo)準(zhǔn)形式。
難點(diǎn):解方程的應(yīng)用。
教學(xué)過程
一激情引趣,導(dǎo)入新課
1解方程:9x+3=8+8x
2(1)上面解方程的過程中,每一步的依據(jù)是什么?
(2)什么叫移項(xiàng)?移項(xiàng)要注意什么?
(3)2-4x+6+5x=8,變形為:-4x+5x+2+6=8,是不是移項(xiàng)?
二合作交流,探究新知
1動(dòng)腦筋:
某實(shí)驗(yàn)中學(xué)舉行田徑運(yùn)動(dòng)會(huì),初一年級(jí)甲班和丙班參加的人數(shù)的和是乙班參加的人數(shù)的3倍,甲班有40人參加,乙班參加的人數(shù)比丙班參加的人數(shù)少10人,你能算出乙班參加校運(yùn)會(huì)的人數(shù)嗎?
觀察你解方程的過程,原方程做了哪些變形?
形如ax=b(a≠0)的方程叫一元一次方程的_____形式。
2訓(xùn)練
(1)解方程:①11x-2=8x-8,②
(2)下列方程求解正確的是()
A-2x=3,解得:x=,B解得:x=
C3x+4=4x-5解得:x=-9,D2x=3x+1,解得x=-1
三應(yīng)用遷移,鞏固提高
1方程的轉(zhuǎn)化
例1已知x=-2是方程的解,求m的值。
例2若方程2x+a=,與方程的解相同,求a的值。
2實(shí)踐應(yīng)用
例3甲倉庫有某種糧食120噸,乙倉庫有同樣的糧食96噸,甲倉庫每天賣出糧食15噸,乙倉庫每天賣出糧食9噸,多少天后,兩倉庫剩下的`糧食相等?
例4百年問題:我們明代數(shù)學(xué)家程大為曾提出過一個(gè)有趣的問題,有一個(gè)人趕著一群羊在前面走,另一個(gè)人牽著一頭羊跟在后面,后面的人問趕羊的人說:“你這群羊有一百只嗎?”趕羊人回答“我再得這么一群羊,再得這群羊的一半,再得這群羊的四分之一,把你牽的羊
也給我,我恰好有一百只羊”,請問這群羊有多少只?
四沖刺奧賽
例5當(dāng)b=1時(shí),關(guān)于x的方程a(3x-2)+b(2x-3)=8x-7,有無窮多個(gè)解,則a=()
A2B–2CD不存在
例6解方程:3x+=4
例7用一隊(duì)卡車運(yùn)一批貨物,若每輛卡車裝7噸貨物,則尚余10噸貨物裝不完,若每輛卡車裝8噸貨物,則最后一輛卡車只裝3噸貨物就裝完了這批貨物,那么這批貨物共有多少噸?
五課堂練習(xí),鞏固提高
P1121
六反思小結(jié),拓展提高
1什么叫一元一次方程的標(biāo)準(zhǔn)形式?解一元一次方程一般要轉(zhuǎn)化成什么形式?
《一元一次方程》教案3
教學(xué)目的
1、使學(xué)生鞏固等式與方程的概念。
2、使學(xué)生掌握等式的性質(zhì)和靈活掌握一元一次方程的解法,培養(yǎng)學(xué)生求解方程的計(jì)算能力。
教學(xué)分析
重點(diǎn):熟練掌握一元一次方程的解法。
難點(diǎn):靈活地運(yùn)用一元一次方程的解法步驟,計(jì)算簡化而準(zhǔn)確。
突破:多練習(xí),多比較,多思考。
教學(xué)過程
一、復(fù)習(xí)
1、什么是一元一次方程?一元一次方程的標(biāo)準(zhǔn)形式是什么?它的解是什么?
2、等式的性質(zhì)是什么?(要求說出應(yīng)注意的兩點(diǎn))
3、解一元一次方程的基本步驟是什么?
以解方程-2x+=為例,說明解一元一次方程的基本步驟與注意點(diǎn),并口頭檢驗(yàn)。
二、新授
1、已知方程(n+1)x|n|=1是關(guān)于x的一元一次方程,求n的值。
分析:根據(jù)一元一次方程的定義,得|n|=1且n+1≠0,解得n=1。
解:略
2、下列說法中,正確的.是( )。
A -3x=0的解是x=-3
B -x+1=4的解為x=-
C-1=的解是x=1
D x2-x-2=0的解是x=2, x=-1(D正確)
3、x等于什么數(shù)時(shí),代數(shù)式x+5的值比的值小2。
解:(解略,應(yīng)根據(jù)題目的意思列出方程。)
4、根據(jù)下列條件列出方程,并求出方程的解。
。1) 某數(shù)x的3倍減去9,等于某數(shù)的3分之1加上6;
。2) 已知-3m3(x-2)n與25m2+xn是同類項(xiàng),求x的值;
。3) 已知代數(shù)式2[(x-1)+5]+x+1與代數(shù)式3[x-8(x-4)]+7的值互為相反數(shù),求x的值。
5根據(jù)下列方程的特點(diǎn)解方程。
。}目見課本中P208、16的2,4)
三、練習(xí)
P209習(xí)題:20。
四、小結(jié)
1、略。
五、作業(yè)
1、P240 A:1,2,3,4。
2、B:1,2。
《一元一次方程》教案4
第一課時(shí)
教學(xué)目的
1.了解一元一次方程的概念。
2.掌握含有括號(hào)的一元一次方程的解法。
重點(diǎn)、難點(diǎn)
1.重點(diǎn):解含有括號(hào)的一元一次方程的解法。
2.難點(diǎn):括號(hào)前面是負(fù)號(hào)時(shí),去括號(hào)時(shí)忘記變號(hào)。
教學(xué)過程
一、復(fù)習(xí)提問
1.解下列方程:
(1)5x-2=8 (2)5+2x=4x
2.去括號(hào)法則是什么?“移項(xiàng)”要注意什么?
二、新授
一元一次方程的概念
如44x+64=328 3+x=(45+x) y-5=2y+l 問:它們有什么共同特征?
只含有一個(gè)未知數(shù),并且含有未知數(shù)的式子都是整式,未知數(shù)的次數(shù)是l,這樣的方程叫做一元一次方程。
例1.判斷下列哪些是一元一次方程
x= 3x-2 x-=-l
5x2-3x+1=0 2x+y=l-3y =5
例2.解方程(1)-2(x-1)=4
(2)3(x-2)+1=x-(2x-1)
強(qiáng)調(diào)去括號(hào)時(shí)把括號(hào)外的因數(shù)分別乘以括號(hào)內(nèi)的每一項(xiàng),若括號(hào)前面是“-”號(hào),注意去掉括號(hào),要改變括號(hào)內(nèi)的每一項(xiàng)的符號(hào)。
補(bǔ)充:解方程3x-[3(x+1)-(1+4)]=l
說明:方程中有多重括號(hào)時(shí),一般應(yīng)按先去小括號(hào),再去中括號(hào),最后去大括號(hào)的方法去括號(hào),每去一層括號(hào)合并同類項(xiàng)一次,以簡便運(yùn)算。
三、鞏固練習(xí)
教科書第9頁,練習(xí),l、2、3。
四、小結(jié)
學(xué)習(xí)了一元一次方程的概念,含有括號(hào)的一元一次方程的解法。用分配律去括號(hào)時(shí),不要漏乘括號(hào)中的項(xiàng),并且不要搞錯(cuò)符號(hào)。
五、作業(yè)
1.教科書第12頁習(xí)題6.2,2第l題。
第二課時(shí)
教學(xué)目的
掌握去分母解方程的方法,體會(huì)到轉(zhuǎn)化的思想。對于求解較復(fù)雜的方程,注意培養(yǎng)學(xué)生自覺反思求解的過程和自覺檢驗(yàn)方程的解是否正確的良好習(xí)慣。
重點(diǎn)、難點(diǎn)
1、重點(diǎn):掌握去分母解方程的方法。
2、難點(diǎn):求各分母的最小公倍數(shù),去分母時(shí),有時(shí)要添括號(hào)。
教學(xué)過程
一、復(fù)習(xí)提問
1.去括號(hào)和添括號(hào)法則。
2.求幾個(gè)數(shù)的最小公倍數(shù)的方法。
二、新授
例1:解方程(見課本)
解一元一次方程有哪些步驟?
