當前位置:育文網(wǎng)>教學文檔>教案> 分數(shù)的基本性質教案

分數(shù)的基本性質教案

時間:2024-06-14 00:28:20 教案 我要投稿

分數(shù)的基本性質教案集合9篇

  作為一名優(yōu)秀的教育工作者,總歸要編寫教案,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當?shù)慕虒W方法。那么教案應該怎么寫才合適呢?下面是小編精心整理的分數(shù)的基本性質教案9篇,僅供參考,歡迎大家閱讀。

分數(shù)的基本性質教案集合9篇

分數(shù)的基本性質教案 篇1

 。ㄒ唬┘とひ肌⑻岢鲆

  同學們,你們聽過阿凡提的故事嗎?今天老師也帶來了一則阿凡提的故事。讓我們一一看!誰來讀一讀?(指名讀)你知道,阿凡提為什么會笑嗎?他對三兄弟講了哪些話呢?

  有一些同學知道,還有一些同學不知道。不過沒有關系,等我們學習了今天的內容之后,我相信在座的每一位同學都能夠回答。你們有信心嗎?恩,好,那我們就開始上課了!

 。ǘ┳灾魈骄,發(fā)現(xiàn)規(guī)律

  1、出示例1的四幅圖。

  我們先來看一道題目。分別用分數(shù)表示每個圖里的涂色部分。

 。1)誰來說第一個?

  全部答完后問:這里的1/3誰來說說它表示什么含義呢?3/9呢?

  同學們,你們比較比較這幾幅圖的陰影部分,想想看,你發(fā)現(xiàn)了什么呢?也就是說,哪3個分數(shù)是相等的呢?

  (2)師:這里有個1/2,你能說一個和1/2相等的分數(shù)嗎?

  2/4、4/8、8/16......還有吧,是不是還可以說出好多好多啊?

  那,這些分數(shù)是不是相等呢?咱們口說無憑,咱們來做個小實驗證明它門是相等的',好不好?

  先別急,先來看看有哪些實驗要求。

  咱們這個實驗的目的上一什么?驗證什么?

  咱們實驗的方法有哪些呢?

  實驗有什么要求?操作有序什么意思呢?要聽從小組長的安排

  1、實驗目的:驗證猜想

  2、方法:折一折、分一分、畫一畫、算一算......

  3、要求:小組合作,明確分工,操作有序

  我們要來比一比,哪個小組做的實驗既快又好。一會兒,我們把他的作品展示一下。好,開始!

  學生操作,老師巡視指導。

  集體交流結果。

  咱們剛才通過做實驗,發(fā)現(xiàn)這些分數(shù)的大小怎樣?也就是分數(shù)的大小不變。這些分數(shù)的大小相等,可是它們的分子、分母變了吧!怎么回事呢?這里面有什么規(guī)律呢?你發(fā)現(xiàn)了什么?能不能告訴老師。

  把你的發(fā)現(xiàn)先和同桌交流交流。

  生1:我發(fā)現(xiàn)由到,分子被擴大了2倍,分母也被擴大了2倍,所以它們是相等的。

  師:還有誰想說說你的發(fā)現(xiàn)?

  生2:我發(fā)現(xiàn)由到,分子被擴大了3倍,分母也被擴大了3倍,所以它們的大小相等。

  師:換一組數(shù)據(jù)來說說自己的發(fā)現(xiàn)?

  生:由到,分子、分母都被縮小了3倍,它們的大小不變。

  師:剛才同學們都說了自己的發(fā)現(xiàn),想想看,要使分數(shù)的大小不變分數(shù)的分子和分母應該怎樣變化就能使分數(shù)的大小不變了呢?

  師:為什么要0除外?

  師:這就是咱們今天學習的“分數(shù)的基本性質”(板書課題)

  師:誰來說說看,分數(shù)的基本性質是什么呢?

  生:一個分數(shù)的分子和分母同時乘或除以一個相同的數(shù)(0除外),它們的大小不變。

  我們一齊讀一遍。

  師:這個分數(shù)的基本性質跟咱們以前學的什么知識有點相似。砍ㄖ猩滩蛔兊男再|你還記得嗎?

  同學們想想看,這兩個性質之間有什么關系呢?

  根據(jù)分數(shù)與除法的關系,被除數(shù)相當于分數(shù)的分子,除數(shù)相當于分數(shù)的分母,在除法當中有商不變的性質,那在分數(shù)中也有它的基本性質。

  師:好,那現(xiàn)在你知道阿凡提為什么會笑嗎?他又說了哪些話呢?

  師:2/6到3/9分子分母怎樣變化的?分子和分母同時乘了1.5,呢也就是說這里相同的數(shù)不僅可以指整數(shù),還可以指小數(shù)。

 。ㄈ╈柟叹毩,強化記憶

  好,那下面咱們就用今天學的知識來做幾道題,好不好?

