- 因式分解教案 推薦度:
- 數(shù)學因式分解教案 推薦度:
- 相關(guān)推薦
因式分解教案模板集合5篇
作為一名辛苦耕耘的教育工作者,有必要進行細致的教案準備工作,教案是教學活動的依據(jù),有著重要的地位。那么教案應該怎么寫才合適呢?下面是小編精心整理的因式分解教案5篇,歡迎大家借鑒與參考,希望對大家有所幫助。
因式分解教案 篇1
整式乘除與因式分解
一.回顧知識點
1、主要知識回顧:
冪的運算性質(zhì):
aman=am+n(m、n為正整數(shù))
同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.
=amn(m、n為正整數(shù))
冪的乘方,底數(shù)不變,指數(shù)相乘.
(n為正整數(shù))
積的乘方等于各因式乘方的積.
=am-n(a≠0,m、n都是正整數(shù),且m>n)
同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.
零指數(shù)冪的概念:
a0=1(a≠0)
任何一個不等于零的數(shù)的零指數(shù)冪都等于l.
負指數(shù)冪的概念:
a-p=(a≠0,p是正整數(shù))
任何一個不等于零的數(shù)的-p(p是正整數(shù))指數(shù)冪,等于這個數(shù)的p指數(shù)冪的倒數(shù).
也可表示為:(m≠0,n≠0,p為正整數(shù))
單項式的乘法法則:
單項式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對于只在一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式.
單項式與多項式的乘法法則:
單項式與多項式相乘,用單項式和多項式的每一項分別相乘,再把所得的積相加.
多項式與多項式的乘法法則:
多項式與多項式相乘,先用一個多項式的每一項與另一個多項式的每一項相乘,再把所得的積相加.
單項式的除法法則:
單項式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式:對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式.
多項式除以單項式的法則:
多項式除以單項式,先把這個多項式的每一項除以這個單項式,再把所得的商相加.
2、乘法公式:
、倨椒讲罟剑(a+b)(a-b)=a2-b2
文字語言敘述:兩個數(shù)的和與這兩個數(shù)的差相乘,等于這兩個數(shù)的平方差.
、谕耆椒焦剑(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
文字語言敘述:兩個數(shù)的和(或差)的平方等于這兩個數(shù)的`平方和加上(或減去)這兩個數(shù)的積的2倍.
3、因式分解:
因式分解的定義.
把一個多項式化成幾個整式的乘積的形式,這種變形叫做把這個多項式因式分解.
掌握其定義應注意以下幾點:
(1)分解對象是多項式,分解結(jié)果必須是積的形式,且積的因式必須是整式,這三個要素缺一不可;
(2)因式分解必須是恒等變形;
(3)因式分解必須分解到每個因式都不能分解為止.
弄清因式分解與整式乘法的內(nèi)在的關(guān)系.
因式分解與整式乘法是互逆變形,因式分解是把和差化為積的形式,而整式乘法是把積化為和差的形式.
二、熟練掌握因式分解的常用方法.
1、提公因式法
(1)掌握提公因式法的概念;
(2)提公因式法的關(guān)鍵是找出公因式,公因式的構(gòu)成一般情況下有三部分:①系數(shù)一各項系數(shù)的最大公約數(shù);②字母——各項含有的相同字母;③指數(shù)——相同字母的最低次數(shù);
(3)提公因式法的步驟:第一步是找出公因式;第二步是提取公因式并確定另一因式.需注意的是,提取完公因式后,另一個因式的項數(shù)與原多項式的項數(shù)一致,這一點可用來檢驗是否漏項.
(4)注意點:①提取公因式后各因式應該是最簡形式,即分解到“底”;②如果多項式的第一項的系數(shù)是負的,一般要提出“-”號,使括號內(nèi)的第一項的系數(shù)是正的.