一般要通過去分母,去括號(hào),移項(xiàng),合并同類項(xiàng),未知數(shù)的系數(shù)化為1等步驟,把一個(gè)一元一次方程“轉(zhuǎn)化”成x=a的形式。解題時(shí),要靈活運(yùn)用這些步驟。
補(bǔ)充例:解方程 (x+15)=- (x-7)
三、鞏固練習(xí)
教科書第10頁,練習(xí)1、2。
四、小結(jié)
1.解一元一次方程有哪些步驟?
2.掌握移項(xiàng)要變號(hào),去分母時(shí),方程兩邊每一項(xiàng)都要乘各分母的最小公倍數(shù),切勿漏乘不含有分母的項(xiàng),另外分?jǐn)?shù)線有兩層意義,一方面它是除號(hào),另一方面它又代表著括號(hào),所以在去分母時(shí),應(yīng)該將分子用括號(hào)括上。
五、作業(yè)
教科書第13頁習(xí)題6.2,2第2題。
第三課時(shí)
教學(xué)目的
使學(xué)生靈活應(yīng)用解方程的一般步驟,提高綜合解題能力。
重點(diǎn)、難點(diǎn)
1、重點(diǎn):靈活應(yīng)用解題步驟。
2、難點(diǎn):在“靈活”二字上下功夫。
教學(xué)過程 :
一、 一、 復(fù)習(xí)
1、一元一次方程的'解題步驟。
2、分?jǐn)?shù)的基本性質(zhì)。
二、新授
例1.解方程(見課本)
分析:此方程的分母是小數(shù),如果能把各分母化為整數(shù),那么就可以用前面學(xué)過的方法求解了。那么怎樣化簡呢?引導(dǎo)學(xué)生分析,并求出方程的解。交流體會(huì)。
例2.解方程(見課本)
例3:已知公式V=中,V=120、D=100、∏=3.14,求n的值。(保留整數(shù))
分析:在公式中,V、D、∏都已知,只要把它們的值代入公式,就可以得到關(guān)于n的一元一次方程。
三、鞏固練習(xí)。
根據(jù)公式V=V0+at,填寫下列表中的空格。
VV0at02848314155476137
四、小結(jié)。
若方程的分母是小數(shù),應(yīng)先利用分?jǐn)?shù)的性質(zhì),把分子、分母同時(shí)擴(kuò)大若干倍,此時(shí)分子要作為一個(gè)整體,需要補(bǔ)上括號(hào),注意不是去分母,不能把方程其余的項(xiàng)也擴(kuò)大若干倍。
五、作業(yè) 。
《一元一次方程》教案5
一、教學(xué)目標(biāo):
1、知識(shí)目標(biāo):了解一元一次方程的概念,掌握含括號(hào)的一元一次方程的解法。
2、能力目標(biāo):培養(yǎng)學(xué)生的運(yùn)算能力與解題思路。
3、情感目標(biāo):通過主動(dòng)探索,合作學(xué)習(xí),相互交流,體會(huì)數(shù)學(xué)的嚴(yán)謹(jǐn),感受數(shù)學(xué)的魅力,增加學(xué)習(xí)數(shù)學(xué)的興趣。
二、教學(xué)的重點(diǎn)與難點(diǎn):
1、重點(diǎn):了解一元一次方程的概念,解含有括號(hào)的一元一次方程的解法。
2、難點(diǎn):括號(hào)前面是負(fù)號(hào)時(shí),去括號(hào)時(shí)忘記變號(hào)。移項(xiàng)法則的靈活運(yùn)用。
三、教學(xué)方法:
1、教 法:講課結(jié)合法
2、學(xué) 法:看中學(xué),講中學(xué),做中學(xué)
3、教學(xué)活動(dòng):講授
四、課 型:新授課
五、課 時(shí):第一課時(shí)
六、教學(xué)用具:彩色粉筆,小黑板,多媒體
七、教學(xué)過程
1、創(chuàng)設(shè)情景:
今天讓我們一起做個(gè)小小的游戲,這個(gè)游戲的名字叫:猜猜你心中的“她”
心里想一個(gè)數(shù)
將這個(gè)數(shù)+2
將所得結(jié)果
最后+7
將所得的結(jié)果告訴老師
。ǔ橐粋(gè)同學(xué),讓他把他計(jì)算的結(jié)果告訴老師,由老師通過計(jì)算得到他最開始所想的數(shù)字。)
老師:同學(xué)們知道老師是怎樣猜到的嗎?
同學(xué):不知道。
老師:那同學(xué)們想知道老師是怎樣猜到的嗎?這就是我們今天所要學(xué)習(xí)的內(nèi)容——解一元一次方程。
2、探究新知:
一元一次方程的概念:
前面我們遇到的一些方程,例如 3
老師:大家觀察這些方程,它們有什么共同特征?
。ㄌ崾荆河^察未知數(shù)的個(gè)數(shù)和未知數(shù)的次數(shù)。)
。ǔ橥瑢W(xué)起來回答,然后再由老師概括。)
只含有一個(gè)未知數(shù),并且含有未知數(shù)的式子都是整式,未知數(shù)的次數(shù)是l,像這樣的方程
叫做一元一次方程。
老師:同學(xué)們從這個(gè)概念中,能找出關(guān)鍵的字嗎?能用它來判斷一個(gè)式子是否是一元一次
方程嗎?
再次強(qiáng)調(diào)特征:
。1)只含一個(gè)未知數(shù);
。2)未知數(shù)的次數(shù)為1;
。3)是一個(gè)整式。
。ㄗ⒁猓哼@幾個(gè)特征必須同時(shí)滿足,缺一不可。)
3、例題講解:
例1判斷如下的式子是一元一次方程嗎?
。▽懺谛『诎迳,讓學(xué)生判斷,并分別抽同學(xué)起來回答,如果不是,要說出理由。)
、 ② ③
、 ⑤⑥
準(zhǔn)確答案:①③
下面我們再一起來解幾個(gè)一元一次方程。
例2、解方程
。1)
解法一:解法二:
提醒:去括號(hào)的時(shí)候,如果括號(hào)外面是負(fù)號(hào),去括號(hào)時(shí),括號(hào)里面要變號(hào)
。ㄌ崾镜诙N解法:先移項(xiàng),再去括號(hào)。即是把 看成整體的一元一次方程的求解。)
。2)
解:
提示
1)、在我們前面學(xué)過的知識(shí)中,什么知識(shí)是關(guān)于有括號(hào)的。
2)、復(fù)習(xí)乘法分配律: ,強(qiáng)調(diào)去括號(hào)時(shí)把括號(hào)外的因數(shù)分別乘以括號(hào)
內(nèi)的每一項(xiàng),若括號(hào)前面是“-”號(hào),注意去掉括號(hào),要改變括號(hào)內(nèi)的每一項(xiàng)的符號(hào)。
3)、問同學(xué)們能不能運(yùn)用這個(gè)知識(shí)來去掉這個(gè)括號(hào),如果能該怎么去呢?抽一個(gè)同學(xué)起
來回答。
4)、問:去了括號(hào)的式子,又該做什么呢?我們前面見過此類的方程的,引出移項(xiàng),并強(qiáng)調(diào)移項(xiàng)時(shí)注意符號(hào)的變化。此處運(yùn)用了等式的性質(zhì)。
5)、一起回顧合并同類項(xiàng)的法則:未知數(shù)的系數(shù)相加。
6)、系數(shù)化為1,運(yùn)用了等式的.性質(zhì)。
。ㄇ蠼獾拿恳徊降臅r(shí)候,抽同學(xué)起來回答,該怎么進(jìn)行,運(yùn)用了什么知識(shí),同學(xué)敘述,老師寫,同學(xué)說完后,老師在點(diǎn)評,最后歸納解含括號(hào)的一元一次方程的步驟,并強(qiáng) 調(diào)解題格式。)
方程(1)該怎樣解?由學(xué)生獨(dú)立探索解法,并互相交流。
解一元一次方程的步驟:
去括號(hào),移項(xiàng),合并同類項(xiàng),系數(shù)化為1。
4、鞏固練習(xí)
(1)解方程(2)當(dāng)y為何值時(shí),2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)
。柟叹毩(xí),抽兩個(gè)同學(xué)上黑板去完成,其余的同學(xué)在演草紙上完成,待同學(xué)們完成后給予點(diǎn)評。)
5小結(jié):和同學(xué)們一起回顧我們這節(jié)課學(xué)習(xí)了什么?