  1、把書翻到61頁,練一練第一題,請你涂一涂填一填。我看誰的動作最快。

  集體交流。

  2、下面我們來填空補缺想理由。(出示練一練第二題)

  他們這樣填是根據(jù)什么?

  3、出示練習十一第二題

  獨立完成,集體訂正。

 。ㄋ模┱n堂作業(yè),運用知識

  練習十一第三題

  (五)課堂,認識自己

  今天這節(jié)課,你學到了什么?

分數(shù)的基本性質教案 篇2

  教材簡析:

  分數(shù)的基本性質是以分數(shù)大小相等這一概念為基礎的。因為分數(shù)與整數(shù)不同,兩個分數(shù)的大小相等,并不意味著兩個分數(shù)的分子、分母分別相同。教學時,可引導學生觀察一組相等分數(shù)的分子、分母是按什么規(guī)律變化的,再結合分數(shù)的意義歸納出分數(shù)的基本性質。由于分數(shù)和整數(shù)除法存在著內在聯(lián)系,所以分數(shù)的基本性質也可以利用整數(shù)除法中商不變的性質來說明。

  設計理念:

  分數(shù)的基本性質是約分和通分的基礎,而約分、通分又是分數(shù)四則運算的重要基礎,因此,理解分數(shù)的基本性質顯得尤為重要。因此我把學生的學習定位在自主建構知識的基礎上,建立了猜想試驗分析合情推理探究創(chuàng)造的教學模式。

  在課堂上,我先通過故事讓學生進入情境,然后讓學生去猜想、觀察、試驗、感悟,進而得出結論。當學生得出分數(shù)的分子、分母都乘或除以同一個數(shù),分數(shù)的大小不變之后,再結合商不變的性質深入理解,把知識融會貫通。整個教學過程注重讓學生經歷了探索知識的過程,使學生知道這些知識是如何被發(fā)現(xiàn)的,結論是如何獲得的`,體現(xiàn)了方法比知識更重要這一新的教學價值觀,構建了新的教學模式。

  《數(shù)學課程標準》指出:學生是學習數(shù)學的主人,教師是數(shù)學學習的組織者、引導者與合作者。這就要求我們在教學活動中應該為學生提供大量數(shù)學活動的機會,讓學生去探索、交流、發(fā)現(xiàn),從而真正落實學生的主體地位。

  教學目標:

  1、使學生理解和掌握分數(shù)的基本性質,能應用性質解決一些簡單問題.

  2、培養(yǎng)學生觀察、分析、思考和抽象、概括的能力.

  3、滲透形式與實質的辯證唯物主義觀點,使學生受到思想教育.

  教學重點:

  使學生理解和掌握分數(shù)的基本性質,培養(yǎng)學生的抽象、概括的能力。

  教學難點:

  讓學生自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質,以及應用它解決相關的問題。

  教具準備:

  每生三張正方形紙

  教學方法:

  演示法、觀察法、討論法、交流法。

分數(shù)的基本性質教案 篇3

  教學內容:省編義務教材第十冊第91—93頁例1、例2。

  教學目標:

  1、體驗分數(shù)基本性質的探究過程,建構分數(shù)基本性質的意義內涵。

  2、溝通分數(shù)的基本性質和商不變性質的內在聯(lián)系,實現(xiàn)新知化歸舊知,并與后面約分和通分的學習作好前期孕伏。

  3、通過猜想、驗證、得出結論這充分自主的數(shù)學活動,促進學生學習經驗的不斷積累。

  課前準備:

  課件,學具袋一個(線段圖紙、長方形、繩子)、探究紙一張

  教學過程:

  1.創(chuàng)設情境,作好鋪墊

  出示四分之二后說:老師的信封里有一道算式,這道算式和這個分數(shù)的值相等,你們猜這是一道怎樣的算式?(除法算式。)你能具體猜出是怎樣一道除法算式。(2÷4)

  為什么你會猜是一道除法算式?(分數(shù)與除法有密切的關系)

  除法與分數(shù)有什么樣的關系?

  (黑板上出示:被除數(shù)÷除數(shù)=)

  根據(jù)2÷4這道除法算式,每人都試著說一道與它相等的除法算式。(根據(jù)學生板書:1÷23÷64÷85÷10100÷……)

  為什么你認為100÷與2÷4的商是一樣的?(2和4同時乘以50商不變,這是根據(jù)商不變性質)

  什么是商不變性質?(出示:被除數(shù)和除數(shù)同時乘以或除以相同的數(shù)(0除外),商不變。)

  2、遷移猜想,引疑激思

  分數(shù)與除法有這樣的關系,除法中有商不變性質,那你們猜分數(shù)中有可能存在著類似的性質嗎?(有)你能具體說一說?

