當前位置:育文網(wǎng)>教學文檔>教案> 二次根式教案

二次根式教案

時間:2024-10-21 18:11:01 教案 我要投稿

二次根式教案合集八篇

  作為一名為他人授業(yè)解惑的教育工作者,常常需要準備教案,教案是教學藍圖,可以有效提高教學效率。來參考自己需要的教案吧!下面是小編為大家整理的二次根式教案8篇,歡迎閱讀,希望大家能夠喜歡。

二次根式教案合集八篇

二次根式教案 篇1

  教學設計思想

  新教材打破了舊教材從定義出發(fā),由理論到理論,按部就班的舊格局,創(chuàng)造出從實踐到理論再回到實踐,由淺入深,符合認知結構的新模式。本節(jié)首先通過四個實際問題引出二次根式的概念,給出二次根式的意義。然后讓學生通過二次根式的意義和算術平方根的意義找出二次根式的三個性質。本節(jié)通過學生所熟悉的實際問題建立二次根式的概念,使學生在經(jīng)歷將現(xiàn)實問題符號化的過程中,進一步體會二次根式的重要作用,發(fā)展學生的應用意識。

  教學目標

  知識與技能

  1.知道什么是二次根式,并會用二次根式的.意義解題;

  2.熟記二次根式的性質,并能靈活應用;

  過程與方法

  通過二次根式的概念和性質的學習,培養(yǎng)邏輯思維能力;

  情感態(tài)度價值觀

  1.經(jīng)歷將現(xiàn)實問題符號化的過程,發(fā)展應用的意識;

  2.通過二次根式性質的介紹滲透對稱性、規(guī)律性的數(shù)學美。

  教學重點和難點

  重點:(1)二次根式的意義;(2)二次根式中字母的取值范圍;

  難點:確定二次根式中字母的取值范圍。

  教學方法

  啟發(fā)式、講練結合

  教學媒體

  多媒體

  課時安排

  1課時

二次根式教案 篇2

  課題:二次根式

  教學目標 1、知識與技能

  理解a(a≥0)是一個非負數(shù), (a≥0)

  2、過程與方法

 。1)數(shù)學思考:學會獨立思考、體會數(shù)學的體驗歸納、類比的思想

  方法

  (2) 問題解決:能夠利用性質進行二次根式的化簡計算,能夠互助

  交流合作,分析問題,總結反思

  3、情感、態(tài)度與價值觀

  體驗成功的樂趣,鍛煉克服困難的'意志,培養(yǎng)嚴謹

  求實的科學態(tài)度

  教學重難點 教學重點:二次根式的概念

  教學難點:二次根式中根號下必須為非負數(shù)

  教學過程

  一、課前回顧

 。2分鐘)

  學生與老師共同回顧上節(jié)課所學內容,溫故而知新。 什么是二次根式?

  二次根式中字母的取值范圍:

  ①被開方數(shù)大于等于零;

 、诜帜钢杏凶帜笗r,要保證分母不為零。

 、鄱鄠條件組合時,應用不等式組求解

  一、情境引入(3分鐘)

  由生活中的實例引入投影的概念,引起學生的學習興趣

  已知下列各正方形的面積,求其邊長。

  二、探究1(10分鐘)

  練習1:

  計算下列各式:

  三、探究2(10分鐘)

  可以發(fā)現(xiàn)它們有如下規(guī)律:

  一般的,二次根式有下列性質:

  練習2:

  典型例題 例1:計算:

  例2:計算:

  達標測試(5分鐘)

  課堂測試,檢驗學習結果

  1、判斷題

  2、若 ,則x的取值范圍為 ( A )

 。ˋ) x≤1 (B) x≥1

 。–) 0≤x≤1 (D)一切有理數(shù)

  3、計算

  4、化簡

  5、已知a,b,c為△ABC的三邊長,化簡:

  這一類問題注意把二次根式的運算搭載在三角形三邊之間的關系這個知識點上,特別要應用好。

  應用提高(5分鐘)