解一元一次方程
概念
含括號(hào)的一元一次方程的解法
作業(yè):
1、P12 。1
2、預(yù)習(xí)下一節(jié)課的內(nèi)容,
3、復(fù)習(xí)此節(jié)課的內(nèi)容,并完成一下兩道思考題。
思考:
(1) 解方程:
說明:方程中有多重括號(hào)時(shí),一般應(yīng)按先去小括號(hào),再去中括號(hào),最后去大括
號(hào)的方法去括號(hào),每去一層括號(hào)合并同類項(xiàng)一次,以簡便運(yùn)算。
。2) 該怎么求解?
《一元一次方程》教案6
教學(xué)目標(biāo)
。ㄒ唬┲R(shí)認(rèn)知要求
1、認(rèn)識(shí)一元一次方程與一次函數(shù)問題的轉(zhuǎn)化關(guān)系;
2、學(xué)會(huì)用圖象法求解方程;
3、進(jìn)一步理解數(shù)形結(jié)合思想;
(二)能力訓(xùn)練要求
1、通過一元一次方程與一次函數(shù)的圖象之間的結(jié)合,培養(yǎng)學(xué)生的數(shù)形結(jié)合意識(shí);
2、訓(xùn)練大家能利用數(shù)學(xué)知識(shí)去解決實(shí)際問題的能力。
。ㄈ┣楦信c價(jià)值觀要求
體驗(yàn)數(shù)、圖形是有效地描述現(xiàn)實(shí)世界的重要手段,認(rèn)識(shí)到數(shù)學(xué)是解決問題和進(jìn)行交流的重要工具,了解數(shù)學(xué)對促進(jìn)社會(huì)進(jìn)步和發(fā)展人類理性精神的'作用。
教學(xué)重點(diǎn)與難點(diǎn)
1、理解一元一次不方程與一次函數(shù)的轉(zhuǎn)化及本質(zhì)聯(lián)系。
2、掌握用圖象求解方程的方法。
教學(xué)過程
一、提出問題
(1)方程2x+20=0;(2)函數(shù)y=2x+20
觀察思考:二者之間有什么聯(lián)系?
從數(shù)上看:方程2x+20=0的解,是函數(shù)y=2x+20的值為0時(shí),對應(yīng)自變量x的值
從形上看:函數(shù)y=2x+20與x軸交點(diǎn)的橫坐標(biāo)即為方程2x+20=0的解
根據(jù)上述問題,教師啟發(fā)學(xué)生思考:
根據(jù)學(xué)生回答,教師總結(jié):
由于任何一元一次方程都可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)某一個(gè)函數(shù)的值為0時(shí),求相應(yīng)的自變量的值。從圖象上看,這相當(dāng)于已知直線y=ax+b,確定它也x軸交點(diǎn)的橫坐標(biāo)的值。
二、典型例題:
例1、(書中例1)一個(gè)物體現(xiàn)在的速度是5米/秒,其速度每秒增加2米/秒,再過幾秒它的速度為17米/秒?
《一元一次方程》教案7
1、 使學(xué)生會(huì)列一元一次方程解有關(guān)應(yīng)用題。
2、 培養(yǎng)學(xué)生分析解決實(shí)際問題的能力。
1、在小學(xué)里我們學(xué)過有關(guān)工程問題的應(yīng)用題,這類應(yīng)用題中一般有工作總量、工作時(shí)間、工作效率這三個(gè)量。這三個(gè)量的關(guān)系是:
2、由以上公式可知:一件工作,甲用a小時(shí)完成,則甲的工作量可看成________,工作時(shí)間是________,工作效率是_______。若這件工作甲用6小時(shí)完成,則甲的工作效率是_______。
一件工作,甲單獨(dú)做20小時(shí)完成,乙單獨(dú)做12小時(shí)完成。
問:甲乙合做,需幾小時(shí)完成這件工作?
、:這道題目的已知條件是什么?
、颍哼@道題目要求什么問題?
、螅哼@道題目的相等關(guān)系是什么?
有一個(gè)蓄水池,裝有甲、乙、丙三個(gè)進(jìn)水管,單獨(dú)開甲管,6分鐘可注滿空水池;單獨(dú)開乙管,12分鐘可注滿空水池;單獨(dú)開丙管,18分鐘可注滿空水池,如果甲、乙、丙三管齊開,需幾分鐘可注滿空水池?
此題的`處理方法:
Ⅰ:先由一名學(xué)生閱讀題目;
、颍喝缓笥蓛擅麑W(xué)生板演;
丙管改為排水管,且單獨(dú)開丙管18分鐘可把滿池的水放完,問三管齊開,幾分鐘可注滿空水池?要求學(xué)生口頭列出方程。
一件工作,甲單獨(dú)做20小時(shí)完成,乙單獨(dú)做12小時(shí)完成。
若甲先單獨(dú)做4小時(shí),剩下的部分由甲、乙合做,問:還需幾小時(shí)完成?
。1) 先由學(xué)生閱讀題目
(2) 引導(dǎo):
、:這道題目的已知條件是什么?
、颍哼@道題目要求什么問題?
Ⅲ:這道題目的相等關(guān)系是什么?
。3) 由一學(xué)生口頭設(shè)出求知數(shù),并列出方程,師生共同解答;同時(shí)教師在黑板上寫出解題過程,形成板書。
若乙先做2小時(shí),然后由甲、乙合做,問還需幾小時(shí)完成?
以上兩題的處理方法:
。1) 根據(jù)方程:3/12+x/12+x/6=1,編應(yīng)用題。
(2) 事由:打一份稿件。
條件:現(xiàn)在甲、乙兩名打字員,若甲單獨(dú)打這份稿件需6小時(shí)打完,若乙單獨(dú)打這份稿件需12小時(shí)打完。
要求:甲、乙兩名打字員都要參與打字,并且要打完這份稿件。
課堂總結(jié):
工程問題中的三個(gè)量的關(guān)系。
課堂作業(yè):
見作業(yè)本
一件工作,甲單獨(dú)做6小時(shí)完成,乙單獨(dú)做12小時(shí)完成,丙單獨(dú)做18小時(shí)完成,若先由甲、乙合做3小時(shí),然后由乙丙合做,問共需幾小時(shí)完成?
《一元一次方程》教案8
【教學(xué)目標(biāo)】
1.熟練掌握一元一次方程的解法;
2.進(jìn)一步感受列方程的一般思路;
3.進(jìn)一步培養(yǎng)學(xué)生的建模能力及創(chuàng)新能力.
4.通過觀察、實(shí)踐、討論等活動(dòng)經(jīng)歷從實(shí)際中抽象數(shù)學(xué)模型的過程.
【對話探索設(shè)計(jì)】
〖探索1
一項(xiàng)工程,甲要做12天才能做完.如果把總工作量看作1,
那么,根據(jù)工作效率=________÷________,
得甲一天的工作量(工作效率)為________.
他做3天的工作量是__________.
〖探索2
一項(xiàng)工程,甲單獨(dú)做要6天,乙單獨(dú)做要3天,兩人合做要幾天?
(1)你能估算出答案嗎?
(2)試一試,怎樣用直線型示意圖尋求答案:
如圖,線段AB表示總工作量1,怎樣在線段AB上分別表示甲、乙一天的工作量?通過示意圖,能夠很直觀地看出答案嗎?
如圖,用整個(gè)圓的面積表示全部工作量1,怎樣用扇形的面積分別表示甲、乙兩人一天的工作量?通過示意圖,能夠很直觀地看出答案嗎?與直線型示意圖相比,你更樂意用哪一種圖形分析?
〖探索3
一項(xiàng)工程,甲單獨(dú)做要12天,乙單獨(dú)做要18天,兩人合做要幾天?
解:把總工作量看作1,那么,
根據(jù)工作效率=________÷________,得
甲一天的工作量(工作效率)為______;乙一天的`工作量為______;
設(shè)兩人合做要x天,那么,
甲的總工作量為________;乙的總工作量為________;
這工作由兩個(gè)人完成,根據(jù)兩人完成的工作量之和等于1,可列方程:
_____________________.解這個(gè)方程得________________.
答:_____________________.
把這道題的解法與小學(xué)時(shí)的算術(shù)解法進(jìn)行比較,你有什么發(fā)現(xiàn)?