  交流得出:分子和分母同時乘以或除以相同的數(shù)(0除外),分數(shù)的大小不變。

  3、自主探究,驗證猜想

  也許你們的猜想是正確的,科學家的發(fā)現(xiàn)往往也是從猜想開始的,但是只有通過驗證得到的結論才是科學的,這節(jié)課我們也學著來做一名小數(shù)學家。

  (1)初步驗證

  ①出示:探究報告單,讓學生讀要求:

  a.同桌合作:兩人各寫一個分數(shù),將它的分子、分母同時乘以或除以一個相同的數(shù),算出新的分數(shù)。

  b.選擇合理的方法驗證所前后兩個分數(shù)是否相等。

  c.填寫好探究報告單。

  選擇探究的

  分 數(shù)

  分子和分母同時乘以或除以

  一個相同的數(shù)

  得到的

  分 數(shù)

  選擇的分數(shù)與得到的分數(shù)是否相等

  相等( ) 不相等( )

  猜想是否成立

  成立( ) 不成立( )

  選擇的分數(shù)與得到的分數(shù)是否相等相等()不相等()

  猜想是否成立成立()不成立()

  *:驗證方法可用折紙、畫線段圖、計算、實物……

 、趯W生合作進行探究。

  ③全班交流:

  a、同桌一起上來,拿好探究報告單及驗證材料等。

  b、兩人合作,一人講解、一人驗證演示。

  c、得到結論:

 。ń涣2-3組后)問全班同學:你們得到怎樣的結論?(一致通過)

  剛才我們通過集體努力用不同的方法、不同的`分數(shù)驗證了我們的猜想是成立的。這就是分數(shù)的基本性質,板書:分數(shù)的基本性質。(齊讀)

  4、議論爭辯,頓悟創(chuàng)新

  讀一讀分數(shù)的基本性質,你認為哪些字詞是比較重要的。這里的“相同的數(shù)”指的是什么數(shù)?為什么要“0除外”?

  5、訓練技能,激勵發(fā)展

  剛才我們通過自己的猜想、驗證得出的這條規(guī)律,學習了分數(shù)的基本性質,到底有什么作用呢?讓我們一起來體會一下。

  (1)練習明目的

  根據(jù)分數(shù)的基本性質,填空。

  1/2=()/8=5/()=()/6=7/()

  采取師生對數(shù)的游戲形式進行,如先由教師出分子,再讓學生對出分母,也可以先由學生出分母,再讓教師對出分子。

  (2)慧眼辯是非

 。3)變式練思維

  把下面每組中的異分母分數(shù)化成同分母分數(shù)。

  A、3/4,4/7B、5/6,4/9C、3/5,5/8

  分數(shù)的分母相同了,有什么作用?揭示學習分數(shù)的基本性質的重要性,鼓勵學生學好、用好。

 。4)競賽促智慧

  ①在1—9九個數(shù)字中任選一些數(shù)字組成大小相等的分數(shù)。

  可以有:1/2=3/6=4/81/3=2/62/3=4/6這三組。

  并讓學生繼續(xù)往下說,從而得出:任何一個分數(shù)與之相等的分數(shù)有無數(shù)個。

  ②出示:1/a=7/b(說明:a、b都不是0。)

  搶答:a=2、a=3、a=6、b=28、b=56時a或b的值。

  連貫口答:a=1、2、3、4、5……時b的值。(滲透正比例)

  討論:a、b之間的關系是怎樣的?為什么會存在這樣的關系?依據(jù)是什么?

  6、回顧,掌握方法

  今天這節(jié)課我們學習的分數(shù)的基本性質,回憶一下我們是怎樣學習的?

  學生可能會回答:

  生1:我們是根據(jù)“商不變的性質”來學習“分數(shù)的基本性質”的。

  生2:我們是通過猜測的方法學的。

  生3:我們還用驗證的方法學習。

  ……

  結果語:是的,這節(jié)課,我們利用除法和分數(shù)的關系以及商不變性質,猜想出分數(shù)的基本性質,并且進行了驗證與運用,其實數(shù)學知識都是相互聯(lián)系的,學習數(shù)學就要學會利用已有知識,去學習新的知識,這就是學習數(shù)學的一把金鑰匙。老師把這把金鑰匙送給每一位同學。

分數(shù)的基本性質教案 篇4

  教學目的:

  理解分數(shù)的基本性質,并了解它與除法中商不變的規(guī)律之間的聯(lián)系。

  2.理解和掌握分數(shù)的基本性質。

  3.較好實現(xiàn)知識教育與思想教育的有效結合。

  教學難點:

  理解和掌握分數(shù)的基本性質,并運用分數(shù)的基本性質解決問題,進一步加深分數(shù)與除法之間的關系。

  教學準備:

  板書有關習題的幻燈片。

  教學過程:

  一、復習

  1.出示

  在括號里填上適當?shù)臄?shù):

  指名說一說結果,并說一說你是根據(jù)什么填的?

