當前位置:育文網>教學文檔>說課稿> 《勾股定理》說課稿

《勾股定理》說課稿

時間:2023-07-02 01:42:42 說課稿 我要投稿

《勾股定理》說課稿15篇

  作為一無名無私奉獻的教育工作者,時常需要用到說課稿,借助說課稿可以更好地提高教師理論素養(yǎng)和駕馭教材的能力。說課稿要怎么寫呢?下面是小編整理的《勾股定理》說課稿,希望能夠幫助到大家。

《勾股定理》說課稿15篇

《勾股定理》說課稿1

尊敬的各位評委,各位老師,大家好:

  我今天說課的內容是《勾股定理的逆定理》第一課時。下面我將從教材、目標、重點難點、教法、教學流程等幾個方面向各位專家闡述我對本節(jié)課的教學設想。

  一、說教材。

  這節(jié)內容選自《蘇科版》義務教育課程標準實驗教科書數(shù)學八年級上冊第三章《勾股定理》中的第二節(jié)。勾股定理的逆定理是幾何中一個非常重要的定理,它是對直角三角形的再認識,也是判斷一個三角形是不是直角三角形的一種重要方法。還是向學生滲透“數(shù)形結合”這一數(shù)學思想方法的很好素材。八年級正是學生由實驗幾何向推理幾何過渡的重要時期,通過對勾股定理逆定理的探究,培養(yǎng)學生的分析思維能力,發(fā)展推理能力。在教學中滲透類比、轉化,從特殊到一般的思想方法。

  二、說教學目標。

  教學目標支配著教學過程,教學目標的制定和落實是實施課堂教學的關鍵?紤]到學生已有的認知結構心理特征及本班學生的實際情況,我制定了如下教學目標:

  1、知識與技能:探索并掌握直角三角形判別思想,會應用勾股定理及逆定理解決實際問題。

  2、過程與方法:通過對勾股定理的逆定理的探索和證明,經歷知識的發(fā)生,發(fā)展與形成的過程,體驗“數(shù)形結合”方法的應用。

  3、情感、態(tài)度、價值觀:培養(yǎng)數(shù)學思維以及合情推理意識,感悟勾股定理和逆定理的應用價值。滲透與他人交流、合作的意識和探究精神,體驗數(shù)與形的內在聯(lián)系。

  三、說教學重點、難點,關鍵。

  本著課程標準,在吃透教材的基礎上,我確立了如下的教學重、難點及關鍵。

  重點:理解并掌握勾股定理的逆定理,并會應用。

  難點:理解勾股定理的逆定理的推導。

  關鍵:動手驗證,體驗勾股定理的逆定理。

  四、說教法。

  在本節(jié)課中,我設計了以下幾種教法學法:

  情景教學法,啟發(fā)教學法,分層導學法。

  讓學生實踐活動,動手操作,看自己畫的三角形是否為一個直角三角形。體會觀察,作出合理的推測。同時通過引入,讓學生了解古代都用這種方法來確定直角的。對學生進行動手能力培養(yǎng)的同時,引導命題的形成過程,自然地得出勾股定理的逆定理。既鍛煉了學生的實踐、觀察能力,又滲透了人文和探究精神。

  五、說教學流程。

  1、動手實踐,檢測猜測。引導學生分別以3cm,4cm,5cm , 2.5cm,6cm,6.5cm和4cm, 7.5 cm, 8.5 cm , 2cm, 5cm, 6cm為邊畫出兩個三角形,觀察猜測三角形的形狀。再引導啟發(fā)學生從這兩個活動中歸納思考:如果三角形的三邊長a、b、c滿足,那么此三角形是什么三角形?在整個過程的活動中,盡量給學生充足的時間和空間,以平等的身份參與到學生活動中來,幫助指導學生的實踐活動。

  2、探索歸納,證明猜測。

  勾股定理逆定理的`證明不同于以往的幾何圖形的證明,需要構造直角三角形才能完成,構造直角三角形就成為解決問題的關鍵。如果此時直接將問題拋給學生證明,學生定會覺得無從下手。我就采用分層導進的方法,讓學生從具體的例子中感受總結,再歸納到中抽象中來。于是我就設計了這樣的兩個步驟:

  先補充一道例題:三邊長度為3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么聯(lián)系?你是怎么得到的?請簡單說明理由。

  然后再更改上面的例題,變?yōu)椤鰽BC三邊長為a、b、c,滿足,與以a、b為直角邊的直角三角形之間有什么聯(lián)系呢?你們又是如何想的?試說明理由。通過推理證明得出勾股定理的逆定理。

  在這個過程中,要努力引導學生聯(lián)想到“全等”,進而設法構造直角三角形,讓學生在不斷的嘗試、探究的過程中,總結出勾股定理的逆定理。有效地突破本節(jié)的難點。同時提出原命題與逆命題及其關系。培養(yǎng)良好的數(shù)學學習習慣對學生的可持續(xù)發(fā)展是非常重要的,歸納出定理后,與學生一起分析定理的題設與結論,并與勾股定理進行對比,明白兩定理是互逆定理。

  3、嘗試運用,熟悉定理。

  課本中的例題是讓學生進一步熟練掌握勾股定理的逆定理及其運用的步驟。

  4、分層訓練,能力升級。有針對性有層次性地布置練習,及時反饋教學效果,查缺被漏,并對有困難的學生給予指導。

  5、總結內容,強化認識。使學生再次感悟勾股定理的逆定理,體會定理的互逆性,加深對“數(shù)形結合”的理解,更深刻地理解數(shù)學思想方法在解題中的地位和作用,激發(fā)學生學習數(shù)學的興趣。

  6、布置作業(yè)。有代表性地布置不同層次的作業(yè),尊重學生的個體差異,滿足多樣化學習的需要。

  結束語:我的說課完了,非常感謝各位領導和專家給了我這次學習、聆聽、參與、鍛煉的機會。謝謝大家!

《勾股定理》說課稿2

尊敬的各位評委、老師:

  您們好!

  我是臨沂市蒼山縣實驗中學的宋寧。今天我說課的內容是人教版《數(shù)學》八年級下冊第十八章第一節(jié)《勾股定理》第一課時,我將從教材、教法與學法、教學過程、教學評價以及設計說明五個方面來闡述對本節(jié)課的理解與設計。

  一、教材分析:

  (一)教材的地位與作用

  從知識結構上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關系,為后續(xù)學習解直角三角形提供重要的理論依據,在現(xiàn)實生活中有著廣泛的應用。

  從學生認知結構上看,它把形的特征轉化成數(shù)量關系,架起了幾何與代數(shù)之間的橋梁;

  勾股定理又是對學生進行愛國主義教育的良好素材,因此具有相當重要的地位和作用。

  根據數(shù)學新課程標準以及八年級學生的認知水平我確定如下學習目標:知識技能、數(shù)學思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國數(shù)學文化為主線,激發(fā)學生熱愛祖國悠久文化的情感。

  (二)重點與難點

  為變被動接受為主動探究,我確定本節(jié)課的重點為:勾股定理的探索過程。限于八年級學生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點,我將引導學生動手實驗突出重點,合作交流突破難點。

  二、教學與學法分析

  教學方法葉圣陶說過“教師之為教,不在全盤授予,而在相機誘導!币虼私處熇脦缀沃庇^提出問題,引導學生由淺入深的探索,設計實驗讓學生進行驗證,感悟其中所蘊涵的`思想方法。

  學法指導為把學習的主動權還給學生,教師鼓勵學生采用動手實踐,自主探索、合作交流的學習方法,讓學生親自感知體驗知識的形成過程。

  三、教學過程

  我國數(shù)學文化源遠流長、博大精深,為了使學生感受其傳承的魅力,我將本節(jié)課設計為以下五個環(huán)節(jié)。

  首先,情境導入古韻今風

  給出《七巧八分圖》中的一組圖片,讓學生利用兩組七巧板進行合作拼圖。(請看視頻)讓學生觀察并思考三個正方形面積之間的關系?它們圍成了什么三角形?反映在三邊上,又蘊含著什么數(shù)學奧秘呢?寓教于樂,激發(fā)學生好奇、探究的欲望。