  能力提升,學有余力的同學可以仔細研究 如圖,P是直角坐標系中一點。

  (1)用二次根式表示點P到原點O的距離;

 。2)如果 求點P到原點O的距離

  體驗收獲 今天我們學習了哪些知識

  二次根式的兩條性質。

  布置作業(yè) 教材8頁習題第3、4題。

二次根式教案 篇3

  1.教學目標

  (1)經(jīng)歷二次根式的乘法法則和積的算術平方根的性質的形成過程;會進行簡單的二次根式的乘法運算;

  (2)會用公式化簡二次根式.

  2.目標解析

  (1)學生能通過計算發(fā)現(xiàn)規(guī)律并對其進行一般化的推廣,得出乘法法則的內容;

  (2)學生能利用二次根式的乘法法則和積的算術平方根的性質,化簡二次根式.

  教學問題診斷分析

  本節(jié)課的學習中,學生在得出乘法法則和積的算術平方根的性質后,對于何時該選用何公式簡化運算感到困難.運算習慣的養(yǎng)成與符號意識的養(yǎng)成、運算能力的形成緊密相關,由于該內容與以前學過的實數(shù)內容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運算中也成立,在教學中,要多從聯(lián)系性上下力氣.,培養(yǎng)學生良好的運算習慣.

  在教學時,通過實例運算,對于將一個二次根式化為最簡二次根式,一般有兩種情況:(1)如果被開方數(shù)是分數(shù)或分式(包括小數(shù)),可以采用直接利用分式的性質,結合二次根式的性質進行化簡(例見教科書例6解法1),也可以先寫成算術平方根的商的形式,再利用分式的性質處理分母的根號(例見教科書例6解法2);(2)如果被開方數(shù)不含分母,可以先將它分解因數(shù)或分解因式,然后吧開得盡方的因數(shù)或因式開出來,從而將式子化簡.

  本節(jié)課的教學難點為:二次根式的`性質及乘法法則的正確應用和二次根式的化簡.

  教學過程設計

  1.復習引入,探究新知

  我們前面已經(jīng)學習了二次根式的概念和性質,本節(jié)課開始我們要學習二次根式的乘除.本節(jié)課先學習二次根式的乘法.

  問題1 什么叫二次根式?二次根式有哪些性質?

  師生活動 學生回答。

  【設計意圖】乘法運算和二次根式的化簡需要用到二次根式的性質.

  問題2 教材第6頁“探究”欄目,計算結果如何?有何規(guī)律?

  師生活動 學生計算、思考并嘗試歸納,引導學生用自己的語言描述乘法法則的內容.

  【設計意圖】學生在自主探究的過程中發(fā)現(xiàn)規(guī)律,運用類比思想,由特殊到一般地,采用不完全歸納的方法得出二次根式的乘法法則.要求學生用數(shù)學語言和文字分別描述法則,以培養(yǎng)學生的符號意識.

  2.觀察比較,理解法則

  問題3 簡單的根式運算.

  師生活動 學生動手操作,教師檢驗.

  問題4 二次根式的乘除成立的條件是什么?等式反過來有什么價值?

  師生活動 學生回答,給出正確答案后,教師給出積的算術平方根的性質.

  【設計意圖】讓學生運用法則進行簡單的二次根式的乘法運算,以檢驗法則的掌握情況.乘法法則反過來就是積的算術平方根的性質,性質是為運算服務的,積的算術平方根的性質將積的算術平方根分解成幾個因數(shù)或因式的算術平方根的積,利用整式的運算法則、乘法公式等可以簡化二次根式,培養(yǎng)學生的運算能力.

  3.例題示范,學會應用

  例1 化簡:(1)二次根式的乘除; (2)二次根式的乘除.

  師生活動 提問:你是怎么理解例(1)的?

  如果學生回答不完善,再追問:這個問題中,就直接將結果算成二次根式的乘除可以嗎?你認為本題怎樣才達到了化簡的效果?