〖探索4
整理一批圖書,由一個(gè)人做要40小時(shí)完成.現(xiàn)計(jì)劃由一部分人先做4小時(shí),再增加2人和他們一起做8小時(shí),完成這項(xiàng)工作.假設(shè)這些人的工作效率相同,具體應(yīng)先安排多少人工作?(P92例5)
解:把總工作量看作1,那么,
根據(jù)工作效率=________÷________,得
人均效率(一個(gè)人1小時(shí)的工作量)為________.
設(shè)先安排x人工作4小時(shí),那么,
這x個(gè)人4小時(shí)的工作量為_______________(可化簡為_________).
顯然,再增加2人后,參加工作的人數(shù)為x+2,這(x+2)個(gè)人工作8小時(shí)
的工作量為___________________(可化簡為_________).
這工作分兩段完成,根據(jù)兩段完成的工作量等于1可列方程:
________________________.
解得_______.
答:_________________.
想一想:如果不是把總工作量看作是1,而是把一個(gè)人一小時(shí)的工作量看作是1,該如何解這道題?比較兩種解法,你有什么感受?
教師本身要認(rèn)真?zhèn)湔n,要敢于質(zhì)疑,要不失時(shí)機(jī)地培養(yǎng)學(xué)生獨(dú)立思考的習(xí)慣.
〖作業(yè)
P93.習(xí)題3(3),(4);P94,8,9
《一元一次方程》教案9
用方程解決問題(2)--打折銷售
學(xué) 習(xí)目標(biāo):
1、進(jìn)一步經(jīng)歷運(yùn)用方程解決實(shí)際問題的過程。
2、提高學(xué)生找等量關(guān)系列方程的能力。
3、培養(yǎng)學(xué)生的抽象、概括、分析和解決問題的能力。
4、學(xué)會(huì)用數(shù)學(xué)的眼光去看待、分析現(xiàn)實(shí)生活中的情景。
重點(diǎn):
1。如何從實(shí)際問題中尋找等量關(guān)系建立方程,解決問題后如何驗(yàn)證它的合理性。
2。 解決打折銷售中的有關(guān)利潤、成本價(jià)、賣價(jià)之間的相關(guān)的現(xiàn)實(shí)問題。
難點(diǎn):
如何從實(shí)際問題中尋找等量關(guān)系建立方程。
學(xué)習(xí)指導(dǎo):
一、知識(shí)準(zhǔn)備
1。通過社會(huì)調(diào)查,親歷打折銷售這一現(xiàn)實(shí)情境,了解打折銷售中的成本價(jià)、賣價(jià)和利潤之間的關(guān)系。進(jìn)而能根據(jù)現(xiàn)實(shí)情境提出數(shù)學(xué)問題。
2。談一談:
請舉例說明打折、利潤、利潤率、提價(jià)及削價(jià)的含義分別是什么?
3。算一算:
。1)原價(jià)100元的商品,打8折后價(jià)格為 元;
。2)原價(jià)100元的商品,提價(jià)40%后的價(jià)格為 元;
。3)進(jìn)價(jià)100元的商品,以150元賣出,利潤是 元。
二、學(xué)習(xí)新課
一、思考:
1、把下面的“折扣”數(shù)改寫成百分?jǐn)?shù)。九折 八八折 七五折
2、你是怎樣理解某種商品打“八折”出售的?
二、問題:1、 說說“打折銷售”中自己有過的親身經(jīng)歷。
2、假設(shè)你是一個(gè)商店老板,你的追求是什么?
3、你是怎樣理解商品的利潤?
三、 新知探討
1 、你認(rèn)為商品的標(biāo)價(jià)、折數(shù)與商品的賣價(jià)之間有怎樣的'關(guān)系?
2、結(jié)合實(shí)際,說說你從打折銷售中可以獲得哪些數(shù)學(xué)問題?
。1)某商店出售一種錄音機(jī),原價(jià)430元,現(xiàn)在打九折出售,比原價(jià)便宜多少錢?
。2)一種畫冊原價(jià)每本16元,現(xiàn)在按每本11。2元出售。這種畫冊按原價(jià)打了幾折?
。3)、為慶!傲粌和(jié)”,某書店所有兒童讀物一律八折優(yōu)惠,小明花了24元買了一套讀物,請問這套讀物原價(jià)是多少?
。4)一家商店將某種服裝按成本價(jià)提高40%后賣出,已知每件服裝的成本價(jià)是125元,每件服裝獲利多少?
2、例題:一家商店將某種服裝按成本價(jià)提高40%后標(biāo)價(jià),又以8 折優(yōu)惠賣出,結(jié)果每件仍獲利15元,這種服裝每件的成本是多少元?
如果設(shè)每件服裝的成本價(jià)為x元,根據(jù)題意,
(1)每件服裝的標(biāo)價(jià)為:( )
(2)每件服裝的實(shí)際售價(jià)為:( )
。3)每件服裝的利潤為:( )
(4)列出方程,并解答:
四、回顧與反思通過這節(jié)課的學(xué)習(xí),你最大的收獲是什么?在調(diào)查中你還遇到哪些難解的問題,看看大家是不是可以給你解答?
作業(yè):作業(yè)紙。
《一元一次方程》教案10
一、教學(xué)分析:
本節(jié)課設(shè)計(jì)簡析:本節(jié)課內(nèi)容是列方程解應(yīng)用題,主要是小學(xué)解應(yīng)用題和中學(xué)解應(yīng)用題的銜接,讓學(xué)生感受數(shù)學(xué)與現(xiàn)實(shí)生活息息相關(guān),并且體驗(yàn)數(shù)學(xué)的趣味性,提高學(xué)習(xí)數(shù)學(xué)的積極性。
二、教學(xué)目標(biāo):
(一)知識(shí)目標(biāo):
1、通過身邊的故事,引導(dǎo)學(xué)生對生活中的問題進(jìn)行探討和研究,學(xué)會(huì)用方程的思維解決問題。
2、借助找關(guān)鍵句或關(guān)鍵詞、畫線段圖或示意圖等方法,引導(dǎo)學(xué)生正確找出題中的等量關(guān)系,列出方程。
(二)能力目標(biāo):
1、通過小組合作學(xué)習(xí)活動(dòng),培養(yǎng)學(xué)生的合作意識(shí)和語言表達(dá)能力。
2、培養(yǎng)學(xué)生的觀察、分析能力以及用方程思維解決問題的能力。
(三)情感目標(biāo):
1、使學(xué)生在討論、交流的學(xué)習(xí)過程中獲得積極的情感體驗(yàn),探索意識(shí)、創(chuàng)新意識(shí)得到有效發(fā)展。
2、在分析應(yīng)用題的過程中,培養(yǎng)學(xué)生勇于探索、自主學(xué)習(xí)的精神。感受到生活中處處存在數(shù)學(xué),體驗(yàn)數(shù)學(xué)的趣味性
教學(xué)重點(diǎn)、難點(diǎn):
能分析題意,正確找出題中的等量關(guān)系,列出方程解決問題。
教學(xué)過程:
一、溫故:
分別算出下列繩子的總長度
【設(shè)計(jì)意圖:為下面的例題做好鋪墊】
二、新課引入:
我今天給大家講一個(gè)故事,故事的主人翁是丟番圖,希臘數(shù)學(xué)家丟番圖(公元3~4世紀(jì))的墓碑上記載著:
“他生命的六分之一是幸福的童年;再活了他生命的十二分之一,兩頰長起了細(xì)細(xì)的胡須;他結(jié)了婚,又度過了一生的七分之一:再過五年,他有了兒子,感到很幸福;可是,兒子只
活了他父親全部生命的一半;兒子死后,他又在極度的悲傷中度過了四年,也與世長辭了! 根據(jù)以上的信息,請你計(jì)算出: 丟番圖死時(shí)多少歲;
或者根據(jù)丟番圖的年齡能被6,12,2,7整除,可知這個(gè)年齡是6,12,2,7的倍數(shù),所以他的年齡為84,168??但是根據(jù)迄今被《吉尼斯世界記錄》認(rèn)可的世界上壽命最長的人是法國的讓-卡爾門特,他在1997年8月4日去世時(shí)享年122歲。所以丟番圖的年齡為84歲。
【設(shè)計(jì)意圖:這個(gè)題目有一定的難度和趣味性,可以在開課時(shí)吸引全班學(xué)生的'注意力,同時(shí)這個(gè)題目可以用方程解法和算式解法,甚至還可以用以前學(xué)過的倍數(shù)來解決,解題方法多樣性,可以鍛煉學(xué)生的思維,也可以做到小學(xué)用算式和中學(xué)列方程解應(yīng)用題的銜接。通過這個(gè)題目對比兩種解法可以看出:算術(shù)解法是把未知量置于特殊地位,設(shè)法用已知量組成的混合運(yùn)算式表示出來(在條件較復(fù)雜時(shí),列出這樣的式子往往比較困難);代數(shù)解法是把未知量與已知量同等對待(使未知量在分析問題的過程中也能發(fā)揮作用),找出各量之間的等量關(guān)系,建立方程.】
總結(jié):列方程解應(yīng)用題的一般步驟:
。1)“審”:審清題意; (2)“設(shè)”:設(shè)未知數(shù)并把有關(guān)的量用含有未知數(shù)的代數(shù)式表示;
。3)“列”:根據(jù)等量關(guān)系列出方程; (4)“解”:解方程; (5)“答”:檢驗(yàn)作答。
三、鞏固練習(xí),提高能力
1、一只天鵝在天空中飛翔時(shí)遇到了一群天鵝,它向群鵝問好:“你們好啊,100只天鵝。”群鵝回答說:“我們不是100只,但是如果以我們這么多,再加上這么多,在加上我們的一半,再加上我們一半的一半,你也加進(jìn)來,那么我們就是100只了,”問天上飛的群鵝有多少只?
