關于勾股定理說課稿范文錦集7篇
作為一名為他人授業(yè)解惑的教育工作者,往往需要進行說課稿編寫工作,借助說課稿可以更好地提高教師理論素養(yǎng)和駕馭教材的能力。優(yōu)秀的說課稿都具備一些什么特點呢?以下是小編整理的勾股定理說課稿7篇,僅供參考,希望能夠幫助到大家。
勾股定理說課稿 篇1
一、教材分析
(一)教材所處的地位
這節(jié)課是九年制義務教育課程標準實驗教科書八年級第十八章第一節(jié)勾股定理第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。
(二)根據(jù)課程標準,本課的教學目標是:
1、知識技能:了解勾股定理的文化背景,體驗勾股定理的探索過程。
2、數(shù)學思考:在勾股定理的探索過程中,發(fā)展合情推理能力,體會數(shù)形結合的思想。
3、解決問題:①通過拼圖活動,體驗數(shù)學思維的嚴謹性,發(fā)展形象思維。
、谠谔骄窟^程中,學會與人合作并能與他人交流思維的過程和探究的結果。
4、情感態(tài)度:①通過介紹勾股定理在中國古代的研究,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想,激發(fā)學生發(fā)奮學習。
、谠谔骄窟^程中,體驗解決問題方法的.多樣性,培養(yǎng)學生的合作交流意識和探索精神。
(三)本課的教學重點:探索和證明勾股定理
本課的教學難點:用拼圖的方法證明勾股定理
二、教法與學法分析:
教法分析:針對八年級學生的知識結構和心理特征,本節(jié)課可選擇引導探索法,由淺入深,由特殊到一般地提出問題。引導學生自主探索,合作交流,這種教學理念反映了時代精神,有利于提高學生的思維能力,能有效地激發(fā)學生的思維積極性,基本教學流程是:提出問題實驗操作歸納驗證問題解決鞏固練習課堂小結 布置作業(yè)七部分。
學法分析:在教師的組織引導下,采用自主探索、合作交流的研討式學習方式,讓學生思考問題,獲取知識,掌握方法,借此培養(yǎng)學生動手、動腦、動口的能力,使學生真正成為學習的主體。
三、教學過程設計
(一)提出問題:
首先提出問題1:你知道下圖所表示的意義嗎?創(chuàng)設問題情境,20xx年在北京召開了第24屆國際數(shù)學家大會,它是最高水平的全球性數(shù)學科學學術會議,被譽為數(shù)學界的奧運會,這就是本屆大會會徽的圖案,你聽說過勾股定理嗎?通過提出問題,從而激發(fā)學生的求知欲。
其次提出問題2:你知道勾三、股四、弦五的意義嗎?此問題由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學生的學習興趣,激發(fā)學生的求知欲。
勾股定理說課稿 篇2
尊敬的各位評委、老師,您們好。
我是臨沂市蒼山縣實驗中學的**。今天我說課的內(nèi)容是人教版《數(shù)學》八年級下冊第十八章第一節(jié)《勾股定理》第一課時,我將從教材、教法與學法、教學過程、教學評價以及設計說明五個方面來闡述對本節(jié)課的理解與設計。
一、教材分析:
。ㄒ唬 教材的地位與作用
從知識結構上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關系,為后續(xù)學習解直角三角形提供重要的理論依據(jù),在現(xiàn)實生活中有著廣泛的應用。
從學生們認知結構上看,它把形的特征轉(zhuǎn)化成數(shù)量關系,架起了幾何與代數(shù)之間的橋梁;
勾股定理又是對學生進行愛國主義教育的良好素材,因此具有相當重要的地位和作用。
根據(jù)數(shù)學新課程標準以及八年級學生的認知水平我確定如下學習目標:知識技能、數(shù)學思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國數(shù)學文化為主線,激發(fā)學生們熱愛祖國悠久文化的情感。
。ǘ┲攸c與難點
為變被動接受為主動探究,我確定本節(jié)課的重點為:勾股定理的探索過程。限于八年級學生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點,我將引導學生動手實驗突出重點,合作交流突破難點。
二、教學與學法分析
教學方法 葉圣陶說過“教師之為教,不在全盤授予,而在相機誘導。”因此老師們利用幾何直觀提出問題,引導學生由淺入深的探索,設計實驗讓學生進行驗證,感悟其中所蘊涵的思想方法。
學法指導 為把學習的主動權還給學生,教師鼓勵學生采用動手實踐,自主探索、合作交流的學習方法,讓學生親自感知體驗知識的形成過程。
三、教學過程
我國的數(shù)學文化源遠流長、博大精深,為了使學生感受其傳承的魅力,我將本節(jié)課設計為以下五個環(huán)節(jié)。
第一步 情境導入 古韻今風
給出《七巧八分圖》中的一組圖片,讓學生利用兩組七巧板進行合作拼圖。(請看視頻)讓學生觀察并思考三個正方形面積之間的關系?它們圍成了什么三角形?反映在三邊上,又蘊含著什么數(shù)學奧秘呢?寓教于樂,激發(fā)學生好奇、探究的欲望。