  師生合作回答上述問題.對于根式運算的最后結果,一般被開方數(shù)中有開得盡方的因數(shù)或因式,應依據(jù)二次根式的性質二次根式的乘除將其移出根號外.

  再提問:你能仿照第(1)題的解答,能自己解決(2)嗎?

  【設計意圖】通過運算,培養(yǎng)學生的運算能力,明確二次根式化簡的方向.積的算術平方根的性質可以進行二次根式的化簡.

  例2 計算:(1)二次根式的乘除; (2)二次根式的乘除; (3)二次根式的乘除

  師生活動 學生計算,教師檢驗.

  (1)在被開方數(shù)相乘的時候,就可以考慮因數(shù)或因式分解,由二次根式的乘除直接可得二次根式的乘除而不必先寫成二次根式的乘除再分解;

  (2)二次根式的乘法運算類似于整式的乘法運算,交換律、結合律都是適用的.對于根號外有系數(shù)的根式在相乘時,可以將系數(shù)先相乘作為積的系數(shù),再對根式進行運算;

  (3)例(3)的運算是選學內容.讓學有余力的學生學到“根號下為字母的二次根式”的運算.本題先利用積的算術平方根的性質,得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號外.

  【設計意圖】引導學生及時總結,強調利用運算律進行運算,利用乘法公式簡化運算.讓學生認識到,二次根式是一類特殊的實數(shù),因此滿足實數(shù)的運算律,關于整式運算的公式和方法也適用.

  教材中雖然指明,如未特別說明,本章中所有的字母都表示正數(shù),但仍應強調,看到根號就要注意被開方數(shù)的符號.可以根據(jù)二次根式的概念對字母的符號進行判斷,在移出根號時正確處理符號問題.

  4.鞏固概念,學以致用

  練習:教科書第7頁練習第1題. 第10頁習題16.2第1題.

  【設計意圖】鞏固性練習,同時檢驗乘法法則的掌握情況.

  5.歸納小結,反思提高

  師生共同回顧本節(jié)課所學內容,并請學生回答以下問題:

  (1)你能說明二次根式的乘法法則是如何得出的嗎?

  (2)你能說明乘法法則逆用的意義嗎?

  (3)化簡二次根式的基本步驟是怎樣?一般對最后結果有何要求?

  6.布置作業(yè):教科書第7頁第2、3題.習題16.2第1,6題.

  五、目標檢測設計

  1.下列各式中,一定能成立的是( )

  A.二次根式的乘除 B.二次根式的乘除

  C.二次根式的乘除 D.二次根式的乘除

  【設計意圖】考查二次根式的概念和性質,這是進行二次根式的乘法運算的基礎.

  2.化簡二次根式的乘除 ______________________________。

  【設計意圖】二次根式是特殊的實數(shù),實數(shù)的相關運算法則也適用于二次根式.

  3.已知二次根式的乘除,化簡二次根式二次根式的乘除的結果是(  )

  A.二次根式的乘除 B.二次根式的乘除 C.二次根式的乘除 D.二次根式的乘除

  【設計意圖】鞏固二次根式的性質,利用積的算術平方根的性質正確化簡二次根式.

二次根式教案 篇4

  一、教學目標

  1。使學生知道什么是最簡二次根式,遇到實際式子能夠判斷是不是最簡二次根式。

  2。使學生掌握化簡一個二次根式成最簡二次根式的方法。

  3。使學生了解把二次根式化簡成最簡二次根式在實際問題中的應用。

  二、教學重點和難點

  1。重點:能夠把所給的二次根式,化成最簡二次根式。

  2。難點:正確運用化一個二次根式成為最簡二次根式的方法。

  三、教學方法

  通過實際運算的例子,引出最簡二次根式的概念,再通過解題實踐,總結歸納化簡二次根式的方法。

  四、教學手段

  利用投影儀。

  五、教學過程

 。ㄒ唬┮胄抡n

  提出問題:如果一個正方形的面積是0。5m2,那么它的邊長是多少?能不能求出它的近似值?