  二、課堂練習:

  1.自主練習第4題。

  學生先獨立做,教師巡視,并個別指導,集體訂正。

  教師板書題目中的線段,指名讓學生板演。

  在直線那些分數(shù)用同一個點表示是什么意思?(就是問哪幾個分數(shù)相等。)

  怎樣找出相等的分數(shù)?

  讓學生自己找。集體訂正是要求學生說一說你是根據(jù)什么找出相等的分數(shù)的?

  然后要求學生在書上把這幾個相應的點找出來。指名板演。

  2.自主練習第5題。

  先讓學生獨立做,教師巡視。個別指導。

  指名說一說你的結果,并說一說你是根據(jù)什么填的。重點要求學生說清楚利用分數(shù)的基本性質來進行填空。

  教師根據(jù)學生的回答選擇幾個題目進行板書。

  3.自主練習第6題。

  先讓學生獨立做。教師巡視并個別指導。注意差生中出現(xiàn)的問題。

  集體訂正。指名說一說自己的計算過程和結果。

  教師根據(jù)學生的.回答選擇幾個題目進行板書。

  4.自主練習第7題。

  學生獨立做。教師要求有困難的學生分組討論,教師個別指導。

  集體訂正。指名說一說自己的計算過程。教師注意要求學生說清楚計算的根據(jù)和理由。

  5.自主練習第8題。

  學生先獨立做。

  集體訂正時,教師先要求學生說一說可以用哪些方法來比較這些分數(shù)的大?哪種方法最好?

分數(shù)的基本性質教案 篇5

  教學目的

  1.使學生理解和掌握分數(shù)的基本性質,能應用“性質”解決一些簡單問題.

  2.培養(yǎng)學生觀察、分析、思考和抽象、概括的能力.

  3.滲透“形式與實質”的辯證唯物主義觀點,使學生受到思想教育.

  教學過程

  一、談話.

  我們已經學習了分數(shù)的意義,認識了真分數(shù)、假分數(shù)和帶分數(shù),掌握了假分數(shù)與帶分數(shù)、

  整數(shù)的互化方法.今天我們繼續(xù)學習分數(shù)的有關知識.

  二、導入新課.

  (一)教學例1.

  出示例1:用分數(shù)表示下面各圖中的陰影部分,并比較它們的大小.

  1.分別出示每一個圓,讓學生說出表示陰影部分的分數(shù).

 。1)把這個圓看做單位1,陰影部分占圓的幾分之幾?

 。2)同樣大的圓,陰影部分占圓的幾分之幾?

 。3)同樣大的圓,陰影部分用分數(shù)表示是多少?

  2.觀察比較陰影部分的大。

  (1)從4 幅圖上看,陰影部分的大小怎么樣?(陰影部分的大小相等.)

 。2)陰影部分的大小相等,可以用等號連接起來.(把圖上陰影部分畫上等號)

  3.分析、推導出表示陰影部分的分數(shù)的大小也相等:

 。1)4幅圖中陰影部分的大小相等.那么,表示這4 幅圖的4個分數(shù)的大小怎么樣呢?

 。ㄟ@4個分數(shù)的大小也相等)

 。2)它們的大小相等,也可以用等號連接起來(把4個分數(shù)用等號連起來).

  4.觀察、分析相等的分數(shù)之間有什么關系?

  (1)觀察 轉化成 , 的分子、分母發(fā)生了什么變化?

  ( 的分子、分母都乘上了2或 的分子、分母都擴大了 2倍.)

 。2)觀察

  (二)教學例2.

  出示例2:比較 的大。

  1.出示圖:我們在三條同樣的數(shù)軸上分別表示這三個分數(shù).

  2.觀察數(shù)軸上三個點的位置,比較三個分數(shù)的大小:

  從數(shù)軸上可以看出:

  3.觀察、分析形式不同而大小相等的三個分數(shù)之間有什么聯(lián)系和變化規(guī)律.

 。1)這三個分數(shù)從形式上看不同,但是它們實質上又都相等.

  (教師板書: )

 。2)你們分析一下, 、 各用什么樣的方法就都可以轉化成 了呢?

  三、抽象概括出分數(shù)的基本性質.

  1.觀察前面兩道例題,你們從中發(fā)現(xiàn)了什么變化規(guī)律?

  “分數(shù)的分子分母都乘上或都除以相同的數(shù)(零除外),分數(shù)的大小不變.”(板書)

  2.為什么要“零除外”?

  3.教師小結:這就是今天這節(jié)課我們學習的內容:“分數(shù)的基本性質”

 。ò鍟骸盎拘再|”)

  4.誰再說一遍什么叫分數(shù)的基本性質?

  教師板書字母公式:

  四、應用分數(shù)基本性質解決實際問題.

  1.請同學們回憶,分數(shù)的基本性質和我們以前學過的哪一個知識相類似?

 。ê统ㄖ猩滩蛔兊男再|相類似.)

 。1)商不變的性質是什么?

 。ǔㄖ,被除數(shù)和除數(shù)都乘上或都除以相同的數(shù)(零除外),商的大小不變.)