第二步 追溯歷史 解密真相
勾股定理的探索過程是本節(jié)課的重點,依照數(shù)學知識的循序漸進、螺旋上升的原則,我設計如下三個活動。
從上面低起點的問題入手,有利于學生參與探索。學生很容易發(fā)現(xiàn),在等腰三角形中存在如下關系。巧妙的.將面積之間的關系轉(zhuǎn)化為邊長之間的關系,體現(xiàn)了轉(zhuǎn)化的思想。觀察發(fā)現(xiàn)雖然直觀,但面積計算更具說服力。將圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計算圖形面積,體現(xiàn)了數(shù)形結合的思想。學生會想到用“數(shù)格子”的方法,這種方法雖然簡單易行,但對于下一步探索一般直角三角形并不適用,具有局限性。因此教師應引導學生利用“割”和“補”的方法求正方形C的面積,為下一步探索復雜圖形的面積做鋪墊。
突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結論呢?體現(xiàn)了“從特殊到一般”的認知規(guī)律。教師給出邊長單位長度分別為3、4、5的直角三角形,避免了學生因作圖不準確而產(chǎn)生的錯誤,也為下面 “勾三股四弦五”的提出埋下伏筆。有了上一環(huán)節(jié)的鋪墊,有效地分散了難點。在求正方形C的面積時,學生將展示“割”的方法, “補”的方法,有的學生可能會發(fā)現(xiàn)平移的方法,旋轉(zhuǎn)的方法,對于這兩種新方法教師應給于表揚,肯定學生的研究成果,培養(yǎng)學生的類比、遷移以及探索問題的能力。
使用幾何畫板動態(tài)演示,使幾何與代數(shù)之間的關系可視化。當為直角三角形時,改變?nèi)呴L度三邊關系不變,當∠α為銳角或鈍角時,三邊關系就改變了,進而強調(diào)了命題成立的前提條件必須是直角三角形。加深學生對勾股定理理解的同時也拓展了學生的視野。
以上三個環(huán)節(jié)層層深入步步引導,學生歸納得到命題1,從而培養(yǎng)學生的合情推理能力以及語言表達能力。
感性認識未必是正確的,推理驗證證實我們的猜想。
第三步 推陳出新 借古鼎新
教材中直接給出“趙爽弦圖”的證法對學生的思維是一種禁錮,教師創(chuàng)新使用教材,利用拼圖活動解放學生的大腦,讓學生發(fā)揮自己的聰明才智證明勾股定理。這是教學的難點也是重點,教師應給學生充分的自主探索的時間與空間,讓學生的思維在相互討論中碰撞、在相互學習中完善。教師深入到學生中間,觀察學生探究方法接受學生的質(zhì)疑,對于不同的拼圖方案給予肯定。從而體現(xiàn)出“學生是學習的主體,教師是組織者、引導者與合作者”這一教學理念。學生會發(fā)現(xiàn)兩種證明方案。
方案1為趙爽弦圖,學生講解論證過程,再現(xiàn)古代數(shù)學家的探索方法。方案2為學生自己探索的結果,論證之巧較方案1有異曲同工之妙。整個探索過程,讓學生經(jīng)歷由表面到本質(zhì),由合情推理到演繹推理的發(fā)掘過程,體會數(shù)學的嚴謹性。對比“古”、“今”兩種證法,讓學生體會“吹盡黃沙始到金”的喜悅,感受到“青出于藍而勝于藍”的自豪感。板書勾股定理,進而給出字母表示,培養(yǎng)學生的符號意識。
教師對“勾、股、弦”的含義以及古今中外對勾股定理的研究做一個介紹,使學生感受數(shù)學文化,培養(yǎng)民族自豪感和愛國主義精神。利用勾股樹動態(tài)演示,讓學生欣賞數(shù)學的精巧、優(yōu)美。
第四步 取其精華 古為今用
我按照“理解—掌握—運用”的梯度設計了如下三組習題。
。1)對應難點,鞏固所學;(2)考查重點,深化新知;(3)解決問題,感受應用
第五步 溫故反思 任務后延
在課堂接近尾聲時,我鼓勵學生從“四基”的要求對本節(jié)課進行小結。進而總結出一個定理、二個方案、三種思想、四種經(jīng)驗。
然后布置作業(yè),分層作業(yè)體現(xiàn)了教育面向全體學生的理念。
四、教學評價
在探究活動中,教師評價、學生自評與互評相結合,從而體現(xiàn)評價主體多元化和評價方式的多樣化。
五、設計說明
本節(jié)課探究體驗貫穿始終,展示交流貫穿始終,習慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。
采用 “七巧板”代替教材中“畢達哥拉斯地板磚”利用我國傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國數(shù)學文化為主線這一設計理念,展現(xiàn)了我國古代數(shù)學璀璨的歷史,激發(fā)學生再創(chuàng)數(shù)學輝煌的愿望。
以上就是我對《勾股定理》這一課的設計說明,有不足之處請評委老師們指正,謝謝大家。
勾股定理說課稿 篇3
尊敬的各位評委、老師,大家好!