  了。這樣會給解決實際問題帶來方便。

  (二)新課

  由以上例子可以看出,遇到一個二次根式將它化簡,為解決問題創(chuàng)

  這兩個二次根式化簡前后有什么不同,這里要引導學生從兩個方面考慮,一方面是被開方數(shù)的因數(shù)化簡后是否是整數(shù)了,另一方面被開方數(shù)中還有沒有開得盡方的因數(shù)。

  總結滿足什么樣的'條件是最簡二次根式。即:滿足下列兩個條件的二次根式,叫做最簡二次根式:

  1。被開方數(shù)的因數(shù)是整數(shù),因式是整式。

  2。被開方數(shù)中不含能開得盡方的因數(shù)或因式。

  例1 指出下列根式中的最簡二次根式,并說明為什么。

  分析:

  說明:這里可以向學生說明,前面兩小節(jié)化簡二次根式,就是要求化成最簡二次根式。前面二次根式的運算結果也都是最簡二次根式。

  例2 把下列各式化成最簡二次根式:

  說明:引導學生觀察例2題中二次根式的特點,即被開方數(shù)是整式或整數(shù),再啟發(fā)學生總結這類題化簡的方法,先將被開方數(shù)或被開方式分解因數(shù)或分解因式,然后把開得盡方的因數(shù)或因式開出來,從而將式子化簡。

  例3 把下列各式化簡成最簡二次根式:

  說明:

  1。引導學生觀察例題3中二次根式的特點,即被開方數(shù)是分數(shù)或分式,再啟發(fā)學生總結這類題化簡的方法,先利用商的算術平方根的性質把它寫成分式的形式,然后利用分母有理化化簡。

  2。要提問學生

  問題,通過這個小題使學生明確如何使用化簡中的條件。

  通過例2、例3總結把一個二次根式化成最簡二次根式的兩種情況,并引導學生小結應該注意的問題。

  注意:

 、倩啎r,一般需要把被開方數(shù)分解因數(shù)或分解因式。

 、诋斠粋式子的分母中含有二次根式時,一般應該把它化簡成分母中不含二次根式的式子,也就是把它的分母進行有理化。

 。ㄈ┬〗Y

  1。滿足什么條件的根式是最簡二次根式。

  2。把一個二次根式化成最簡二次根式的主要方法。

 。ㄋ模┚毩

  1。指出下列各式中的最簡二次根式:

  2。把下列各式化成最簡二次根式:

  六、作業(yè)

  教材P。187習題11。4;A組1;B組1。

  七、板書設計

二次根式教案 篇5

  一、復習引入

  學生活動:請同學們完成下列各題:

  1.計算

  (1)(2x+y)·zx(2)(2x2y+3xy2)÷xy

  二、探索新知

  如果把上面的x、y、z改寫成二次根式呢?以上的運算規(guī)律是否仍成立呢?仍成立.

  整式運算中的x、y、z是一種字母,它的'意義十分廣泛,可以代表所有一切,當然也可以代表二次根式,所以,整式中的運算規(guī)律也適用于二次根式.

  例1.計算:

  (1)(+)×(2)(4-3)÷2分析:剛才已經(jīng)分析,二次根式仍然滿足整式的運算規(guī)律,所以直接可用整式的運算規(guī)律.

  解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.計算

 。1)(+6)(3-)(2)(+)(-)

  分析:剛才已經(jīng)分析,二次根式的多項式乘以多項式運算在乘法公式運算中仍然成立.

  解:(1)(+6)(3-)

  =3-()2+18-6=13-3(2)(+)(-)=()2-()2

  =10-7=3

  三、鞏固練習

  課本P20練習1、2.

  四、應用拓展

  例3.已知=2-,其中a、b是實數(shù),且a+b≠0,

  化簡+,并求值.