2、公式法
運用公式法分解因式的實質(zhì)是把整式中的乘法公式反過來使用;
常用的公式:
、倨椒讲罟剑篴2-b2=(a+b)(a-b)
②完全平方公式:a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
因式分解教案 篇2
因式分解
教材分析
因式分解是進行代數(shù)式恒等變形的重要手段之一,因式分解是在學習整式四則運算的基礎(chǔ)上進行的,它不僅僅在多項式的除法、簡便運算中等有直接的應用,也為以后學習分式的約分與通分、解方程(組)及三解函數(shù)式的恒等變形帶給了必要的基礎(chǔ),因此學好因式分解對于代數(shù)知識的后續(xù)學習,具有相當重要的好處。由于本節(jié)課后學習提取公因式法,運用公式法,分組分解法來進行因式分解,務必以理解因式分解的概念為前提,所以本節(jié)資料的重點是因式分解的概念。由整式乘法尋求因式分解的方法是一種逆向思維過程,而逆向思維對初一學生還比較生疏,理解起來有必須難度,再者本節(jié)還沒涉及因式分解的具體方法,所以理解因式分解與整式乘法的相互關(guān)系,并運用它們之間的相互關(guān)系尋求因式分解的方法是教學中的`難點。
教學目標
認知目標:(1)理解因式分解的概念和好處
。2)認識因式分解與整式乘法的相互關(guān)系——相反變形,并會運用它們之間的相互關(guān)系尋求因式分解的方法。
潛力目標:由學生自行探求解題途徑,培養(yǎng)學生觀察、分析、決定潛力和創(chuàng)新潛力,發(fā)展學生智能,深化學生逆向思維潛力和綜合運用潛力。
情感目標:培養(yǎng)學生理解矛盾的對立統(tǒng)一觀點,獨立思考,勇于探索的精神和實事求是的科學態(tài)度。
目標制定的思想
1.目標具體化、明確化,從學生實際出發(fā),具有針對性和可行性,同時便于上課操作,便于檢測和及時反饋。
2.課堂教學體現(xiàn)潛力立意。
3.寓德育教育于教學之中。
教學方法
1.采用以設(shè)疑探究的引課方式,激發(fā)學生的求知欲望,提高學生的學習興趣和學習用心性。
2.把因式分解概念及其與整式乘法的關(guān)系作為主線,訓練學生思維,以設(shè)疑——感知——概括——運用為教學程序,充分遵循學生的認知規(guī)律,使學生能順利地掌握重點,突破難點,提高潛力。
3.在課堂教學中,引導學生體會知識的發(fā)生發(fā)展過程,堅持啟發(fā)式,鼓勵學生充分地動腦、動口、動手,用心參與到教學中來,充分體現(xiàn)了學生的主動性原則。
4.在充分尊重教材的前提下,融教材練習、想一想于教學過程中,增設(shè)了由淺入深、各不相同卻又緊密相關(guān)的訓練題目,為學生順利掌握因式分解概念及其與整式乘法關(guān)系創(chuàng)造了有利條件。
5.改變傳統(tǒng)言傳身教的方式,利用計算機輔助教學手段進行教學,增大教學的容量和直觀性,提高教學效率和教學質(zhì)量。
教學過程安排
一、提出問題,創(chuàng)設(shè)情境
問題:看誰算得快?(計算機出示問題)
。1)若a=101,b=99,則a2—b2=(a+b)(a—b)=(101+99)(101—99)=400
(2)若a=99,b=—1,則a2—2ab+b2=(a—b)2=(99+1)2=10000
。3)若x=—3,則20x2+60x=20x(x+3)=20x(—3)(—3+3)=0
二、觀察分析,探究新知
(1)請每題想得最快的同學談思路,得出最佳解題方法(同時計算機出示答案)
。2)觀察:a2—b2=(a+b)(a—b)①的左邊是一個什么式子?右邊又是什么形式?