我說課的題目是華師版八年級上冊第十四章第一節(jié)第一課時《勾股定理》。
教材分析:
如果說數(shù)學思想是解決數(shù)學問題的一首經(jīng)典老歌,那么本節(jié)課蘊含的由特殊到一般的思想、數(shù)學建模的思想、轉(zhuǎn)化的思想就是歌中最為活躍的音符!本節(jié)的內(nèi)容是在學習了二次根式之后的教學,是在學生已經(jīng)掌握了直角三角形的有關性質(zhì)的基礎上進行的后繼學習,是中學數(shù)學幾個重要定理之一。它揭示了直角三角形三條邊之間的數(shù)量關系,是解直角三角形的主要根據(jù)之一,是解決四邊形、圓等知識的靈魂,在實際生活中有著極其廣泛的應用。
勾股定理的發(fā)現(xiàn)、驗證和應用蘊含著豐富的文化價值,在理論上占有重要地位,因此本節(jié)在教材中起著承前啟后的橋梁作用。
新課標下的數(shù)學教學不僅是知識的教學,更應注重能力的培養(yǎng)及情感的教育,因此,根據(jù)本節(jié)在教學中的地位和作用,結合初二學生不愛表現(xiàn)、好靜不好動的特點,我確定本節(jié)教學目標如下:
1、探索并利用拼圖證明勾股定理。
2、利用勾股定理解決簡單的數(shù)學問題。
3、感受數(shù)學文化,體會解決問題方法的多樣性和數(shù)形結合的思想。
本著課標的要求,在吃透教材的基礎上,我確定本節(jié)的教學重點、難點、關鍵如下:
勾股定理的證明和簡單應用是本節(jié)的重點,用拼圖的方法證明勾股定理是難點,而解決難點的關鍵是充分利用圖形面積的各種表示方法構造恒等式。
為了講清重點、突破難點、抓住關鍵,使學生達到預定目標,我對教法和學法分析如下:
教法分析:
新課程標準強調(diào)要從學生已有的經(jīng)驗出發(fā),最大限度的激發(fā)學生學習積極性,新課程下的數(shù)學教師更應是學生學習活動的組織者、引導者、合作者,因此,鑒于教材的重點和初二學生的認知水平,我以學生充分預習為前提,以學生的動手操作、講解為中心,讓學生親歷親為,體會做數(shù)學的過程,激發(fā)學生的探索興趣,使課堂活躍起來,提高課堂效率。運用觀察法、歸納法、引導發(fā)現(xiàn)法、討論法等多種教學方法相結合的形式,讓學生充分展示預習成果,體驗成功的快樂,為終身學習和發(fā)展打下堅實的基礎。為了增大課堂容量、給學生創(chuàng)設高效的數(shù)學課堂,給學生提供足夠從事數(shù)學活動的時間,以導學案的形式、運用多媒體輔助教學。
學法分析:
學法是學生再生知識的法寶,為了把學生學習過程當作認知事物的過程來解決,教學中我首先引導學生先動手操作,再合作交流,培養(yǎng)學生良好的學習品質(zhì)和與人合作的能力;接下來,我讓學生獨立思考,點撥學生用特殊到一般的思想大膽償試,水到渠成的突出勾股定理的探索這一重點,然后通過學生展示成果讓學生抓住用不同的方式拼出圖形,從而用不同的方式表示圖形面積建立恒等式這一關健,以自己拼圖操作、講解展示預習成果突破定理證明這一難點,指導學生嚴謹、合理的書寫格式,培養(yǎng)學生的邏輯思維能力和語言表達能力。
為了充分調(diào)動學生的學習積極性,創(chuàng)設優(yōu)化高效的數(shù)學課堂,我以導學案的方式循序見進的設計教學流程。
以學生必讀課本48—52頁,選讀課本55、56頁的課前預習為前提,共分四個環(huán)節(jié)來進行教學
1、勾股定理的探究:讓學生歷經(jīng)量一量、算一算、想一想的由特殊到一般的數(shù)學思想引導好學生課前預習,再以檢查預習成果的形式為新知的探究作好鋪墊。
2、勾股定理的證明:以學生拼圖展示、講解預習成果的形式完成對定理的'證明。
3、勾股定理的應用:以課堂練習、學生個性補充和老師適當?shù)膫性化追加的形式實現(xiàn)對定理的靈活應用。
4、學后反思:以學生小結的形式引導學生從知識、情感兩方面實現(xiàn)對本節(jié)內(nèi)容的鞏固與升華。
說創(chuàng)新點:
為了給學生營造一個和諧、民主、平等而高效的數(shù)學課堂,我以新課程標準的基本理念和總體目標為指導思想,面向全體學生,選擇適當?shù)钠瘘c和方法,充分發(fā)揮學生的主體地位與教師主導作用相統(tǒng)一的原則。教學中注重學生的動手操作能力的培養(yǎng),化繁為簡,化抽象為直觀。例如我以展示預習成果為主線,以學生動手操作、講解等直觀方式代替老師畫圖、剪圖、講評費時費力的方式,既讓每個學生都能積極的參與進來,培養(yǎng)學生的語言表達能力、邏輯推理能力,又達到了直觀高效的效果。