  分析:由于(+)(-)=1,因此對代數(shù)式的化簡,可先將分母有理化,再通過解含有字母系數(shù)的一元一次方程得到x的值,代入化簡得結果即可?

二次根式教案 篇6

  一、內容和內容解析

  1.內容

  二次根式的性質。

  2.內容解析

  本節(jié)教材是在學生學習二次根式概念的基礎上,結合二次根式的概念和算術平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質.

  對于二次根式的性質,教材沒有直接從算術平方根的意義得到,而是考慮學生的年齡特征,先通過 “探究”欄目中給出四個具體問題,讓學生學生根據(jù)算術平方根的意義,就具體數(shù)字進行分析得出結果,再分析這些結果的共同特征,由特殊到一般地歸納出結論.基于以上分析,確定本節(jié)課的教學重點為:理解二次根式的性質.

  二、目標和目標解析

  1.教學目標

 。1)經(jīng)歷探索二次根式的性質的過程,并理解其意義;

  (2)會運用二次根式的性質進行二次根式的化簡;

 。3)了解代數(shù)式的概念.

  2.目標解析

 。1)學生能根據(jù)具體數(shù)字分析和算術平方根的意義,由特殊到一般地歸納出二次根式的性質,會用符號表述這一性質;

  (2)學生能靈活運用二次根式的性質進行二次根式的化簡;

 。3)學生能從已學過的各種式子中,體會其共同特點,得出代數(shù)式的概念.

  三、教學問題診斷分析

  二次根式的性質是二次根式化簡和運算的重要基礎.學生根據(jù)二次根式的概念和算術平方根的意義,由特殊到一般地得出二次根式的性質后,重在能靈活運用二次根式的性質進行二次根式的化簡和解決一些綜合性較強的問題.由于學生初次學習二次根式的性質,對二次根式性質的靈活運用存在一定的困難,突破這一難點需要教師精心設計好每一道習題,讓學生在練習中進一步掌握二次根式的性質,培養(yǎng)其靈活運用的能力.

  本節(jié)課的教學難點為:二次根式性質的靈活運用.

  四、教學過程設計

  1.探究性質1

  問題1 你能解釋下列式子的含義嗎?

  師生活動:教師引導學生說出每一個式子的含義.

  【設計意圖】讓學生初步感知,這些式子都表示一個非負數(shù)的算術平方根的平方.

  問題2 根據(jù)算術平方根的意義填空,并說出得到結論的依據(jù).

  師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結論的依據(jù).

  【設計意圖】學生通過計算或根據(jù)算術平方根的意義得出結論,為歸納二次根式的性質1作鋪墊.

  問題3 從以上的結論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?

  師生活動:引導學生歸納得出二次根式的`性質: ( ≥0).

  【設計意圖】讓學生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質1,培養(yǎng)學生抽象概括的能力.

  例2 計算

  (1) ;(2) .

  師生活動:學生獨立完成,集體訂正.

  【設計意圖】鞏固二次根式的性質1,學會靈活運用.

  2.探究性質2

  問題4 你能解釋下列式子的含義嗎?

  師生活動:教師引導學生說出每一個式子的含義.

  【設計意圖】讓學生初步感知,這些式子都表示一個數(shù)的平方的算術平方根.

  問題5 根據(jù)算術平方根的意義填空,并說出得到結論的依據(jù).

  師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結論的依據(jù).

  【設計意圖】學生通過計算或根據(jù)算術平方根的意義得出結論,為歸納二次根式的性質2作鋪墊.

  問題6 從以上的結論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?

  師生活動:引導學生歸納得出二次根式的性質: ( ≥0)

  【設計意圖】讓學生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質2,培養(yǎng)學生抽象概括的能力.

  例3 計算

 。1) ;(2) .

  師生活動:學生獨立完成,集體訂正.

  【設計意圖】鞏固二次根式的性質2,學會靈活運用.

  3.歸納代數(shù)式的概念

  問題7 回顧我們學過的式子,如, ( ≥0),這些式子有哪些共同特征?