 。2)應用商不變的性質可以進行除法簡便運算,可以解決小數(shù)除法的運算.

  2.分數(shù)基本性質的應用:

  我們學習分數(shù)的基本性質目的是加深對分數(shù)的.認識,更主要的是應用這一知識去解

  決一些有關分數(shù)的問題.

  3.教學例3.

  例3 把 和 化成分母是12而大小不變的分數(shù).

  板書:

  教師提問:

 。1) ?為什么?依據(jù)什么道理?

 。 ,因為分母2乘上6等于12,要使分數(shù)的大小不變,分子1也要乘上6.所以, )

  (2)這個“6”是怎么想出來的?

 。ㄟ@樣想:2×?=12,2ד6”=12,也可以看12是2的幾倍:12÷2=6,那么分子1也擴大6倍)

  (3) ?為什么?依據(jù)的什么道理?

 。 ,因為分母24除以2等于12,要使分數(shù)的大小不變,分子10也得除以2,所以, )

 。4)這個“2”是怎么想出來的?

 。ㄟ@樣想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也應是新分子的2倍,所以新的分子應是10÷2=5)

  五、課堂練習.

  1.把下面各分數(shù)化成分母是60,而大小不變的分數(shù).

  2.把下面的分數(shù)化成分子是1,而大小不變的分數(shù).

  3.在( )里填上適當?shù)臄?shù).

  4. 的分子增加2,要使分數(shù)的大小不變,分母應該增加幾?你是怎樣想的?

  5.請同學們想出與 相等的分數(shù).

  規(guī)律:這個分數(shù)的值是 ,然后只要按自然數(shù)的順序說出分子是1、2、3、4、……分母是分子的4倍為:4、8、12、16……無數(shù)個.

  六、課堂總結.

  今天這節(jié)課我們學習了什么知識?懂得了一個什么道理?分數(shù)的基本性質是什么?這是學習分數(shù)四則運算的基礎,一定要掌握好.

  七、課后作業(yè).

  1.指出下面每組中的兩個分數(shù)是相等的還是不相等的.

  2.在下面的括號里填上適當?shù)臄?shù).

分數(shù)的基本性質教案 篇6

  內容:P15、16例1、2 ,練習四第1-3題。

  目標:

  1.知識與技能:經歷探索分數(shù)基本性質的過程、理解分數(shù)的基本性質。

  2.過程與方法:能運用分數(shù)的基本性質,把一個分數(shù)化成指定分母或分子而大小不變的分數(shù)。

  3.情感、態(tài)度與價值觀:經歷觀察、操作和討論等學習活動,體驗數(shù)學學習的樂趣。

  重點:正確理解與分析運用分數(shù)的基本性質。

  過程:

  一、創(chuàng)設情境,導入新課。

  “大圣”分桃:

  話說大圣從王母娘娘處偷來的蟠桃分給眾猴。猴兒們好生歡喜。幾日之后,所剩不多了,只見大圣那兒留著一個特大的蟠 桃準備獨自享用。不料,它最寵愛的一只小猴還饞著要分享。大圣說:好吧,咱倆平分各一半。小猴小嘴一厥,不好不好,太少了!大圣把桃切大小一樣的四塊:“給,2塊!”“不好不好還是太小了”,小猴還是不滿意!罢骐y纏,還嫌少?”于是大圣把桃切成了大小一樣的8塊,扔給小猴4塊:“再嫌少,本大王就不給了”小猴一看,4塊,比1塊多了3塊!好極了!嘻嘻,謝大王!小猴歡天喜地地走了。同學們你們說,小猴真的比第一次多拿了嗎?

  二、師生共研、發(fā)現(xiàn)規(guī)律。

  師生共同揭秘“分桃”內幕。

  人分桃的全過程,我們可將“齊天大圣”的分桃秘招公著如下:

  1÷2=1/2=2/4=4/8

  從上面這三個分數(shù)的相等關系,你發(fā)現(xiàn)了什么?

  從左往右看:

  1/2 = 1×2 / 2×2 = 2/4

  從右往左看:

  2/4 = 2÷2 / 4÷2 = 1/2

  1/2的分子、分母同乘2,分數(shù)大小不變;2/4的分子、分母同除以2,分數(shù)大小不變。

  觀察分子、分母的`變化,同時歸納小結。

  學生試,驗證自己提出的觀點是否正確。

  小結:

  分數(shù)的分子和分母同時乘上或者除以相同的數(shù)(零除外)分數(shù)的大小不變。

  三、數(shù)學小報,再次驗證。

  1.指導閱讀,并參照課本進行折紙(按小組活動)注意4張報紙要大小相同。

  2.將折得的小報中數(shù)學趣題版用陰影顯示出來。

  3.將四張的折疊結果重疊,得出數(shù)學趣題版面大小。

  4.針對式子進行口頭表述。

  四、理解性質、簡單運用。

  例2的教學

 。1)出示例2:把3/4、15/24化成分母都是8而大小不變的分數(shù)。

  請同學們理清題意,然后進行轉化。

 。2)反饋。

 。3)質疑

  讓學生通過討論,深化對分數(shù)大小不變的要求的理解。

 。4)議一議

  由于分數(shù)與除法的密切關系,所以分數(shù)的基本性質與除法的商不變性質是一致的。在實際應用中可以通用。

  五、練習鞏固、拓展提高。

  1.課堂活動

  2.提取第一題的結果,進行深入思考:

  當我們應用分數(shù)的基本性質,把一個分數(shù)的分子和分母都乘或都除以一個非零的楨數(shù)時,大小是不是變了,分數(shù)單位呢?

  結論:大小不變,分數(shù)單位要變。

  六、全課總結:

  這節(jié)課,我人們又發(fā)現(xiàn)了分數(shù)的什么奧秘?用自己的話說給同桌聽聽,還有什么要和老師及同學們說的?有問題嗎?

  七、作業(yè):

  練習四第1-3題。

分數(shù)的基本性質教案 篇7

  這節(jié)課,戴老師教師教態(tài)自然、語言清晰、數(shù)學語言表述準確。著重培養(yǎng)了學生通過動手操作的活動來讓學生主動探究分數(shù)的基本性質,掌握分數(shù)的基本性質在生活中的實際應用,同時培養(yǎng)了學生積極參與,團結合作,主動探索,引導觀察鈫捬罷夜媛桑發(fā)現(xiàn)規(guī)律,我覺得這是一堂充滿生命活力的課堂,能促進學生全面發(fā)展的課堂,體現(xiàn)新課標理念的課堂,從中我得到了一些鮮活的經驗和有益的啟示。具體概括以下幾點?

  一、教學思路清晰,目標明確,重難點突出。

  教師根據(jù)教學內容,因材施教地制定了教學思路。這節(jié)課以鈥湸瓷棖榫車既胄驢沃傅嘉探索,整個教學思路清晰。這節(jié)課戴老師突出培養(yǎng)學生動手操作,主動探究的訓練,通過用三張同樣大的長形紙折一張的'、涂色等活動來探索分數(shù)分子、分母的變化規(guī)律,從而讓學生發(fā)現(xiàn)規(guī)律,突出重難點的內容,整個教學做到詳略得當,重難點把握準確。這樣設計符合學生年齡特點和認知規(guī)律,體現(xiàn)了以學生為主體的學習過程,培養(yǎng)了學生的學習能力?

  二、創(chuàng)設情境,重視操作活動,發(fā)揮主體作用。

  老師能創(chuàng)造機會,讓學生各種感官參與學習,把學生推到主體地位。讓學生獲得豐富感性認識,使抽象知識具體化、形象化。引導學生比較觀察三幅圖的異同之處,分數(shù)的分子分母的變化過程,從而證實變化的規(guī)律,整個操作過程層次分明,通過折涂,學生動手、動腦、動口,人人參與學習過程,不是操作而操作,而是把操作,理解概念,讓學生觀察三個圖形來說明概念,降低了難度。通過操作,讓學生既學得高興又充分理解知識。形象直觀地推導了分數(shù)的基本性質的概念,這樣概念形成過程十分清晰,充分培養(yǎng)了學生自主探索的能力,把被動地接受知識變?yōu)橹鲃拥孬@取知識,達到教學目的。

  三、練習設計具有層次性,開放性。

  由淺入深由易到難的設計,既使學生牢固的掌握了所學的知識,鞏固了本節(jié)課的基礎知識,又訓練了學生的思維。激發(fā)了學生的學習興趣。

分數(shù)的基本性質教案 篇8

  教學目標 :

  1、理解分數(shù)的基本性質,并了解它與除法中商不變的規(guī)律之間的聯(lián)系。

  2、理解和掌握分數(shù)的基本性質。

  3、培養(yǎng)學生觀察、理解、獻魈驕考扒ㄒ頗芰Α?/SPAN>

  4、較好實現(xiàn)知識教育與思想教育的有效結合。

  教學重點 :理解和掌握分數(shù)的基本性質。

  教學難點 :能熟練、靈活地運用分數(shù)的基本性質。

  教具準備 :“分數(shù)基本性質”課件,正方形紙片,彩色粉筆。

  教學過程:

  一、巧設伏筆、導入新課。

  1、出示課件:120÷30的商是多少?

  被除數(shù)和除都擴大3倍,商是多少?

  被除數(shù)和除數(shù)都縮小10倍呢?(出示后學生回答,課件顯示答案)

  2、在下面□里填上合適的數(shù)。

  1÷2=(1×5)÷(2×□)

  =(1÷□)÷(2÷4)

 、傧胍幌耄闶歉鶕(jù)什么填上面的數(shù)的?(生口答)

  (課件:商不變的性質)

 、谏滩蛔兊男再|是什么?(生口答)

  ③除法與分數(shù)之間有什么關系?