教學中我注重人文環(huán)境的創(chuàng)設,使數(shù)學課堂充滿親切、民主的氣氛,例如整節(jié)課我以學生的操作、展示、講解、個性補充為主,拉近了數(shù)學與學生的距離,激發(fā)了學生的學習興趣;為了使不同的學生得到不同的發(fā)展,人人學有價值的數(shù)學,在教學中我創(chuàng)造性的使用教材,在不改變例題的本意為前提,創(chuàng)設身邊暖房工程為情境,體現(xiàn)數(shù)學的生活化;以一題多變、中考題改編等形式進行練習題的層層深入,體現(xiàn)數(shù)學的變化美。
以學生個性補充的形式促進課堂新的生成,最大限度的培養(yǎng)學生創(chuàng)新思維,使不同的人在數(shù)學上有不同的發(fā)展。本節(jié)課既做到了課程的開放,為充分發(fā)揮學生聰明智慧和創(chuàng)造性的思維提供了空間,又創(chuàng)設了具有獨特教學風格的作文式數(shù)學課堂。而多媒體教學的引入更為學生提供了廣闊的思考空間和時間;同時,我注重對學生進行數(shù)學文化的薰陶和數(shù)學思想的滲透,注重美育、德育與教育的三統(tǒng)一,如小結時由“勾股樹”到“智慧樹”的希望寄語。
勾股定理說課稿 篇4
一、教材分析
勾股定理就是學生在已經(jīng)掌握了直角三角形的有關性質(zhì)的基礎上進行學習的,它就是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關系,它可以解決直角三角形中的計算問題,這就是解直角三角形的主要根據(jù)之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進行運用。
據(jù)此,制定教學目標如下:
1、理解并掌握勾股定理及其證明。
2、能夠靈活地運用勾股定理及其計算。
3、培養(yǎng)學生觀察、比較、分析、推理的能力。
4、通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的'民族自豪感和鉆研精神。
教學重點:勾股定理的證明和應用。
教學難點:勾股定理的證明。
二、教法和學法
教法和學法就是體現(xiàn)在整個教學過程中的,本課的教法和學法體現(xiàn)如下特點:
1、以自學輔導為主,充分發(fā)揮教師的主導作用,運用各種手段激發(fā)學生學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。
2、切實體現(xiàn)學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。
3、通過演示實物,要引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發(fā)學生鉆研新知的欲望。
三、教學程序
本節(jié)內(nèi)容的教學主要體現(xiàn)在學生動手、動腦方面,根據(jù)學生的認知規(guī)律和學習心理,教學程序設計如下:
(一)創(chuàng)設情境 以古引新
1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學生學習興趣,激發(fā)學生求知欲。
2、是不是所有的直角三角形都有這個性質(zhì)呢?教師要善于激疑,使學生進入樂學狀態(tài)。
3、板書課題,出示學習目標。
(二)初步感知 理解教材
教師是指導學生自學教材,通過自學感悟理解新知,這也體現(xiàn)了學生的自主學習意識,鍛煉學生主動探究知識,養(yǎng)成良好的自學習慣。
(三)質(zhì)疑解難 討論歸納
1、教師設疑或?qū)W生提疑。如:怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發(fā)學生的表現(xiàn)欲。
2、教師引導學生按照要求進行拼圖,觀察并分析;
。1)這兩個圖形有什么特點呢?
。2)你能寫出這兩個圖形的面積嗎?
。3)如何運用勾股定理?是否還有其他形式?
