- 相關(guān)推薦
《多邊形內(nèi)角和》說課稿
作為一名優(yōu)秀的教育工作者,就難以避免地要準(zhǔn)備說課稿,借助說課稿可以有效提高教學(xué)效率。那么問題來了,說課稿應(yīng)該怎么寫?下面是小編為大家整理的《多邊形內(nèi)角和》說課稿,歡迎大家分享。
一、說教材
《多邊形內(nèi)角和》是北師大版八年級下冊第六章第四節(jié)的內(nèi)容,多邊形內(nèi)角和公式反映了多邊形的要素之一—“角”之間的數(shù)量關(guān)系,它是多邊形的基本性質(zhì)。多邊形內(nèi)角和公式是三角形內(nèi)角和定理的應(yīng)用、推廣、深化,它源于三角形內(nèi)角和定理又包含三角形內(nèi)角和定理。多邊形內(nèi)角和公式為多邊形外角和公式、四邊形及正多邊形的有關(guān)角的學(xué)習(xí)提供知識基礎(chǔ)。
二、說學(xué)情
接下來,我來談?wù)勎野鄬W(xué)生情況。他們對于知識具有較好的理解能力和應(yīng)用能力,喜歡合作探討式學(xué)習(xí),對數(shù)學(xué)學(xué)習(xí)有較濃厚的興趣。在以往的學(xué)習(xí)中,學(xué)生的動手能力已經(jīng)得到了一定的訓(xùn)練,本節(jié)課將進(jìn)一步培養(yǎng)學(xué)生這些方面的能力。
三、教學(xué)目標(biāo)
教學(xué)目標(biāo)是教學(xué)活動實(shí)施的方向、和預(yù)期達(dá)到的結(jié)果、是一切教學(xué)活動的出發(fā)點(diǎn)和歸宿,我精心設(shè)計了如下的教學(xué)目標(biāo):
【知識與技能】
掌握多邊形內(nèi)角和公式,并能夠運(yùn)用公式正確的求出多邊形的內(nèi)角和。
【過程與方法】
通過對“多邊形內(nèi)角和公式”的探究,提析問題、解決問題的能力,同時充分領(lǐng)會數(shù)學(xué)轉(zhuǎn)化思想。
【情感態(tài)度與價值觀】
通過公式的猜想、歸納、推斷一系列過程,體驗(yàn)數(shù)學(xué)活動充滿著探索性和創(chuàng)造性,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和勇于創(chuàng)新的精神。
四、教學(xué)重難點(diǎn)
本著新課程標(biāo)準(zhǔn),吃透教材,了解學(xué)生特點(diǎn)的基礎(chǔ)上我確定了以下重難點(diǎn):
【重點(diǎn)】
探究多邊形內(nèi)角和的公式。
【難點(diǎn)】
多邊形內(nèi)角和公式的推導(dǎo)過程。
五、教學(xué)方法
根據(jù)本節(jié)課的教學(xué)目標(biāo)、教材內(nèi)容以及學(xué)生的認(rèn)知特點(diǎn),我采用啟發(fā)式、探索式教學(xué)方法,意在幫助學(xué)生通過觀察,自己動手,從實(shí)踐中獲得知識。整個探究學(xué)習(xí)的過程充滿了師生之間、學(xué)生之間的交流和互動,體現(xiàn)了教師是教學(xué)活動的組織者、引導(dǎo)者,而學(xué)生才是學(xué)習(xí)的主體。
六、教學(xué)過程
教學(xué)過程是師生積極參與、交往互動、共同發(fā)展的過程,具體教學(xué)過程如下:
。ㄒ唬⿲(dǎo)入新課
在這一環(huán)節(jié),我會在通過PPT呈現(xiàn)我周末逛廣場的時候發(fā)現(xiàn)的廣場中心是一個五邊形,這個五邊形的內(nèi)角和到底是多少度來引出今天的課題。再通過出示三角形、四邊形、五邊形以及混合圖形,以及通過問題“三角形的內(nèi)角和是多少度”讓學(xué)生回憶三角形的內(nèi)角和為180°。緊接著拋出疑問“四邊形的內(nèi)角和是多少度?五邊形、六邊形……n邊形呢?多邊形的內(nèi)角和與三角形的內(nèi)角和會不會有什么關(guān)系呢?”以此引發(fā)學(xué)生的思考,由此引出課題:多邊形的內(nèi)角和
(設(shè)計意圖:在這一環(huán)節(jié),通過PPT呈現(xiàn)圖形以及引導(dǎo)學(xué)生回顧三角形的內(nèi)角和為180°,幫助學(xué)生建立起多邊形內(nèi)角和與三角形內(nèi)角和的聯(lián)系性。)
。ǘ┨骄啃轮
1、探索四邊形、五邊形、六邊形的內(nèi)角和