  第二步追溯歷史解密真相

  勾股定理的探索過程是本節(jié)課的重點,依照數(shù)學知識的循序漸進、螺旋上升的原則,我設計如下三個活動。

  從上面低起點的問題入手,有利于學生參與探索。學生很容易發(fā)現(xiàn),在等腰三角形中存在如下關系。巧妙的將面積之間的關系轉化為邊長之間的關系,體現(xiàn)了轉化的思想。觀察發(fā)現(xiàn)雖然直觀,但面積計算更具說服力。將圖形轉化為邊在格線上的圖形,以便于計算圖形面積,體現(xiàn)了數(shù)形結合的思想。學生會想到用“數(shù)格子”的方法,這種方法雖然簡單易行,但對于下一步探索一般直角三角形并不適用,具有局限性。因此教師應引導學生利用“割”和“補”的方法求正方形C的面積,為下一步探索復雜圖形的面積做鋪墊。

  突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結論呢?體現(xiàn)了“從特殊到一般”的認知規(guī)律。教師給出邊長單位長度分別為3、4、5的直角三角形,避免了學生因作圖不準確而產生的錯誤,也為下面“勾三股四弦五”的提出埋下伏筆。有了上一環(huán)節(jié)的鋪墊,有效地分散了難點。在求正方形C的面積時,學生將展示“割”的方法,“補”的方法,有的學生可能會發(fā)現(xiàn)平移的方法,旋轉的方法,對于這兩種新方法教師應給于表揚,肯定學生的研究成果,培養(yǎng)學生的類比、遷移以及探索問題的能力。

  使用幾何畫板動態(tài)演示,使幾何與代數(shù)之間的關系可視化。當為直角三角形時,改變三邊長度三邊關系不變,當∠α為銳角或鈍角時,三邊關系就改變了,進而強調了命題成立的前提條件必須是直角三角形。加深學生對勾股定理理解的同時也拓展了學生的視野。

  以上三個環(huán)節(jié)層層深入步步引導,學生歸納得到命題1,從而培養(yǎng)學生的合情推理能力以及語言表達能力。

  感性認識未必是正確的,推理驗證證實我們的猜想。

  第三步推陳出新借古鼎新

  教材中直接給出“趙爽弦圖”的證法對學生的思維是一種禁錮,教師創(chuàng)新使用教材,利用拼圖活動解放學生的大腦,讓學生發(fā)揮自己的聰明才智證明勾股定理。這是教學的難點也是重點,教師應給學生充分的自主探索的時間與空間,讓學生的思維在相互討論中碰撞、在相互學習中完善。教師深入到學生中間,觀察學生探究方法接受學生的質疑,對于不同的拼圖方案給予肯定。從而體現(xiàn)出“學生是學習的主體,教師是組織者、引導者與合作者”這一教學理念。學生會發(fā)現(xiàn)兩種證明方案。

  方案1為趙爽弦圖,學生講解論證過程,再現(xiàn)古代數(shù)學家的探索方法。

  方案2為學生自己探索的結果,論證之巧較方案1有異曲同工之妙。

  整個探索過程,讓學生經歷由表面到本質,由合情推理到演繹推理的發(fā)掘過程,體會數(shù)學的嚴謹性。對比“古”、“今”兩種證法,讓學生體會“吹盡黃沙始到金”的喜悅,感受到“青出于藍而勝于藍”的自豪感。板書勾股定理,進而給出字母表示,培養(yǎng)學生的符號意識。

  教師對“勾、股、弦”的含義以及古今中外對勾股定理的研究做一個介紹,使學生感受數(shù)學文化,培養(yǎng)民族自豪感和愛國主義精神。利用勾股樹動態(tài)演示,讓學生欣賞數(shù)學的精巧、優(yōu)美。

  第四步取其精華古為今用

  我按照“理解—掌握—運用”的梯度設計了如下三組習題。

 。1)對應難點,鞏固所學;

  (2)考查重點,深化新知;

 。3)解決問題,感受應用

  第五步溫故反思任務后延

  在課堂接近尾聲時,我鼓勵學生從“四基”的要求對本節(jié)課進行小結。進而總結出一個定理、二個方案、三種思想、四種經驗。

  然后布置作業(yè),分層作業(yè)體現(xiàn)了教育面向全體學生的理念。

  四、教學評價

  在探究活動中,教師評價、學生自評與互評相結合,從而體現(xiàn)評價主體多元化和評價方式的多樣化。

  五、設計說明

  本節(jié)課探究體驗貫穿始終,展示交流貫穿始終,習慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。