  生答,師板書:被除數(shù)÷除數(shù)=被除數(shù)/除數(shù)

  二、討論探究,學習新知。

  1、課件出示:1÷2= (怎么寫)

 、1/2與( )相等?你能想出哪些數(shù)?有辦法怎么讓它們相等嗎?

  讓生合作探討。

  ②生出示答案:1/2=2/4=4/8……

  有選擇填入上數(shù)。

  2、引導學生證明它們相等。

 、俪稣n件:出示1個長方體,平均分成2份,得1/2,平均分成4份,得2/4……。

 。ㄕn件演示)

  上述演示讓學生感知后,問你發(fā)現(xiàn)了什么?(生討論)

 、谠倌嫦蛩伎,觀察板書和課件。

  問你又發(fā)現(xiàn)了什么?(生討論)

  得到:(板書)分數(shù)的分子和分母同時乘上或者除以相同的數(shù),分數(shù)的大小不變。

  3、驗證、補充、強調

  ①出示2/5=2×2/5=4/5,對嗎?(驗證分數(shù)的基本性質),為什么?強調“同時”(在黑板板書上用彩筆勾劃強調)。

 、诔鍪3/4=3×3/4×4=9/16,對嗎?為什么?強調“相同的數(shù)”。

 、塾疫吜惺叫袉?為什么?3/4=3×0/4×0=?補充:(0除外)板書,并出示課件補充。

 、軞w納出上述板書為“分數(shù)的基本性質”(課題)。

  4、信息反饋、糾正、鞏固。

 、倥袛啵ǔ鍪菊n件)

  A、分數(shù)的分子,分母都乘上或除以相同的數(shù),分數(shù)的大小不變。

  B、把15/20的分子縮小5倍,分母也縮小5倍,分數(shù)的'大小不變。

  C、3/4的分子乘上3,分母除以3,分數(shù)的大小不變。

  D、10/24=10÷2/24÷2=10×3/24×3 ( )

  完成后,強調重點,加以鞏固。

  ②完成課本108頁例2(學生嘗試練習)

  強調運用了什么性質?課件:“分數(shù)的基本性質”醒目強調。

  三、實踐練習,信息綜合

  1、練一練

 、3/5=3×( )/5×( )=9/( )

 、7/8=( )/48

 、4÷18=( )/( )=4×5/18×( )=2/( )

  2、練習二十二1—3題。

  四、課堂總結、整體感知。

 。ㄔ谛畔⒕C合后,重點選擇性小結,形成整體),這節(jié)課我們學習了什么內容?可以應用在什么地方?這與我們學習過的什么性質有聯(lián)系?

  五、發(fā)散鞏固、自主選擇。

  想一想:(選擇一道你喜歡的題做)

  課件:①與1/2相等的分數(shù)有多少個?想象一下,把手中正方形的紙無限地平分下去,可得到多少個與1/2相等的分數(shù)。

 、9/24和20/32哪能一個數(shù)大一些,你能講出判斷的依據(jù)嗎

分數(shù)的基本性質教案 篇9

  教學目標:

  1、理解分數(shù)的基本性質。

  2、初步掌握分數(shù)的基本性質。

  3、培養(yǎng)學生觀察、比較、綜合、概括的能力和初步的邏輯推理能力。

  教學重點:理解與掌握分數(shù)的基本性質。 教材分析:分數(shù)的基本性質是在學習了商不變性質及分數(shù)與除法的關系的基礎上進行教學的。它是今后學習約分和通分的依據(jù),是分數(shù)四則運算的重要基礎知識,是學生準確進行分數(shù)加減法計算的依據(jù)。

  設計意圖:通過復習商不變的性質和分數(shù)與出發(fā)的關系,為學生探索新知提供了材料,作好了鋪墊,也為后面溝通分數(shù)基本性質與商不變性質打下了基礎。

  在新知的引入,我設計了讓學生動手操作的方法(折紙、涂色),調動學生的多種感觀充分感知數(shù)學事實,來引導學生觀察、思考,激發(fā)學生的求知欲,調動學生學習的積極性。

  通過先進的電教手段,如:投影儀,電腦等多媒體輔助教學。用形象的電腦圖象,以活潑的形式將抽象的數(shù)學概念轉變?yōu)閷W生易于理解概念,激發(fā)學生的學習興趣,結合一系列的`具有針對性的提問,引導學生觀察思考,共同討論新知,自己歸納出分數(shù)變化的規(guī)律,即分于分母都乘以或除以相同的數(shù),分數(shù)和大小不變。 通過電腦出示的畫象的逐步引入,使學生加深對分數(shù)基本性質的理解,逐步建立清晰的概念。這樣讓學生參與概念形成的整個過程,有利于學生學習的主動性,發(fā)展學生的邏輯思維。