  師生活動:學生概括式子的共同特征,得出代數(shù)式的概念.

  【設計意圖】學生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學生的概括能力.

  4.綜合運用

  (1)算一算:

  【設計意圖】設計有一定綜合性的題目,考查學生的靈活運用的能力,第(2)、(3)、(4)小題要特別注意結果的符號.

  (2)想一想: 中, 的取值范圍是什么?當 ≥0時, 等于多少?當 時, 又等于多少?

  【設計意圖】通過此問題的設計,加深學生對 的理解,開闊學生的視野,訓練學生的思維.

  (3)談一談你對 與 的認識.

  【設計意圖】加深學生對二次根式性質的理解.

  5.總結反思

 。1)你知道了二次根式的哪些性質?

 。2)運用二次根式性質進行化簡需要注意什么?

 。3)請談談發(fā)現(xiàn)二次根式性質的思考過程?

 。4)想一想,到現(xiàn)在為止,你學習了哪幾類字母表示數(shù)得到的式子?說說你對代數(shù)式的認識.

  6.布置作業(yè):教科書習題16.1第2,4題.

  五、目標檢測設計

  1. ; ; .

  【設計意圖】考查對二次根式性質的理解.

  2.下列運算正確的是( )

  A. B. C. D.

  【設計意圖】考查學生運用二次根式的性質進行化簡的能力.

  3.若 ,則 的取值范圍是 .

  【設計意圖】考查學生對一個數(shù)非負數(shù)的算術平方根的理解.

  4.計算: .

  【設計意圖】考查二次根式性質的靈活運用.

二次根式教案 篇7

  教學目標

  1.使學生進一步理解二次根式的意義及基本性質,并能熟練 地化簡含二次根式的式子;

  2.熟練地進行二次根式的加、減、乘、除混合運算.

  教學重點和難點

  重點:含二次根式的式子的混合運算.

  難點:綜合運用二次根式的 性質及運算法則化簡和計算含二次根式的式子.

  教學過程設計

  一、復習

  1.請同學回憶二次根式有哪些基本性質?用式子表示出來,并說明各 式成立的條件.

  指出:二次根式的這些基本性質都是在一定條件 下才成立的,主要應用于化簡二次根式.

  2.二次根式 的乘法及除法的法則是什么?用式子表示出來.

  指出:二次根式的.乘、除法則也是在一定條件下成立的.把兩個二次根式相除,

  計算結果要把分母有理化.

  3.在二次根式的化簡或計算中,還常用到以下兩個二次根式的關系式:

  4.在含有二次根式的式子的化簡及求值等問題中,常運用三個可逆的式子:

  二、例題

  例1 x取什么值時,下列各式在實數(shù)范圍內有意義:

  分析:

  (1)題是兩個二次根式的和,x的取值必須使兩個二次根式都有意義;

  (3)題是兩個二次根式的和, x的取值必須使兩個二次根式都有意義;

  (4)題的分子是二次根式,分母是含x的單項式,因此x的取值必須使二次根式有意義,同時使分母的值不等于零.

  x-2且x0.

  解因為n2-90, 9-n20,且n-30,所以n2=9且n3,所以

  例3

  分析:第一個二次根式的被開方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質把式子化簡,化簡中應注意利用題中的隱含條件3 -a0和1-a>0.

  解 因為1-a>0,3-a0,所以

  a<1,|a-2|=2-a.

  (a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

  這些性質化簡含二次根式的式子時,要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.

  問:上面的代數(shù)式中的兩個二次根式的被開方數(shù)的式子如何化為完全平方式?

  分析:先把第二個式子化簡,再把兩個式子進行通分,然后進行計算.