在這一環(huán)節(jié),我會請學(xué)生在練習(xí)本上先畫出一個長方形或正方形,再隨意畫出一個四邊形。并思考這樣一個問題:正方形、長方形的內(nèi)角和都等于360°,那么,任意一個四邊形的內(nèi)角和是否等于360°呢?你能證明你的結(jié)論嗎?讓學(xué)生先自己思考,再以同桌之間為一個小組討論任意一個四邊形內(nèi)角和的求解過程。在這期間,我也會適時引導(dǎo)學(xué)生分析問題解決的思路——如何利用三角形的內(nèi)角和求出四邊形的內(nèi)角和。進(jìn)而發(fā)現(xiàn):只需要連接一條對角線,即將一個四邊形分割為兩個三角形。將四邊形的內(nèi)角和問題轉(zhuǎn)化為兩個三角形所有內(nèi)角和的問題。之后我會讓學(xué)生類比任意四邊形內(nèi)角和的探究過程去探索五邊形、六邊形的內(nèi)角和。學(xué)生先獨(dú)立思考,再以前后兩桌4人為一個小組進(jìn)行討論,然后請一兩個小組的代表匯報解題思路和結(jié)果。學(xué)生通過類比四邊形內(nèi)角和的研究過程,將會得出:從五邊形的一個頂點(diǎn)出發(fā)可以作兩條對角線,從六邊形的一個頂點(diǎn)出發(fā)可以作三條對角線。分別得到三個三角形和四個三角形,所以五邊形和六邊形的內(nèi)角和分別是這時我也會從頂點(diǎn)和邊兩個角度說明為什么五邊形、六邊形會少了兩個三角形。因?yàn)樗№旤c(diǎn)與相鄰的兩個頂點(diǎn)無法連成對角線、所取頂點(diǎn)與它所在的兩條邊不能構(gòu)成三角形。
。ㄔO(shè)計意圖:本環(huán)節(jié)引導(dǎo)學(xué)生動手操作、動腦思考、小組討論,從四邊形到五邊形再到六邊形,以知識遷移的方式進(jìn)一步體會將多邊形分割成幾個三角形的化歸過程。也進(jìn)一步明確了邊數(shù)、對角線條數(shù)、三角形數(shù)對多邊形內(nèi)角和的影響,為從具體的多邊形抽象到一般的n邊形的內(nèi)角和的研究奠定基礎(chǔ)。)
2、探索并證明n邊形的內(nèi)角和公式
在這一環(huán)節(jié),我會要求學(xué)生從四邊形、五邊形、六邊形的內(nèi)角和的研究過程中觀察思考、總結(jié)歸納出多邊形的內(nèi)角和與邊數(shù)的關(guān)系,并證明所發(fā)現(xiàn)的結(jié)論。在學(xué)生獨(dú)立思考后,大部分同學(xué)將能回答出n邊形的內(nèi)角和等于(n—2)X180°,隨后我會與學(xué)生一同分析證明思路:從n邊形的一個頂點(diǎn)出發(fā),可以作(n—3)條對角線,它們將n邊形分成(n—2)個三角形,這(n—2)個三角形的內(nèi)角和就是n邊形的內(nèi)角和,所以n邊形的內(nèi)角和等于(n—2)X180°。緊接著我會學(xué)生填一個表格,表格里要求學(xué)生填出四邊形、五邊形、六邊形到n邊形它們所對應(yīng)的從某頂點(diǎn)出發(fā)的對角線數(shù)、三角形數(shù)和內(nèi)角和。以此幫助學(xué)生得出規(guī)律:多邊形的邊數(shù)增加1,內(nèi)角和就增加180°。
(設(shè)計意圖:這一環(huán)節(jié)讓學(xué)生體會從具體到抽象的研究問題的方法,感悟回歸思想的作用。而表格的填寫,能幫助學(xué)生回顧n邊形內(nèi)角和的探索思路。)
。ㄈ┥罨轮
在以這一環(huán)節(jié),我會用多媒體課件展示一道例題:如果一個四邊形的對角互補(bǔ),那么另一組對角有什么關(guān)系?
讓學(xué)生畫出圖形,并根據(jù)圖形將文字語言翻譯成符號語言,明確題中已知∠A+∠C=180°,所求的是∠B+∠D的度數(shù),讓學(xué)生獨(dú)立完成解題過程后,我會引導(dǎo)學(xué)生得出結(jié)論:如果四邊形的一組對角互補(bǔ),那么另一組對角也互補(bǔ)。
。ㄋ模╈柟烫岣
在這一環(huán)節(jié),我會口頭說出兩道題:
1、求八邊形的內(nèi)角和是多少度?
2、已知一個多邊形的所有內(nèi)角都是120°,則這個多邊形是幾邊形?讓學(xué)生獨(dú)立完成并回答。
。ㄔO(shè)計意圖:口頭描述的題目的設(shè)計,是為了讓學(xué)生從正反兩個方面運(yùn)用多邊形內(nèi)角和的公式,解決與多邊形內(nèi)角和有關(guān)的簡單計算問題。)
。ㄎ澹┬〗Y(jié)作業(yè)
在小結(jié)環(huán)節(jié),我會讓學(xué)生回答以下三個問題:
。1)本節(jié)課學(xué)習(xí)了哪些主要內(nèi)容?
(2)我們是怎樣得到多邊形內(nèi)角和公式的?
。3)在探究多邊形內(nèi)角和公式的過程中,連接對角線起到什么作用?
。ㄔO(shè)計意圖:通過小結(jié),引導(dǎo)學(xué)生從知識內(nèi)容和學(xué)習(xí)過程兩個方面總結(jié)自己的收獲,通過建立知識之間的聯(lián)系,凸顯將復(fù)雜圖形轉(zhuǎn)化為簡單圖形的基本單元的化歸思想,強(qiáng)調(diào)從特殊到一般地研究問題的方法。)
而作業(yè)環(huán)節(jié),我會要求學(xué)生在復(fù)習(xí)多邊形內(nèi)角和知識的基礎(chǔ)上,做好多邊形外角和知識的預(yù)習(xí)工作。
。ㄔO(shè)計意圖:學(xué)生通過課前的預(yù)習(xí),能對新知識有一個初步的理解,對新知識學(xué)習(xí)的順利進(jìn)行有著促進(jìn)的作用。)
七、板書設(shè)計
為了體現(xiàn)教材中的知識點(diǎn),以便于學(xué)生能夠理解掌握,我采用圖表式的板書,這就是我的板書設(shè)計。