這時教師組織學生分組討論,調(diào)動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。
(四)鞏固練習 強化提高
1、出示練習,學生分組來解答,并由學生總結解題規(guī)律。課堂教學中動靜結合,以免引起學生的疲勞。
2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習,進一步提高學生運用知識的能力,對練習中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。
(五)歸納總結 練習反饋
引導學生對知識要點進行總結,梳理學習思路。分發(fā)自我反饋練習,學生獨立完成。
本課意在創(chuàng)設愉悅和諧的樂學氣氛,優(yōu)化教學手段,借助電教手段提高課堂教學效率,建立平等、民主、和諧的師生關系。加強師生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創(chuàng)新精神和實踐能力得到培養(yǎng)。
勾股定理說課稿 篇5
一、教材分析
教材所處的地位與作用
“探索勾股定理”是人教版八年級《數(shù)學》下冊內(nèi)容!肮垂啥ɡ怼笔前才旁趯W生學習了三角形、全等三角形、等腰三角形等有關知識之后,它揭示了直角三角形三邊之間的一種美妙關系,將數(shù)與形密切聯(lián)系起來,在幾何學中占有非常重要的位置。同時勾股定理在生產(chǎn)、生活中也有很大的用途。
二、教學目標
綜上分析及教學大綱要求,本課時教學目標制定如下:
1、知識目標
知道勾股定理的由來,初步理解割補拼接的面積證法。
掌握勾股定理,通過動手操作利用等積法理解勾股定理的證明過程。
2、能力目標
在探索勾股定理的過程中,讓學生經(jīng)歷“觀察——合理猜想——歸納——驗證”的數(shù)學思想,并體會數(shù)形結合以及由特殊到一般的思想方法,培養(yǎng)學生的觀察力、抽象概括能力、創(chuàng)造想象能力以及科學探究問題的能力。
3、情感目標
通過觀察、猜想、拼圖、證明等操作,使學生深刻感受到數(shù)學知識的發(fā)生、發(fā)展過程。
介紹“趙爽弦圖”,讓學生感受到中國古代在勾股定理研究方面所取得的偉大成就,激發(fā)學生的數(shù)學激情及愛國情感。
三、教學重難點
本課重點是掌握勾股定理,讓學生深刻感悟到直角三角形三邊所具備的特殊關系。由于八年級學生構造能力較低以及對面積證法的不熟悉,因此本課的難點便是勾股定理的證明。
四、教學問題診斷
本 節(jié)主要攻克的問題就是本節(jié)的難點:勾股定理的證明。我打算采用面積法來講解,但這種借助于圖形的面積來探索、驗證數(shù)學結論的數(shù)形結合思想,對于學生來說, 有些陌生,難以理解,又加之數(shù)學課本身的課程特征,在講解時,沒有文科那么深動形象,所以針對這一現(xiàn)狀,我在教法和學法上都進行了改進。
五、教法與學法分析
[教學方法與手段] 針對八年級學生的知識結構和心理特征,本節(jié)課選擇引導探索法,由淺入深,由特殊到一般地提出問題,引導學生自主探索,合作交流,并利用多媒體進行教學。
[學法分析] 在教師組織引導下,采用自主探索、合作交流的方式,讓學生自己實驗,自己獲取知識,并感悟?qū)W習方法,借此培養(yǎng)學生動手、動口、動腦能力,使學生真正成為學習的主體。讓學生感受到自己是學習的主體,增強他們的主動感和責任感,這樣對掌握新知會事半功倍。
六、教學流程設計
1、創(chuàng)設情境,引入新課
本節(jié)課開始利用多媒體介紹了在北京召開的20xx年 國際數(shù)學家大會的會標,其圖案為“趙爽弦圖”,由此導入新課,是為了激發(fā)學生的興趣和民族自豪感,它是課堂教學的重要一環(huán)。“好的開始是成功的一半”,在 課的起始階段迅速集中學生注意力,把他們的思緒帶進特定的學習情境中,激發(fā)學生濃厚的學習興趣和強烈的求知欲。多媒體展示這一有意義的圖案,可有效開啟學 生思維的閘門,激勵探究,使學生的學習狀態(tài)由被動變?yōu)橹鲃樱谳p松愉悅的氛圍中學到知識。
2、觀察發(fā)現(xiàn),類比猜想