解:設(shè)群鵝有x只。 【設(shè)計(jì)意圖:這個(gè)題目和例題思路差不多,可以檢驗(yàn)學(xué)生是否聽懂例題,語言生活化,可以引起學(xué)生的興趣。此題可以利用畫線段來分析題意,列出方程。】
1、現(xiàn)在兒子的年齡是8歲,父親的年齡是兒子年齡的4倍,請問多少年后父親的年齡是兒子年齡的3倍。
解:設(shè)x年后父親的年齡是兒子年齡的3倍
兒子 爸爸
現(xiàn)在的年齡 8 8×4
X年后的年齡 8+X 8×4+X 然后根據(jù)題意列出方程解答。
【設(shè)計(jì)意圖:這個(gè)題目用算式解題較容易出錯(cuò),但是用方程解很簡單,讓學(xué)生體驗(yàn)用方程成功解應(yīng)用題的成就感】
3、我的地盤,我做主!
編題目:根據(jù)方程X+(X+8)= 40,編一道應(yīng)用題。
【設(shè)計(jì)理念:學(xué)生具備了讀懂題目,列出方程的能力,那么能不能根據(jù)一個(gè)方程自己編一道應(yīng)用題呢?這是能力的提升!學(xué)生編完題后互相檢驗(yàn),又再一次鍛煉了學(xué)生分析題意的能力】
四、小結(jié):
今天你有什么收獲?體驗(yàn)到方程有時(shí)候給我們解應(yīng)用題帶來很大的方便。
思考題:1、有一群鴿子和一些鴿籠,如果每個(gè)鴿籠住6只鴿子,則剩余3只鴿子無鴿籠可住,如果再飛來5只鴿子,每個(gè)鴿籠剛好住8只鴿子,原有多少個(gè)鴿籠?多少只鴿子?
【設(shè)計(jì)理念:經(jīng)典問題如何用方程解決】
2、有甲、乙兩個(gè)牧童,甲對乙說:“把你的羊給我一只,我的羊數(shù)就是你的羊數(shù)的2倍!币一卮鹫f:“最好還是把你的羊給我一只,我們的羊數(shù)就相等了,”兩個(gè)牧童各有多少羊?
【設(shè)計(jì)意圖:這個(gè)題目看起來比較簡單,學(xué)生很容易說出答案4、6或者1,3等,但是經(jīng)過列式計(jì)算發(fā)現(xiàn)是錯(cuò)的,這個(gè)題目可能有一些學(xué)生會(huì)用二元的方程解題,對用這種方法的同學(xué)提出表揚(yáng)】
【設(shè)計(jì)理念:練習(xí)的設(shè)計(jì)體現(xiàn)了層次性和趣味性。同時(shí)也適合不同程度的學(xué)生,讓學(xué)生在不同層次、不同類型的題目中得到鍛煉,提高解題能力。同時(shí)讓學(xué)生感受用方程的方法解決問題的樂趣,拓展學(xué)生的思維!
《一元一次方程》教案11
一、目的要求
使學(xué)生會(huì)用移項(xiàng)解方程。
二、內(nèi)容分析
從本節(jié)課開始系統(tǒng)講解一元一次方程的解法。解一元一次方程是一個(gè)有目的、有根據(jù)、有步驟的變形過程。其目的是將方程最終變?yōu)閤=a的形式;其根據(jù)是等式的性質(zhì)和移項(xiàng)法則,其一般步驟是去分母、去括號(hào)、移項(xiàng)、合并、系數(shù)化成1。
x=a的形式有如下特點(diǎn):
。1)沒有分母;
。2)沒有括號(hào);
。3)未知項(xiàng)在方程的一邊,已知項(xiàng)在方程的另一邊;
。4)沒有同類項(xiàng);
。5)未知數(shù)的系數(shù)是1。
在講方程的解法時(shí),要把所給方程與x=a的形式加以比較,針對它們的不同點(diǎn),采取步驟加以變形。
根據(jù)方程的特點(diǎn),以x=a的形式為目標(biāo)對原方程進(jìn)行變形,是解一元一次方程的基本思想。
解方程的第一節(jié)課告訴學(xué)生解方程就是根據(jù)等式的性質(zhì)把原方程逐步變形為x=a的形式就可以了。重點(diǎn)在于引進(jìn)移項(xiàng)這一變形并用它來解方程。
用等式性質(zhì)1解方程與用移項(xiàng)解方程,效果是一樣的。但移項(xiàng)用起來更方便一些。
如解方程 7x-2=6x-4
時(shí),用移項(xiàng)可直接得到 7x-6x=4+2。
而用等式性質(zhì)1,一般要用兩次:
(1)兩邊都減去6x; (2)兩邊都加上2。
因?yàn)橐幌伦哟_定兩邊都加上(-6x+2)不太容易。因此要引進(jìn)移項(xiàng),用移項(xiàng)來解方程。移項(xiàng)實(shí)際上也是用等式的性質(zhì),在引進(jìn)過程當(dāng)中,要結(jié)合教科書第192頁及第193頁的圖強(qiáng)調(diào)移項(xiàng)要變號(hào)。移項(xiàng)解方程后的檢驗(yàn),可以驗(yàn)證移項(xiàng)解方程的正確性。
三、教學(xué)過程
復(fù)習(xí)提問:
。1)敘述等式的性質(zhì)。
。2)什么叫做方程的解?什么叫做解方程?
新課講解:
1.利用等式性質(zhì)1可以解一些方程。例如,方程 x-7=5
的兩邊都加上7,就可以得到 x=5+7,
x=12。
又如方程 7x=6x-4
的兩邊都減去6x,就可以得到 7x-6x=-4,
x=-4。
然后問學(xué)生如何用等式性質(zhì)1解下列方程 3x-2=2x+1。
2.當(dāng)學(xué)生感覺利用等式性質(zhì)1解方程3x-2=2x+1比較困難時(shí),轉(zhuǎn)而分析解方程x-7=5,7x=6z-4的過程。解這兩個(gè)方程道首先把它們變形成未知項(xiàng)在方程的一邊,已知項(xiàng)在方程的另一邊的`形式,要達(dá)到這個(gè)目的,可以在方程兩邊都加上(或減去)同一個(gè)數(shù)或整式。這步變形也相當(dāng)于
也就是說,方程中的任何一項(xiàng)改變符號(hào)后可以從方程的一邊移到另一邊。
3.利用移項(xiàng)解方程x-7=5和7x=6x-4,并分別寫出檢驗(yàn),要強(qiáng)調(diào)移項(xiàng)時(shí)變號(hào),檢驗(yàn)時(shí)把數(shù)代入變形前的方程。
利用移項(xiàng)解前面提到的方程 3x-2=2x+l
解:移項(xiàng),得 3x-2x=1+2。①
合并,得 x=3。
檢驗(yàn):把x-3分別代入原方程的左邊和右邊,得
左邊=3×3-2=7, 右邊=2×3+1=7, 左邊=右邊,
所以x=3是原方程的解。
在上面解的過程當(dāng)中,由原方程①的移項(xiàng)是指:
。╨)方程左邊的-2,改變符號(hào)后,移到方程的右邊;
。2)方程右邊的2x,改變符號(hào)后,移到方程的左邊。
在寫方程①時(shí),左邊先寫不移動(dòng)的項(xiàng)3x(不改變符號(hào)),再寫移來的項(xiàng)(改變符號(hào));右邊先寫不移動(dòng)的項(xiàng)1(不改變符號(hào)),再寫移來的項(xiàng)(改變符號(hào)),便于檢查。
課堂練習(xí):教科書第73頁 練習(xí)
課堂小結(jié):
1.解方程需要把方程中的項(xiàng)從一邊移到另一邊,移項(xiàng)要變號(hào)。
2.檢驗(yàn)要把數(shù)分別代入原方程的左邊和右邊。
四、課外作業(yè)
習(xí)題2。1 P73 復(fù)習(xí)鞏固
《一元一次方程》教案12
教學(xué)目的:
理解一元一次方程解簡單應(yīng)用題的方法和步驟;并會(huì)列一元一次方程解簡單應(yīng)用題。
重點(diǎn)、難點(diǎn)
1、 重點(diǎn):弄清應(yīng)用題題意列出方程。
2、 難點(diǎn):弄清應(yīng)用題題意列出方程。
教學(xué)過程
一、復(fù)習(xí)
1、 什么叫一元一次方程?