  注意:

  所以在化簡過程中,

  例6

  分析:如果把兩個式子通分,或把每一個式子的分母有理化再進行計算,這兩種方法的運算量都較大,根據(jù)式子的結構特點,分別把兩個式子的分母看作一個整體,用換元法把式子變形,就可以使運算變?yōu)楹喗荩?/p>

  a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

  三、課堂練習

  1.選擇題:

  A.a(chǎn)2B.a(chǎn)2

  C.a(chǎn)2D.a(chǎn)<2

  A .x+2 B.-x-2

  C.-x+2D.x-2

  A.2x B.2a

  C.-2x D.-2a

  2.填空題:

  4.計算:

  四、小結

  1.本節(jié)課復習的五個基本問題是“二次根式”這一章的主要基礎知識,同學們要深刻理解并牢固掌握.

  2.在一次根式的化簡、計算及求值的過程中,應注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負數(shù),以確定被開方數(shù)中的字母或式子的取值范圍.

  3.運用二次根式的四個基本性質進行二次根式的運算時,一定要注意論述每一個性質中字母的取值范圍的條件.

  4.通過例題的討論,要學會綜合、靈活運用二次根式的意義、基本性質和法則以及有關多項式的因式分解,解答有關含二次根式的式子的化簡、計算及求值等問題.

  五、作業(yè)

  1.x是什么值時,下列各式在實數(shù)范圍內有意義?

  2.把下列各式化成最簡二次根式:

二次根式教案 篇8

  一、內容和內容解析

  1.內容

  二次根式的概念.

  2.內容解析

  本節(jié)課是在學生學習了平方根、算術平方根、立方根的概念,會用根號表示數(shù)的平方根、立方根,知道開方與乘方互為逆運算的基礎上,來學習二次根式的概念. 它不僅是對前面所學知識的綜合應用,也為后面學習二次根式的性質和四則運算打基礎.

  教材先設置了三個實際問題,這些問題的結果都可以表示成二次根式的形式,它們都表示一些正數(shù)的算術平方根,由此引出二次根式的定義. 再通過例1討論了二次根式中被開方數(shù)字母的取值范圍的問題,加深學生對二次根式的定義的理解.

  本節(jié)課的教學重點是:了解二次根式的概念;

  二、目標和目標解析

  1.教學目標

 。1)體會研究二次根式是實際的需要.

  (2)了解二次根式的概念.

  2. 教學目標解析

 。1)學生能用二次根式表示實際問題中的數(shù)量和數(shù)量關系,體會研究二次根式的必要性.

 。2)學生能根據(jù)算術平方根的意義了解二次根式的概念,知道被開方數(shù)必須是非負數(shù)的理由,知道二次根式本身是一個非負數(shù),會求二次根式中被開方數(shù)字母的取值范圍.

  三、教學問題診斷分析

  對于二次根式的定義,應側重讓學生理解 “ 的雙重非負性,”即被開方數(shù) ≥0是非負數(shù), 的算術平方根 ≥0也是非負數(shù).教學時注意引導學生回憶在實數(shù)一章所學習的有關平方根的意義和特征,幫助學生理解這一要求,從而讓學生得出二次根式成立的條件,并運用被開方數(shù)是非負數(shù)這一條件進行二次根式有意義的判斷.

  本節(jié)課的教學難點為:理解二次根式的雙重非負性.

  四、教學過程設計

  1.創(chuàng)設情境,提出問題

  問題1你能用帶有根號的的式子填空嗎?

 。1)面積為3 的正方形的邊長為_______,面積為S 的正方形的邊長為_______.

 。2)一個長方形圍欄,長是寬的2 倍,面積為130?,則它的寬為______.

 。3)一個物體從高處自由落下,落到地面所用的時間 t(單位:s)與開始落下的高度h(單位:)滿足關系 h =5t?,如果用含有h 的式子表示 t ,則t= _____.

  師生活動:學生獨立完成上述問題,用算術平方根表示結果,教師進行適當引導和評價.

  【設計意圖】讓學生在填空過程中初步感知二次根式與實際生活的緊密聯(lián)系,體會研究二次根式的必要性.

  問題2 上面得到的式子 , , 分別表示什么意義?它們有什么共同特征?