讓學生仔細觀察畢達哥拉斯朋友家的瓷磚(圖1), 從而得到特殊的等腰直角三角形三邊關系,緊接著由特殊到一般,讓學生合理猜測:是否任意直角三角形都符合這個“三邊關系”的結論?同學們很輕易的得到了結 論。最后對此結論通過在網(wǎng)格中數(shù)格子進行驗證,讓學生經(jīng)歷了“觀察——合理猜測——歸納——驗證”的這一數(shù)學思想。在數(shù)格子的驗證過程中,發(fā)現(xiàn)任意直角三 角形(圖2)斜邊上長出的正方形中網(wǎng)格不規(guī)則,沒法數(shù)出。通過同學們的討論,發(fā)現(xiàn)數(shù)不出來的原因是格子不規(guī)則,從而想到了用補或割的方法進行計算,其原則就是由不規(guī)則經(jīng)過割補變?yōu)橐?guī)則。
3、實驗探究,證明結論
因為勾股定理的出現(xiàn),使數(shù)學從單一的純計算進入了幾何圖形的證明,所以為了讓學生感受數(shù)形結合這一數(shù)學思想,讓學生親自動手,互相協(xié)作,拿一塊由a2和b2組成的不規(guī)則的平面圖形經(jīng)割補,變?yōu)橐?guī)則的c2,又因兩塊割補前后面積相等,從而得到勾股定理:a2+b2= c2,也因此引入了“等積法”證明勾股定理。
4、練兵之際
這是“總統(tǒng)證法”,此時讓學生自己探索,然后討論。選用“總統(tǒng)證法”,第一是為了讓同學們熟悉“等積法”,第二讓學生感受數(shù)學的地位之高,第三在沒有講解的情況下,學生自己得出了“總統(tǒng)證法”,大大增強了學生的自信心和自豪感。
5、自己動手,拼出弦圖
讓同學們拿出了提前準備好的四個全等的.邊長為a、b、c的 直角三角形進行拼圖,小組活動,拼出自己喜愛的圖形,但有一個前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時已經(jīng)是把課堂全部還給了學生,讓他們 在數(shù)學的海洋中馳騁,提供這種學習方式就是為了讓孩子們更加開闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學生們拼得很好,并且都給出了正確的 證明,在黑板上盡情地展示了一番。
6、總結反思
通 過這一堂課,我認為數(shù)學教學的核心不是知識本身,而是數(shù)學的思維方式,而培養(yǎng)這種數(shù)學思維方式需要豐富的數(shù)學活動。在活動中學生可以用自己創(chuàng)造與體驗的方 法來學習數(shù)學,這樣才能真正的掌握數(shù)學,真正擁有數(shù)學的思維方式,這一課的學習就是通過讓學生自主探索知識,從而將其轉(zhuǎn)化為自己的,真正做到了先激發(fā)興 趣,再合作交流,最后展示成果的自主學習,教學模式也從教師講授為主轉(zhuǎn)為了學生動腦、動手、自主研究,小組學習討論交流為主,把數(shù)學課堂轉(zhuǎn)化為“數(shù)學實驗 室”,學生通過自己活動得出結論,使創(chuàng)新精神與實踐能力得到了發(fā)展。
七、設計說明
1、根據(jù)學生的知識結構,我采用的數(shù)學流程是:創(chuàng)設情境引入新課——觀察發(fā)現(xiàn)類比猜想——實驗探究證明結論——自己動手拼出弦圖——總結反思這五部分。這一流程體現(xiàn)了知識的發(fā)生、形成和發(fā)展的過程,讓學生經(jīng)歷了觀察——猜想——歸納——驗證的思想和數(shù)形結合的思想。
2、探索定理采用了面積法,引導學生利用實驗由特殊到一般的數(shù)學思想對直角三角形三邊關系進行了研究,并得出了結論。這種方法是認識事物規(guī)律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好的思維品質(zhì)的形成有重要作用,對學生終身發(fā)展也有很大作用。
勾股定理說課稿 篇6
一、說教材分析
本節(jié)研究的是勾股定理的探索及其應用。它從邊的角度進一步對直角三角形的特征進行了刻畫。 它的主要內(nèi)容是探索勾股定理,驗證勾股定理的正確性,在此基礎上,讓學生利用勾股定理來解決一些實際問題。本節(jié)課是在學生認識直角三角形的基礎上,在了解正方形和等腰直角三角形以后進行學習的,它是前面所學知識的延伸和拓展,又是后面學習勾股定理逆定理的基礎,具有承上啟下的作用。
二、說教學目標
教學目標的確定:教學目標是一堂課的中心任務,它只有在豐富多彩的數(shù)學活動中才能充分實現(xiàn)。一堂課的教學目標應全面、適度、明確、具體,便于檢測。因此根據(jù)學生已有的認知基礎和新課程標準,我確定了本節(jié)課教學目標為:
1、知識技能:
。1)了解勾股定理的文化背景,體驗勾股定理的探索和驗證過程。
。2)運用勾股定理進行簡單的計算和解釋生活中的實際問題。
。3)運用勾股定理會在數(shù)軸上畫出表示無理數(shù)的點。