  在練習的設計上,力求緊扣重點,做到新穎、多樣、層次分明,難度由淺入深。

  第1、2題是基本練習,主要是幫助學生理解概念,并全面了解學生掌握新知識的情況。第3題是在第1、2題的基礎上,進一步讓學生進行鞏固練習,加深對所學知識的理解。第4題通過游戲的形式,加深學生對分數(shù)基本性質的認識,激發(fā)學生學習的興趣,活躍課堂氣氛。第5題,判斷練習,意在使學生加深對新知識的鞏固,糾正容易出錯的地方。第6題是思考題,是為了滿足學有余力的學生的需要,意在發(fā)展學生的智能。在聯(lián)系的過程中,也采用了電腦與投影及錄音機的有機結合有效地提高了課堂效率。

  教學過程: 復習舊知,導入新課 被除數(shù) 除數(shù)= 根據(jù)120 30=3 填數(shù) (120 3) (40 3)=( ) (120 ___) (40 10)=4 (復習商不變性質) 驗證并結實課題 學生用準備好的兩張紙,進行動手操作。(感知 = ) 教師再演示,引導學生發(fā)現(xiàn) 、 、 、三個分數(shù)的大小相等。觀察什么在變,什么不變。把單位1平均分的分數(shù)和取的分數(shù),也就是分數(shù)的分子和分母發(fā)生了變化,而分數(shù)的大小不便,為什么分數(shù)的分子、分母在變,而分數(shù)的大小不變?它們的變化規(guī)律是什么?(引導學生帶著問題去思考) 新授,探索新知 啟發(fā)引導,揭示規(guī)律 (1) = = = =

  從左往右觀察,探索分數(shù)的分子、分母的變化規(guī)律,引導學生去思考。討論得出:分數(shù)的分子墳墓都乘以相同的數(shù),分數(shù)的大小不變。 ,分數(shù)的分子分母有什么變化? 呢? 它們的大小又怎樣呢?想一想,小姐出規(guī)律:分子、分母都除以相同的數(shù),分數(shù)的大小不變。 歸納性質 誰能把上面的分數(shù)的分子分母都乘以或除以相同的數(shù)。兩句話合成一句話來說。分數(shù)的分子分母都乘以或除以相同的數(shù),分數(shù)的大小不變。 這里指的相同的數(shù)是指什么數(shù)? 指出:分母是0的分數(shù)是沒有意義的。假如分子、分母都乘以或都除以0,也是沒有意義的。所以0除外。相同的數(shù)可以是自然數(shù),也可以是小數(shù),也可以是分數(shù)。

  請全班同學將結語說完整,全班讀。 小結:就是我們今天學習的內容:分數(shù)的基本性質。看書質疑。 勾出關鍵詞語,幫助理解掌握。 (在新課的教學過程中,利用計算機,將各種圖形(也就是單位1)用主動的分割形式在大屏幕上清楚地進行演示,提高學生學習的積極性,更好地理解本課的學習內容,有效地提高教學效率,使教學目標得以順利地實施。) 鞏固練習 在括號里填上適當?shù)臄?shù)使等式成立 幾組相等分數(shù)的天空練習

 。ㄓ糜嬎銠C將題目演示在大屏幕上,全般一齊練習,再請個別學生說出答案,看答案是否和計算機演示的答案相同,全班同學來做小老師)

  3、請找我的好朋友練習。(以游戲的形式來進行)

  要求:(1)將幾張寫有分數(shù)的卡片發(fā)給幾位同學,請 他們看清楚上面的分數(shù)。

 。 2 )練習開始,請有卡片的同學注意觀察,和老師受傷卡片上分數(shù)大小相等的同學走出來,看誰最快最好。 (先將卡片上的分數(shù)用大屏幕顯示出來,便于全班同學練習。)

  4、判斷對錯 (1) = = ( ) (2) = = ( ) (3) = = ( ) (4) = = ( )

 。ㄟ@道題用計算機一題一題來演示,讓全班學生能用所學的知識來進行判斷,并能說出錯在哪里,可以請個別同學來回答,如果答對了計算機回發(fā)出以示獎勵的音樂;錯了會告訴同學錯了,再試一次。這道題的形式,充分運用了計算機的多功能作用,較生動活潑,引起學生的興趣,提高教學效果。)

  5、思考練習題 = 課堂總結 總結本課內容,復述分數(shù)的基本性質。

【分數(shù)的基本性質教案】相關文章:

分數(shù)的基本性質教案04-12

分數(shù)的基本性質的教案02-26

分數(shù)的基本性質教案03-16

分數(shù)的基本性質教案15篇03-21

分數(shù)的基本性質說課稿03-19

分數(shù)的基本性質(說課稿)07-04

分數(shù)的基本性質說課稿11-11

《分數(shù)的基本性質》說課稿07-02

《分數(shù)的基本性質》的說課稿06-24

分數(shù)的基本性質的說課稿07-23