2、 解一元一次方程的理論根據(jù)是什么?
二、新授。
例1、如圖(課本第10頁)天平的兩個(gè)盤內(nèi)分別盛有51克,45克食鹽,問應(yīng)該從盤A內(nèi)拿出多少鹽放到月盤內(nèi),才能兩盤所盛的鹽的質(zhì)量相等?
先讓學(xué)生思考,引導(dǎo)學(xué)生結(jié)合填表,體會(huì)解決實(shí)際問題,重在學(xué)會(huì)探索:已知量和未知量的關(guān)系,主要的等量關(guān)系,建立方程,轉(zhuǎn)化為數(shù)學(xué)問題。
分析:設(shè)應(yīng)從A盤內(nèi)拿出鹽x,可列表幫助分析。
等量關(guān)系;A盤現(xiàn)有鹽=B盤現(xiàn)有鹽
完成后,可讓學(xué)生反思,檢驗(yàn)所求出的解是否合理。
(盤A現(xiàn)有鹽為5l-3=48,盤B現(xiàn)有鹽為45+3=48。)
培養(yǎng)學(xué)生自覺反思求解過程和自覺檢驗(yàn)方程的`解是否正確的良好習(xí)慣。
例2.學(xué)校團(tuán)委組織65名團(tuán)員為學(xué)校建花壇搬磚,初一同學(xué)每人搬6塊,其他年級(jí)同學(xué)每人搬8塊,總共搬了400塊,問初一同學(xué)有多少人參加了搬磚?
引導(dǎo)學(xué)生弄清題意,疏理已知量和未知量:
1.題目中有哪些已知量?
(1)參加搬磚的初一同學(xué)和其他年級(jí)同學(xué)共65名。
(2)初一同學(xué)每人搬6塊,其他年級(jí)同學(xué)每人搬8塊。
(3)初一和其他年級(jí)同學(xué)一共搬了400塊。
2.求什么?
初一同學(xué)有多少人參加搬磚?
3.等量關(guān)系是什么?
初一同學(xué)搬磚的塊數(shù)十其他年級(jí)同學(xué)的搬磚數(shù)=400
如果設(shè)初一同學(xué)有工人參加搬磚,那么由已知量(1)可得,其他年級(jí)同學(xué)有(65-x)人參加搬磚;再由已知量(2)和等量關(guān)系可列出方程
6x+8(65-x)=400
也可以按照教科書上的列表法分析
三、鞏固練習(xí)
教科書第12頁練習(xí)1、2、3
第l題:可引導(dǎo)學(xué)生畫線圖分析
等量關(guān)系是:AC十CB=400
若設(shè)小剛在沖刺階段花了x秒,即t1=x秒,則t2(65-x)秒,再
由等量關(guān)系就可列出方程:
6(65-x)+8x=400
四、小結(jié)
本節(jié)課我們學(xué)習(xí)了用一元一次方程解答實(shí)際問題,列方程解應(yīng)用題的關(guān)鍵在于抓住能表示問題含意的一個(gè)主要等量關(guān)系,對于這個(gè)等量關(guān)系中涉及的量,哪些是已知的,哪些是未知的,用字母表示適當(dāng)?shù)奈粗獢?shù)(設(shè)元),再將其余未知量用這個(gè)字母的代數(shù)式表示,最后根據(jù)等量關(guān)系,得到方程,解這個(gè)方程求得未知數(shù)的值,并檢驗(yàn)是否合理。最后寫出答案。
五、作業(yè)
《一元一次方程》教案13
一元一次方程
一、教學(xué)目標(biāo):
1、通過對多種實(shí)際問題的分析,感受方程作為刻畫現(xiàn)實(shí)世界有效模型的意義。
2、通過觀察,歸納一元一次方程的概念
3、積累活動(dòng)經(jīng)驗(yàn)。
二、重點(diǎn)和難點(diǎn)
重點(diǎn):歸納一元一次方程的概念
難點(diǎn):感受方程作為刻畫現(xiàn)實(shí)世界有效模型的意義
三、教學(xué)過程
1、課前訓(xùn)練一
(1)如果 || =9,則=;如果2 =9,則=
。2)在數(shù)軸上距離原點(diǎn)4個(gè)單位長度的數(shù)為
。3)下列關(guān)于相反數(shù)的說法不正確的是( )
A、兩個(gè)相反數(shù)只有符號(hào)不同,并且它們到原點(diǎn)的距離相等。
B、互為相反數(shù)的兩個(gè)數(shù)的絕對值相等
C、0的相反數(shù)是0
D、互為相反數(shù)的兩個(gè)數(shù)的和為0(字母表示為、互為相反數(shù)則)
E、有理數(shù)的相反數(shù)一定比0小
。4)乘積為1的兩個(gè)數(shù)互為 倒數(shù) ,如:
。5)如果,則( )
A、,互為倒數(shù) B、,互為相反數(shù) C、,都是0 D、,至少有一個(gè)為0
。6)小明種了一棵高度為40厘米的樹苗,栽種后每周樹苗長高約為12厘米,問大約經(jīng)過幾周后樹苗長高到1米?設(shè)大約經(jīng)過周后樹苗長高到1米,依題意得方程( )
A、B、C、D、00
2、由課本P149卡通圖畫引入新課
3、分組討論P(yáng)149兩個(gè)練習(xí)
4、P150:某長方形的足球場的周長為310米,長與寬的差為25米,求這個(gè)足球場的長與寬各是多少米?設(shè)這個(gè)足球場的寬為米,那么長為(+25)米,依題意可列得方程為:( )
A、+25=310 B、+(+25)=310 C、2 [+(+25)]=310 D、[+(+25)]2=310
課本的寬為3厘米,長比寬多4厘米,則課本的面積為 平方厘米。
5、小芳買了2個(gè)筆記本和5個(gè)練習(xí)本,她遞給售貨員10元,售貨員找回0。8元。已知每個(gè)筆記本比練習(xí)本貴1。2元,求每個(gè)練習(xí)本多少元?
解:設(shè)每個(gè)練習(xí)本要元,則每個(gè)筆記本要 元,依題意可列得方程:
6、歸納方程、一元一次方程的概念
7、隨堂練習(xí)PO151
8、達(dá)標(biāo)測試
。1)下列式子中,屬于方程的是( )
A、B、C、D、
。2)下列方程中,屬于一元一次方程的是( )
A、B、C、D、
。3)甲、乙兩隊(duì)開展足球?qū)贡荣,?guī)定每隊(duì)勝一場得3分,平一場得1分,負(fù)一場得0分。甲隊(duì)與乙隊(duì)一共進(jìn)行了10場比賽,且甲隊(duì)保持了不敗記錄,甲隊(duì)一共得22分。求甲隊(duì)勝了多少場?平了多少場?