2、數(shù)學思考:
在勾股定理的探索、從實際問題抽象出直角三角形和在數(shù)軸上畫出表示無理數(shù)的點的過程中,發(fā)展合情推理能力,初步體會、掌握轉(zhuǎn)化和數(shù)形結合的思想方法。
3、解決問題:
通過拼圖、探究活動,體驗數(shù)學思維的嚴謹性,發(fā)展形象思維。學會與人合作并能與他人交流思維的過程和探究的結果。能夠運用勾股定理解決直角三角形,在數(shù)軸上畫出表示無理數(shù)的點等有關實際問題。
4、情感態(tài)度:
。ǎ保┩ㄟ^對勾股定理歷史的了解和實例應用,體會勾股定理的文化價值,感受數(shù)學文化,激發(fā)學習熱情。
。ǎ玻┩ㄟ^獲得成功的經(jīng)驗和克服困難的經(jīng)歷,增進數(shù)學學習的信心。
。3)通過研究一系列富有探究性的問題,培養(yǎng)學生與他人交流、合作的意識和品質(zhì)。
三、說教學重、難點
教學重、難點的確定:關注學生是否能與同伴進行有效的合作交流;關注學生是否積極的進行思考;關注學生能否探索出解決問題的方法。
重點:通過探索、拼圖驗證勾股定理及勾股定理的應用過程,使學生獲得一些研究問題與合作交流的方法經(jīng)驗。
難點:利用數(shù)形結合的方法探索發(fā)現(xiàn)、驗證勾股定理及其在實際生活中的應用。
四、知識反映出來的技能、能力、方法、德育等因素
本節(jié)知識通過 “ 探索發(fā)現(xiàn)---拼圖實踐—探索驗證—分析結果—運用定理 ” 等活動過程,使學生進一步理解勾股定理,并從中學會思考,學會探索,學會運用,學會交流,體會知識反映出來的.豐富的文化內(nèi)涵,指導學生認識現(xiàn)實世界中蘊涵著的數(shù)學信息。
五、教學方法
數(shù)學知識、數(shù)學思想和方法必須由學生在現(xiàn)實的數(shù)學活動實踐中理解和發(fā)展;教學中,以學生為本位,充分挖掘教材的空間,為學生搭建動手實踐、自主探索、合作交流的平臺;
注重讓學生經(jīng)歷數(shù)學知識的形成過程,充分調(diào)動學生的學習積極性,并通過這個過程,使學生體驗學習成功的樂趣,在積極的思維中獲取知識,發(fā)展能力。
六、教學程序設計:
為充分發(fā)揮學生的主體性和教師的主導輔助作用,設計了以下幾個環(huán)節(jié):
(1)創(chuàng)設情境,引入新課
問題
某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊能否進入三樓滅火?
師生行為:教師出示照片及圖片,并提出問題,學生觀察圖片發(fā)表見解。
設計意圖:從現(xiàn)實生活中提出勾股定理,為學生能夠積極主動的投入到探索活動創(chuàng)設情景,激發(fā)學生學習熱情。同時為探索勾股定理提供背景材料。達到引入新課的目的。
。1)獨立探究,合作交流。
講述數(shù)學家畢達哥拉斯的故事
問題
A、B、C的面積有什么關系?
SA+SB=SC
直角三角形三邊有什么關系?
兩直邊的平方和等于斜邊的平方
設計意圖:問題是思維的起點,通過激發(fā)學生好奇、探究和主動學習的欲望。利用面積相等法,讓學生發(fā)現(xiàn)以直角三角形兩直角邊為邊長的正方形的面積,以斜邊為邊長的正方形的面積之間的關系。降低學生學習難度,從(3)自主實踐,探索驗證
《課程標準》指出:“數(shù)學教學是數(shù)學活動的教學!币髮W生分學習小組,動手實踐,積極思考,獲得技能與解決問題的方法。關注學生動手實踐,關注學生主動探索與合作,關注學生積極思考,給學生思維表達的時間、空間,讓學生經(jīng)歷探索知識的過程,并在這個過程中得到發(fā)展.。
兩種拼圖方案
1、2、
師生行為:教師演示動畫和圖片,同時提出問題,學生在獨立思考的基礎上以小組為單位,動手拼接,教師深入小組活動傾聽學生的交流,幫助、指導學生完成拼圖活動。學生展示分割、拼接的過程。
設計意圖:通過觀察、拼圖、探究活動,給學生充分的時間與空間討論、交流,鼓勵學生敢于發(fā)表自己的見解,感受合作的重要性,充分調(diào)動學生思維的積極性,發(fā)展形象思維,使學生對定理更加深刻,通過這一教學過程來達到突破難點的目的。
。4)應用定理,解決問題
數(shù)學源于實踐,運用于實踐;開放性處理教材,鼓勵學生充分地發(fā)表意見,表現(xiàn)自我,讓學生在教師營造的“創(chuàng)新土壤”中成為主人;給學生思維以廣闊的空間,培養(yǎng)學生從多角度運用所學知識尋求解決問題的能力.