a2—2ab+b2=(a—b)2②
20x2+60x=20x(x+3)③
。3)類比小學學過的因數(shù)分解概念,(例42=2×3×7④)得出因式分解概念。
板書課題:§7。1因式分解
1.因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式。
三、獨立練習,鞏固新知
練習
1.下列由左邊到右邊的變形,哪些是因式分解?哪些不是?為什么?(計算機演示)
①(x+2)(x—2)=x2—4
、趚2—4=(x+2)(x—2)
、踑2—2ab+b2=(a—b)2
、3a(a+2)=3a2+6a
、3a2+6a=3a(a+2)
、辺2—4+3x=(x—2)(x+2)+3x
⑦k2++2=(k+)2
、鄕—2—1=(x—1+1)(x—1—1)
、18a3bc=3a2b·6ac
2.因式分解與整式乘法的關(guān)系:
因式分解
結(jié)合:a2—b2=========(a+b)(a—b)
整式乘法
說明:從左到右是因式分解其特點是:由和差形式(多項式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉(zhuǎn)化成和差形式(多項式)。
結(jié)論:因式分解與整式乘法正好相反。
問題:你能利用因式分解與整式乘法正好相反這一關(guān)系,舉出幾個因式分解的例子嗎?
。ㄈ纾河桑▁+1)(x—1)=x2—1得x2—1=(x+1)(x—1)
由(x+2)(x—1)=x2+x—2得x2+x—2=(x+2)(x—1)等等)
四、例題教學,運用新知:
例:把下列各式分解因式:(計算機演示)
。1)am+bm(2)a2—9(3)a2+2ab+b2
。4)2ab—a2—b2(5)8a3+b6
練習2:填空:(計算機演示)
。1)∵2xy=2x2y—6xy2
∴2x2y—6xy2=2xy
。2)∵xy=2x2y—6xy2
∴2x2y—6xy2=xy
(3)∵2x=2x2y—6xy2
∴2x2y—6xy2=2x
五、強化訓練,掌握新知:
練習3:把下列各式分解因式:(計算機演示)
(1)2ax+2ay(2)3mx—6nx(3)x2y+xy2
。4)x2+—x(5)x2—0。01(6)a3—1
。ㄗ寣W生上來板演)
六、變式訓練,擴展新知(計算機演示)
1。若x2+mx—n能分解成(x—2)(x—5),則m=,n=
2.機動題:(填空)x2—8x+m=(x—4),且m=
七、整理知識,構(gòu)成結(jié)構(gòu)(即課堂小結(jié))
1.因式分解的概念因式分解是整式中的一種恒等變形
2.因式分解與整式乘法是兩種相反的恒等變形,也是思維方向相反的兩種思維方式,因此,因式分解的思維過程實際也是整式乘法的逆向思維的過程。
3.利用2中關(guān)系,能夠從整式乘法探求因式分解的結(jié)果。
4.教學中滲透對立統(tǒng)一,以不變應萬變的辯證唯物主義的思想方法。
八、布置作業(yè)
1.作業(yè)本(一)中§7。1節(jié)
2.選做題:①x2+x—m=(x+3),且m=。
、趚2—3x+k=(x—5),且k=。
評價與反饋
1.透過由學生自己得出因式分解概念及其與整式乘法的關(guān)系的結(jié)論,了解學生觀察、分析問題的潛力和逆向思維潛力及創(chuàng)新潛力。發(fā)現(xiàn)問題,及時反饋。
2.透過例題及練習,了解學生對概念的理解程度和實際運用潛力,最大限度地讓學生暴露問題和認知誤差,及時發(fā)現(xiàn)和彌補教與學中的遺漏和不足,從而及時調(diào)控教與學。
3.透過機動題,了解學生對概念的熟練程度和思維的靈敏性、深刻性、廣闊性及探研創(chuàng)造潛力,及時評價,及時矯正。
4.透過課后作業(yè),了解學生對知識的掌握狀況與綜合運用知識及靈活運用知識的潛力,教師及時批閱,及時反饋講評,同時對個別學生面批作業(yè),能夠更及時、更準確地了解學生思維發(fā)展的狀況,矯正的針對性更強。
5.透過課堂小結(jié),了解學生對概念的熟悉程度和歸納概括潛力、語言表達潛力、知識運用潛力,教師恰當?shù)亟o予引導和啟迪。
6.課堂上反饋信息除了語言和練習外,學生神情也是信息來源,而且這些信息更真實。學生神態(tài)、表情、坐姿都反映出學生對教師教學資料的理解和理解程度。教師應用心捕捉學生在知識掌握、思維發(fā)展、潛力培養(yǎng)等各方面全方位的反饋信息,隨時評價,及時矯正,隨時調(diào)節(jié)教學。
因式分解教案 篇3
學習目標
1、學會用平方差公式進行因式法分解
2、學會因式分解的而基本步驟.