解:設(shè)甲隊(duì)勝了場,則平了 場,依題意可列得方程:
解得=
答:甲隊(duì)勝了 場,平了 場。
。4)根據(jù)條件“一個(gè)數(shù)比它的一半大2”可列得方程為
。5)根據(jù)條件“某數(shù)的與2的差等于最大的一位數(shù)”可列得方程為
四、課外作業(yè) P151習(xí)題5。1
一元一次方程
一、教學(xué)目標(biāo):
1、通過對多種實(shí)際問題的分析,感受方程作為刻畫現(xiàn)實(shí)世界有效模型的意義。
2、通過觀察,歸納一元一次方程的概念
3、積累活動(dòng)經(jīng)驗(yàn)。
二、重點(diǎn)和難點(diǎn)
重點(diǎn):歸納一元一次方程的`概念
難點(diǎn):感受方程作為刻畫現(xiàn)實(shí)世界有效模型的意義
三、教學(xué)過程
1、課前訓(xùn)練一
。1)如果 || =9,則=;如果2 =9,則=
。2)在數(shù)軸上距離原點(diǎn)4個(gè)單位長度的數(shù)為
(3)下列關(guān)于相反數(shù)的說法不正確的是( )
A、兩個(gè)相反數(shù)只有符號(hào)不同,并且它們到原點(diǎn)的距離相等。
B、互為相反數(shù)的兩個(gè)數(shù)的絕對值相等
C、0的相反數(shù)是0
D、互為相反數(shù)的兩個(gè)數(shù)的和為0(字母表示為、互為相反數(shù)則)
E、有理數(shù)的相反數(shù)一定比0小
。4)乘積為1的兩個(gè)數(shù)互為 倒數(shù) ,如:
。5)如果,則( )
A、,互為倒數(shù) B、,互為相反數(shù) C、,都是0 D、,至少有一個(gè)為0
。6)小明種了一棵高度為40厘米的樹苗,栽種后每周樹苗長高約為12厘米,問大約經(jīng)過幾周后樹苗長高到1米?設(shè)大約經(jīng)過周后樹苗長高到1米,依題意得方程( )
A、B、C、D、00
2、由課本P149卡通圖畫引入新課
3、分組討論P(yáng)149兩個(gè)練習(xí)
4、P150:某長方形的足球場的周長為310米,長與寬的差為25米,求這個(gè)足球場的長與寬各是多少米?設(shè)這個(gè)足球場的寬為米,那么長為(+25)米,依題意可列得方程為:( )
A、+25=310 B、+(+25)=310 C、2 [+(+25)]=310 D、[+(+25)]2=310
課本的寬為3厘米,長比寬多4厘米,則課本的面積為 平方厘米。
5、小芳買了2個(gè)筆記本和5個(gè)練習(xí)本,她遞給售貨員10元,售貨員找回0。8元。已知每個(gè)筆記本比練習(xí)本貴1。2元,求每個(gè)練習(xí)本多少元?
解:設(shè)每個(gè)練習(xí)本要元,則每個(gè)筆記本要 元,依題意可列得方程:
6、歸納方程、一元一次方程的概念
7、隨堂練習(xí)PO151
8、達(dá)標(biāo)測試
。1)下列式子中,屬于方程的是( )
A、B、C、D、
。2)下列方程中,屬于一元一次方程的是( )
A、B、C、D、
。3)甲、乙兩隊(duì)開展足球?qū)贡荣悾?guī)定每隊(duì)勝一場得3分,平一場得1分,負(fù)一場得0分。甲隊(duì)與乙隊(duì)一共進(jìn)行了10場比賽,且甲隊(duì)保持了不敗記錄,甲隊(duì)一共得22分。求甲隊(duì)勝了多少場?平了多少場?
解:設(shè)甲隊(duì)勝了場,則平了 場,依題意可列得方程:
解得=
答:甲隊(duì)勝了 場,平了 場。
。4)根據(jù)條件“一個(gè)數(shù)比它的一半大2”可列得方程為
。5)根據(jù)條件“某數(shù)的與2的差等于最大的一位數(shù)”可列得方程為
四、課外作業(yè) P151習(xí)題5。1
《一元一次方程》教案14
一、活動(dòng)內(nèi)容:
課本第110頁111頁 活動(dòng)1和活動(dòng)3
二、活動(dòng)目標(biāo):
1、知識(shí)與技能:
運(yùn)用一元一次方程解決現(xiàn)實(shí)生活中的問題,進(jìn)一步體會(huì)建模思想方法。
2、過程與方法:
(1)通過數(shù)學(xué)活動(dòng)使學(xué)生進(jìn)一步體會(huì)一元一次方程和實(shí)際問題中的關(guān)系,通過分析問題中的數(shù)量關(guān)系,進(jìn)行預(yù)測、判斷。
(2)運(yùn)用所學(xué)過的數(shù)學(xué)知識(shí)進(jìn)行分析,演練、合作探究,體會(huì)數(shù)學(xué)知識(shí)在社會(huì)活動(dòng)中的運(yùn)用,提高應(yīng)用知識(shí)的能力和社會(huì)實(shí)踐能力。
3、情感態(tài)度與價(jià)值觀:
通過數(shù)學(xué)活動(dòng),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,增強(qiáng)自信心,進(jìn)一步發(fā)展學(xué)生合作交流的意識(shí)和能力,體會(huì)數(shù)學(xué)與現(xiàn)實(shí)的聯(lián)系,培養(yǎng)學(xué)生求真的科學(xué)態(tài)度。
三、重難點(diǎn)與關(guān)鍵
1、重點(diǎn):經(jīng)歷探索具體情境的數(shù)量關(guān)系,體會(huì)一元一次方程與實(shí)際問題之間的數(shù)量關(guān)系會(huì)用方程解決實(shí)際問題。
2、難點(diǎn):以上重點(diǎn)也是難點(diǎn)
3、關(guān)鍵:明確問題中的已知量與未知量間的關(guān)系,尋找等量關(guān)系。
四、教具準(zhǔn)備:
投影儀,每人一根質(zhì)地均勻的直尺,一些相同的棋了和一個(gè)支架。
五、教學(xué)過程:
(一)、活動(dòng)1
一種商品售價(jià)為2.2元件,如果買100件以上超過100件部分的售價(jià)為2元/件,某人買這種商品n件,討論下面問題:
這個(gè)人買了n件商品需要多少元?
教師活動(dòng):
(1)把學(xué)生每四人分成一組,進(jìn)行合作學(xué)習(xí),并參入學(xué)生中一起探究。
(2)教師對學(xué)生在發(fā)表解法時(shí)存在的問題加以指正。 學(xué)生活動(dòng):
(1)分組后對活動(dòng)一的問題展開討論,探究解決問題的方法。
(2)學(xué)生派代表上黑板板演,并發(fā)表解法。
解: 2.2n n100
2.2100+2(n-100) n100
問題轉(zhuǎn)換:
一種商品售價(jià)為2.2元/件,如果買100件以上超過100件部分的售價(jià)為2元/件,某人買這種商品共花了n元,討論下面的'問題:
(1)這個(gè)人買這種商品多少件?
(2)如果這個(gè)人買這種商品的件數(shù)恰是0.48n,那么n的值是多少?
教師活動(dòng):同上 學(xué)生活動(dòng):同上
解:(1) n220
100+ n220
(2) =0.48n n=0
100+ =0.48n n=500
(二)、活動(dòng)2:
本活動(dòng)課前布置學(xué)生做好活動(dòng)前的準(zhǔn)備工作:
1、準(zhǔn)備一根質(zhì)地均勻的直尺,一些相同的棋子和一個(gè)支架。
2、分組:(4人一組)
開始做下面的實(shí)驗(yàn):
(1)把直尺的中點(diǎn)放在支點(diǎn)上,使直尺左右平衡。
(2)在直尺兩端各放一枚棋子,這時(shí)直尺還是保持平衡嗎?
(3)在直尺的一端再加一枚棋子,移動(dòng)支點(diǎn)的位置,使兩邊平衡,然后記下支點(diǎn)到兩端距離a 和b,(不妨設(shè)較長的一邊為a)
(4)在有兩枚棋子的一端面加一枚棋子移動(dòng)支點(diǎn)的位置,使兩邊平衡,再記下支點(diǎn)到兩端的距離a和b。
(5)在棋子多的一端繼續(xù)加棋子,并重復(fù)以上操作。根據(jù)統(tǒng)計(jì)記錄你能發(fā)現(xiàn)什么規(guī)律?