勾股定理說課稿 篇7
課題:“勾股定理”第一課時
內(nèi)容:教材分析、教學過程設計、設計說明
一、 教材分析
。ㄒ唬┙滩乃幍牡匚
這節(jié)課是九年制義務教育課程標準實驗教科書八年級第一章第一節(jié)探索勾股定理第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。
。ǘ└鶕(jù)課程標準,本課的教學目標是:
1、 能說出勾股定理的內(nèi)容。
2、 會初步運用勾股定理進行簡單的計算和實際運用。
3、 在探索勾股定理的過程中,讓學生經(jīng)歷“觀察—猜想—歸納—驗證”的數(shù)學思想,并體會數(shù)形結合和特殊到一般的思想方法。
4、 通過介紹勾股定理在中國古代的研究,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發(fā)奮學習。
。ㄈ┍菊n的教學重點:探索勾股定理
本課的教學難點:以直角三角形為邊的'正方形面積的計算。
二、教法與學法分析:
教法分析:針對初二年級學生的知識結構和心理特征,本節(jié)課可選擇引導探索法,由淺入深,由特殊到一般地提出問題。引導學生自主探索,合作交流,這種教學理念反映了時代精神,有利于提高學生的思維能力,能有效地激發(fā)學生的思維積極性,基本教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結—布置作業(yè)六部分。
學法分析:在教師的組織引導下,采用自主探索、合作交流的研討式學習方式,讓學生思考問題,獲取知識,掌握方法,借此培養(yǎng)學生動手、動腦、動口的能力,使學生真正成為學習的主體。
三、 教學過程設計
。ㄒ唬┨岢鰡栴}:
首先創(chuàng)設這樣一個問題情境:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?問題設計具有一定的挑戰(zhàn)性,目的是激發(fā)學生的探究欲望,教師引導學生將實際問題轉(zhuǎn)化成數(shù)學問題,也就是“已知一直角三角形的兩邊,如何求第三邊?” 的問題。學生會感到困難,從而教師指出學習了今天這一課后就有辦法解決了。這種以實際問題為切入點引入新課,不僅自然,而且反映了數(shù)學來源于實際生活,數(shù)學是從人的需要中產(chǎn)生這一認識的基本觀點,同時也體現(xiàn)了知識的發(fā)生過程,而且解決問題的過程也是一個“數(shù)學化”的過程。
。ǘ⿲嶒灢僮鳎
1、投影課本圖1—1,圖1—2的有關直角三角形問題,讓學生計算正方形A,B,C的面積,學生可能有不同的方法,不管是通過直接數(shù)小方格的個數(shù),還是將C劃分為4個全等的等腰直角三角形來求等等,各種方法都應予于肯定,并鼓勵學生用語言進行表達,引導學生發(fā)現(xiàn)正方形A,B,C的面積之間的數(shù)量關系,從而學生通過正方形面積之間的關系容易發(fā)現(xiàn)對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學生參與探索,感受數(shù)學學習的過程,也有利于培養(yǎng)學生的語言表達能力,體會數(shù)形結合的思想。
2、接著讓學生思考:如果是其它一般的直角三角形,是否也具備這一結論呢?于是投影圖1—3,圖1—4,同樣讓學生計算正方形的面積,但正方形C的面積不易求出,可讓學生在預先準備的方格紙上畫出圖形,在剪一剪,拼一拼后學生也不難發(fā)現(xiàn)對于一般的以整數(shù)為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設計不僅有利于突破難點,而且為歸納結論打下了基礎,讓學生體會到觀察、猜想、歸納的思想,也讓學生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學習及有幫助。
3、給出一個邊長為0.5,1.2,1.3,這種含小數(shù)的直角三角形,讓學生計算是否也滿足這個結論,設計的目的是讓學生體會到結論更具有一般性。
。ㄈw納驗證:
1、歸納 通過對邊長為整數(shù)的等腰直角三角形到一般直角三角形再到邊長含小數(shù)的直角三角形三邊關系的研究,讓學生用數(shù)學語言概括出一般的結論,盡管學生可能講的不完全正確,但對于培養(yǎng)學生運用數(shù)學語言進行抽象、概括的能力是有益的,同時發(fā)揮了學生的主體作用,也便于記憶和理解,這比教師直接教給學生一個結論要好的多。
2、驗證 為了讓學生確信結論的正確性,引導學生在紙上任意作一個直角三角形,通過測量、計算來驗證結論的正確性。這一過程有利于培養(yǎng)學生嚴謹、科學的學習態(tài)度。然后引導學生用符號語言表示,因為將文字語言轉(zhuǎn)化為數(shù)學語言是學習數(shù)學學習的一項基本能力。接著教師向?qū)W生介紹“勾,股,弦”的含義、勾股定理,進行點題,并指出勾股定理只適用于直角三角形。最后向?qū)W生介紹古今中外對勾股定理的研究,對學生進行愛國主義教育。
。ㄋ模﹩栴}解決:
讓學生解決開頭的實際問題,前后呼應,學生從中能體會到成功的喜悅。完完成課本“想一想”進一步體會勾股定理在實際生活中的應用,數(shù)學是與實際生活緊密相連的。
【勾股定理說課稿】相關文章:
勾股定理說課稿07-05
《勾股定理》的說課稿06-08
《勾股定理》說課稿12-16
勾股定理說課稿02-11
探索《勾股定理》說課稿01-04
《勾股定理》優(yōu)秀說課稿01-21
探索勾股定理說課稿12-06
探索勾股定理說課稿11-04
《勾股定理》說課稿15篇12-29
《勾股定理》說課稿(15篇)12-29