  師生活動:教師引導學生說出各式的意義,概括它們的共同特征:都表示一個非負數(shù)(包括字母或式子表示的非負數(shù))的算術平方根.

  【設計意圖】為概括二次根式的概念作鋪墊.

  2.抽象概括,形成概念

  問題3 你能用一個式子表示一個非負數(shù)的算術平方根嗎?

  師生活動:學生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如 (a≥0)的式子叫做二次根式,“ ”稱為二次根號.

  【設計意圖】讓學生體會由特殊到一般的'過程,培養(yǎng)學生的概括能力.

  追問:在二次根式的概念中,為什么要強調“a≥0”?

  師生活動:教師引導學生討論,知道二次根式被開方數(shù)必須是非負數(shù)的理由.

  【設計意圖】進一步加深學生對二次根式被開方數(shù)必須是非負數(shù)的理解.

  3.辨析概念,應用鞏固

  例1 當 時怎樣的實數(shù)時, 在實數(shù)范圍內有意義?

  師生活動:引導學生從概念出發(fā)進行思考,鞏固學生對二次根式的被開方數(shù)為非負數(shù)的理解.

  例2 當 是怎樣的實數(shù)時, 在實數(shù)范圍內有意義? 呢?

  師生活動:先讓學生獨立思考,再追問.

  【設計意圖】在辨析中,加深學生對二次根式被開方數(shù)為非負數(shù)的理解.

  問題4 你能比較 與0的大小嗎?

  師生活動:通過分 和 這兩種情況的討論,比較 與0的大小,引導學生得出 ≥0的結論,強化學生對二次根式本身為非負數(shù)的理解,

  【設計意圖】通過這一活動的設計,提高學生對所學知識的遷移能力和應用意識;培養(yǎng)學生分類討論和歸納概括的能力.

  4.綜合運用,鞏固提高

  練習1 完成教科書第3頁的練習.

  練習2 當x 是什么實數(shù)時,下列各式有意義.

 。1) ;(2) ;(3) ;(4) .

  【設計意圖】 辨析二次根式的概念,確定二次根式有意義的條件.

  【設計意圖】設計有一定綜合性的題目,考查學生的靈活運用的能力,開闊學生的視野,訓練學生的思維.

  5.總結反思

  教師和學生一起回顧本節(jié)課所學主要內容,并請學生回答以下問題.

 。1)本節(jié)課你學到了哪一類新的式子?

 。2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?

 。3)二次根式與算術平方根有什么關系?

  師生活動:教師引導,學生小結.

  【設計意圖】:學生共同總結,互相取長補短,再一次突出本節(jié)課的學習重點,掌握解題方法.

  6.布置作業(yè):

  教科書習題16.1第1,3,5, 7,10題.

  五、目標檢測設計

  1. 下列各式中,一定是二次根式的是( )

  A. B. C. D.

  【設計意圖】考查對二次根式概念的了解,要特別注意被開方數(shù)為非負數(shù).

  2. 當 時,二次根式 無意義.

  【設計意圖】考查二次根式無意義的條件,即被開方數(shù)小于0,要注意審題.

  3.當 時,二次根式 有最小值,其最小值是 .

  【設計意圖】本題主要考查二次根式被開方數(shù)是非負數(shù)的靈活運用.

  4.對于 ,小紅根據(jù)被開方數(shù)是非負數(shù),得 出的取值范圍是 ≥ .小慧認為還應考慮分母不為0的情況.你認為小慧的想法正確嗎?試求出 的取值范圍.

  【設計意圖】考查二次根式的被開方數(shù)為非負數(shù)和一個式子的分母不能為0,解題時需要綜合考慮.

【二次根式教案】相關文章:

二次根式教案05-15

二次根式的教案10-24

二次根式教案02-16

二次根式教案(推薦)12-27

二次根式教案優(yōu)秀10-19

二次根式教案15篇02-27

二次根式說課稿06-21

二次根式教案模板8篇04-05

二次根式教案匯總9篇04-05

【精品】二次根式教案四篇04-08