以上實(shí)驗(yàn)過程可以由學(xué)生填寫在預(yù)先設(shè)計(jì)的記錄表上
實(shí)驗(yàn)次數(shù) 棋子數(shù) ab值 a與b的關(guān)系
右 左 a b
第1次 1 1
第2次 1 2
第3次 1 3
第4次 1 4
第n次 1 n
根據(jù)記錄下的a、b值,探索a 與b的關(guān)系,由于目測可能有點(diǎn)誤差。
根據(jù)實(shí)驗(yàn)得出a、b之間關(guān)系,猜想當(dāng)?shù)趎次實(shí)驗(yàn)的a 和b的關(guān)系如何?a=nb(學(xué)生實(shí)驗(yàn)得出學(xué)生代表發(fā)言)
如果直尺一端放一枚棋子,另一端放n枚棋子,直尺的長為L,支點(diǎn)應(yīng)在直尺的哪個(gè)位置?(提示:用一元一次方程解)
此問題由學(xué)生合作解決并派代表板演并講解,教師加以指正。
解:設(shè)支點(diǎn)離n枚棋子的距離為 x得:
x+nx=L x= 答:略
(三)、小結(jié),由學(xué)生談本節(jié)課的收獲。
(四)、作業(yè)
1、課后了解實(shí)際生活中的類似活動(dòng)問題,并舉出幾個(gè)例子。
2、課本,第110頁活動(dòng)2。
《一元一次方程》教案15
教學(xué)目標(biāo)
1、使學(xué)生能根據(jù)商品銷售問題中的數(shù)量關(guān)系找出等量關(guān)系,列出方程,掌握商品盈虧的求法,;
2、培養(yǎng)學(xué)生分析問題,解決實(shí)際問題的能力;
3、讓學(xué)生在實(shí)際生活問題中,感受到數(shù)學(xué)的價(jià)值。
教學(xué)難點(diǎn) 讓學(xué)生知道商品銷售中的盈虧的算法。
知識(shí)重點(diǎn) 弄清商品銷售中的進(jìn)價(jià)標(biāo)價(jià)售價(jià)及利潤的含義。
教學(xué)過程(師生活動(dòng))設(shè)計(jì)理念
引言前面我們結(jié)合實(shí)際問題,討論了如何分析數(shù)量關(guān)系,利用相等關(guān)系列方程以及如何解方程。本節(jié)開始,我們將進(jìn)一步探究如何用一元一次方程解決生活中的一些實(shí)際問題。利用一元一次方程解決實(shí)際問題前面已有所討論,本節(jié)承上啟下,進(jìn)一步探究用一元一次方程解決生活中的實(shí)際問題。
引例①某商品原來每件零售價(jià)是元,現(xiàn)在每件降價(jià) ,降價(jià)后每件零售價(jià)是 ;
、谀撤N品牌的彩電降價(jià) 以后,每臺(tái)售價(jià)為 元,則該品牌彩電每臺(tái)原價(jià)應(yīng)為 元;
、勰成唐钒炊▋r(jià)的八折出售,售價(jià)是 元,則原定價(jià)是 ;
④某商場把進(jìn)價(jià)為1980元的商品按標(biāo)價(jià)的八折出售,仍獲利 ,則該商品的標(biāo)價(jià)為 ;
、菸覈疄榻鉀Q老百姓看病問題,決定下調(diào)藥品的價(jià)格,某種藥品在1999年漲價(jià)30%后,20xx降價(jià)70%至 元,則這種藥品在1999年漲價(jià)前價(jià)格為 元。學(xué)生對進(jìn)價(jià)、標(biāo)價(jià)、售價(jià)、打折等商品銷售中的一些概念的含義已有一定的知識(shí)積累,通過引例,使學(xué)生在已有的知識(shí)經(jīng)驗(yàn)基礎(chǔ)上引入新課。
提出問題
探究新知問題(教科書93頁探究1):某商店在某一時(shí)間以每件60元的價(jià)格賣兩件衣服,其中一件盈利還是虧損?或是不盈不虧?通過實(shí)際生活中的實(shí)例,用問題的形式來探究新課內(nèi)容,使學(xué)生感受數(shù)學(xué)來源于生活,生活中需要數(shù)學(xué)。
討論交流解決問題①引導(dǎo)學(xué)生大體估算盈虧情況;
②教師提出問題,學(xué)生自主討論解決;
(1)商品銷售中的盈虧如何計(jì)算?
(2)兩件衣服的進(jìn)價(jià)、售價(jià)分別是多少?
③得出結(jié)論后,將結(jié)論與學(xué)生先前的估算進(jìn)行比較;
、芙處煔w納解決問題的大致過程。先由學(xué)生估算(培養(yǎng)學(xué)生敏感意識(shí))然后通過師生合作交流,學(xué)生自主探索,得出結(jié)論,讓學(xué)生品嘗成功的喜悅。
鞏固練習(xí)由學(xué)生自主探索解決。
問題:我國股市交易中每天、賣一次各交千分之七點(diǎn)五的各種費(fèi)用,某投資者以每股10元的價(jià)格買入上海某股票1000股,當(dāng)該股票漲到12元時(shí)全部賣出,該投資者實(shí)際盈利為多少?
鞏固本課中商品銷售盈虧的求法,再次使學(xué)生感受到數(shù)學(xué)的應(yīng)用價(jià)值。
小結(jié)與作業(yè)
課堂小結(jié)通過以下問題引導(dǎo)學(xué)生小結(jié):
、儆蓪W(xué)生談?wù)劚竟?jié)課學(xué)到了哪些知識(shí)?學(xué)后有何感受?
、谏唐蜂N售中的基本等量關(guān)系有哪些?由學(xué)生概括本課中學(xué)到的知識(shí),體現(xiàn)學(xué)生是學(xué)習(xí)的主人。
布置作業(yè)必做題:教科書97面習(xí)題2.4第2、3、4題;
備選題:
、倌成唐返倪M(jìn)價(jià)是1000元,售價(jià)為1500元,由于情況不好,商店決定降價(jià)出售,但又要保證利潤率不低于5%,那么商店可降多少元出售此商品;
、谝荒甓ㄆ诘腵存款,年利率為 ,到期取款時(shí)須扣除利息的20%,作為利息稅上繳國庫,假如某人存入一年的定期儲(chǔ)蓄1000元,到期扣稅后可得利息多少元?
、勰成虉鰧⒛撤NDVD產(chǎn)品按進(jìn)價(jià)提高35%,然后打出九折酬賓,外送50元打的費(fèi)的廣告,結(jié)果每臺(tái)DVD仍獲利208元,則每臺(tái)DVD的進(jìn)價(jià)是多少元?
、苣称髽I(yè)生產(chǎn)一種產(chǎn)品,每件成本價(jià)是400元,銷售價(jià)為510元,本季度銷售了件,為進(jìn)一步擴(kuò)大市場,該企業(yè)決定在降低銷售的同時(shí)降低生產(chǎn)成本,經(jīng)過市場調(diào)研,預(yù)測下季度這種產(chǎn)品每件銷售價(jià)降低4%,銷售量將提高10%,要使銷售利潤(銷售利潤=銷售價(jià)-成本價(jià))保持不變,該產(chǎn)品每件的成本應(yīng)降低多少元?
本課教育評注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)
本課以學(xué)生已有的知識(shí)經(jīng)驗(yàn)和生活中的實(shí)例入手引入新課,在新授過程中,以學(xué)生為學(xué)習(xí)的主人教師進(jìn)行適當(dāng)引導(dǎo)、點(diǎn)拔、啟迪。在學(xué)生的自主探索、合作交流過程中弄清商品銷售中的盈虧的算法。加法對進(jìn)價(jià)標(biāo)價(jià)售價(jià)及利潤的實(shí)際意義的理解。使學(xué)生深切感受到數(shù)學(xué)生活實(shí)際中的應(yīng)用。從而激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣。另外學(xué)生通過對新授問題的估算,最后計(jì)算得出正確的結(jié)論,品嘗到成功的喜悅,從而也激發(fā)了學(xué)生探求知識(shí)的欲望。
【《一元一次方程》教案】相關(guān)文章:
一元一次方程的教案11-09
一元一次方程教案02-13
一元一次方程教案【合集】11-20
解一元一次方程教案01-06
解一元一次方程教案04-24
一元一次方程教案優(yōu)秀12-12
一元一次方程教案20篇10-30
一元一次方程教案(15篇)02-23
解一元一次方程教案(15篇)03-21