學習重難點重點:
用平方差公式進行因式法分解.
難點:
因式分解化簡的過程
自學過程設(shè)計教學過程設(shè)計
看一看
平方差公式:
平方差公式的逆運用:
做一做:
1.填空題.
(1)25a2-_______=(5a+2b)(5a-2b);(2)x2-=(x-)(________).
(3)-a2+b2=(b+a)(________);(4)36x2-81y2=9(_______)(_______).
2.把下列各式分解因式結(jié)果為-(x-2y)(x+2y)的多項式是()
A.x2-4yB.x2+4y2C.-x2+4y2D.-x2-4y2
3.多項式-1+0.04a2分解因式的結(jié)果是()
A.(-1+0.2a)2B.(1+0.2a)(1-0.2a)
C.(0.2a+1)(0.2a-1)D.(0.04a+1)(0.04a-1)
4.把下列各式分解因式:
(1)4x2-25y2;(2)0.81m2-n2;
(3)a3-9a;(4)8x3y3-2xy.
5.把下列各式分解因式:
(1)(3a+2b)2-(a-b)2;(2)4(x+2y)2-25(x-y)2.
6.用簡便方法計算:3492-2512.
想一想
你還有哪些地方不是很懂?請寫出來。
____________________________________________________________________________________
Xkb1.com預習展示一:
1、下列多項式能否用平方差公式分解因式?
說說你的理由。
4x2+y2
4x2-(-y)2
-4x2-y2-4x2+y2
a2-4a2+3
2.把下列各式分解因式:
(1)16-a2
(2)0.01s2-t2
(4)-1+9x2
(5)(a-b)2-(c-b)2
(6)-(x+y)2+(x-2y)2
應用探究:
1、分解因式
4x3y-9xy3
變式:把下列各式分解因式
、賦4-81y4
、2a-8a
2、從前有一位張老漢向地主租了一塊“十字型”土地(尺寸如圖)。為便于種植,他想換一塊相同面積的長方形土地。同學們,你能幫助張老漢算出這塊長方形土地的長和寬嗎?w
3、在日常生活中如上網(wǎng)等都需要密碼.有一種因式分解法產(chǎn)生的密碼方便記憶又不易破譯.
例如用多項式x4-y4因式分解的結(jié)果來設(shè)置密碼,當取x=9,y=9時,可得一個六位數(shù)的密碼“018162”.你想知道這是怎么來的嗎?
小明選用多項式4x3-xy2,取x=10,y=10時。用上述方法產(chǎn)生的`密碼是什么?(寫出一個即可)
拓展提高:
若n為整數(shù),則(2n+1)2-(2n-1)2能被8整除嗎?請說明理由.
教后反思考察利用公式法因式分解的題目不會很難,但是需要學生記住公式的形式,之后利用公式把式子進行變形,從而達到進行因式分解的目的。
因式分解教案 篇4
一、教材分析
1、教材的地位與作用
“整式的乘法”是整式的加減的后續(xù)學習從冪的運算到各種整式的乘法,整章教材都突出了學生的自主探索過程,依據(jù)原有的知識基礎(chǔ),或運用乘法的各種運算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運算的基本法則、兩個主要的乘法公式及因式分解的基本方法學生自己對知識內(nèi)容的探索、認識與體驗,完全有利于學生形成合理的知識結(jié)構(gòu),提高數(shù)學思維能力.利用公式法進行因式分解時,注意把握多項式的特點,對比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。
因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項式乘法公式的逆向變形,它是將一個多項式變形為多項式與多項式的乘積。
2、教學目標
(1)會推導乘法公式
。2)在應用乘法公式進行計算的基礎(chǔ)上,感受乘法公式的作用和價值。
。3)會用提公因式法、公式法進行因式分解。
。4)了解因式分解的一般步驟。
。5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的.能力。
3、重點、難點和關(guān)鍵
重點:乘法公式的意義、分式的由來和正確運用;用提公因式法和公式法進行因式分解。
難點:正確運用乘法公式;正確分解因式。
關(guān)鍵:正確理解乘法公式和因式分解的意義。
二、本單元教學的方法和策略:
1.注重知識形成的探索過程,讓學生在探索過程中領(lǐng)悟知識,在領(lǐng)悟過程中建構(gòu)體系,從而更好地實現(xiàn)知識體系的更新和知識的正向遷移.
2.知識內(nèi)容的呈現(xiàn)方式力求與學生已有的知識結(jié)構(gòu)相聯(lián)系,同時兼顧學生的思維水平和心理特征.
3.讓學生掌握基本的數(shù)學事實與數(shù)學活動經(jīng)驗,減輕不必要的記憶負擔.
4.注意從生活中選取素材,給學生提供一些交流、討論的空間,讓學生從中體會數(shù)學的應用價值,逐步養(yǎng)成談數(shù)學、想數(shù)學、做數(shù)學的良好習慣.
三、課時安排:
2.1平方差公式 1課時
2.2完全平方公式 2課時
2.3用提公因式法進行因式分解 1課時
2.4用公式法進行因式分解 2課時
因式分解教案 篇5
學習目標
1、 學會用公式法因式法分解
2、綜合運用提取公式法、公式法分解因式
學習重難點 重點:
完全平方公式分解因式.
難點:綜合運用兩種公式法因式分解
自學過程設(shè)計
完全平方公式:
完全平方公式的逆運用:
做一做:
1.(1)16x2-8x+_______=(4x-1)2;
(2)_______+6x+9=(x+3)2;
(3)16x2+_______+9y2=(4x+3y)2;
(4)(a-b)2-2(a-b)+1=(______-1)2.
2.在代數(shù)式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號)
3.下列因式分解正確的是( )
A.x2+y2=(x+y)2 B.x2-xy+x2=(x-y)2
C.1+4x-4x2=(1-2x)2 D.4-4x+x2=(x-2)2
4.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+1
5.計算:20062-40102006+20052=___________________.
6.若x+y=1,則 x2+xy+ y2的值是_________________.
想一想
你還有哪些地方不是很懂?請寫出來。
____________________________________________________________________________________ 預習展示一:
1.判別下列各式是不是完全平方式.
2、把下列各式因式分解:
(1)-x2+4xy-4y2
(2)3ax2+6axy+3ay2
(3)(2x+y)2-6(2x+y)+9
應用探究:
1、用簡便方法計算
49.92+9.98 +0.12
拓展提高:
(1)( a2+b2)( a2+b2 10)+25=0 求a2+b2
(2)4x2+y2-4xy-12x+6y+9=0
求x、y關(guān)系
(3)分解因式:m4+4
教后反思 考察利用公式法因式分解的題目不會很難,但是需要學生記住公式的.形式,之后利用公式把式子進行變形,從而達到進行因式分解的目的,但是這里有用到實際中去的例子,對學生來說會難一些。
【因式分解教案】相關(guān)文章:
因式分解教案07-23
因式分解教案04-02
因式分解教案(15篇)04-02
初中數(shù)學因式分解教案03-01
因式分解教案集錦(15篇)08-23
關(guān)于因式分解教案匯編八篇04-04
因式分解教案匯編十篇04-08
因式分解教案錦集7篇04-07
因式分解教案錦集10篇12-25