  采用“七巧板”代替教材中“畢達哥拉斯地板磚”利用我國傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國數(shù)學文化為主線這一設計理念,展現(xiàn)了我國古代數(shù)學璀璨的歷史,激發(fā)學生再創(chuàng)數(shù)學輝煌的愿望。

  以上就是我對《勾股定理》這一課的設計說明,有不足之處請評委老師們指正,謝謝大家。

《勾股定理》說課稿3

  各位考官,大家好,我是X號考生,今天我說課的內容是《勾股定理的逆定理》。根據新課程標準,我將以教什么,怎么教,為什么這么教為思路開展我的說課,首先,我先來說說我對教材的理解。

  教材分析是上好一堂課的前提條件,在上好一堂課之前,我首先談一談對教材的理解。

  一、說教材

  “勾股定理的逆定理”一節(jié)?是在上節(jié)“勾股定理”之后繼續(xù)學習的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化。勾股定理的逆定理是初中幾何學習中的重要內容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中將有十分廣泛的應用,同時在應用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學習解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內容之一。

  二、說學情

  中學生心理學研究指出,初中階段是智力發(fā)展的關鍵年齡,學生邏輯思維從經驗型逐步向理論型發(fā)展,觀察能力、記憶能力和想象能力也隨著迅速發(fā)展。學生此前學習了三角形有關的知識,掌握了直角三角形的性質和勾股定理,學生在此基礎上學習勾股定理的逆定理可以加深理解。

  三、說教學目標

  根據數(shù)學課標的要求和教材的具體內容結合學生實際我確定了如下教學目標。

  【知識與技能】

  理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。利用勾股定理的逆定理判定一個三角形是不是直角三角形。

  【過程與方法】

  通過勾股定理的逆定理的證明,體會數(shù)與形結合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題。

  【情感態(tài)度與價值觀】

  通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。

  四、說教學重難點

  重點:勾股定理逆定理的應用;

  難點:探究勾股定理逆定理的證明過程。

  五、說教學方法

  科學合理的教學方法能使教學效果事半功倍,達到教與學的和諧完美統(tǒng)一;诖,我準備采用的教法是講練結合法,小組討論法。

  六、說教學過程

  (一)導入新課

  在導入新課環(huán)節(jié),我會采用溫故知新的導入方法,先讓學生回顧勾股定理有關知識,并引入本節(jié)課的課題——勾股定理逆定理。

  【設計意圖】通過復習回顧能很好地將新舊知識聯(lián)系起來,使學生形成對知識的系統(tǒng)的認識。并且由舊知開始,能很好地幫助學生克服畏難情緒。

  (二)探究新知

  一開課我就提出了與本節(jié)課關系密切、學生用現(xiàn)有的知識可探索卻又解決不好的問題去提示本節(jié)課的探究宗旨,演示古代埃及人把一根長繩打上等距離的13個結,然后便得到一個直角三角形這是為什么?這個問題一出現(xiàn),馬上激起學生已有知識與待研究知識的認識沖突,引起了學生的重視激發(fā)了學生的興趣,因而全身心地投入到學習中來創(chuàng)造了我要學的氣氛,同時也說明了幾何知識來源于實踐不失時機地讓學生感到數(shù)學就在身邊。

  因為幾何來源于現(xiàn)實生活,對初二學生來說選擇適當?shù)臅r機讓他們從個體實踐經驗中開始學習可以提高學習的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。

  這樣設計是因為勾股定理逆定理的證明方法是學生第一次見,它要求按照已知條件作一個直角三角形,根據學生的智能狀況學生是不容易想到的,為了突破這個難點,我讓學生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數(shù)學模型。

  接下來就是利用這個數(shù)學模型,從理論上證明這個定理。從動手操作到證明,學生自然地聯(lián)想到了全等三角形的性質,證明它與一個直角三角形全等順利作出了輔助直角三角形,整個證明過程自然無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉化,同時學生親身體會了動手操作——觀察——猜測——探索——論證的全過程。這樣學生不是被動接受勾股定理的逆定理?因而使學生感到自然、親切。學生的學習興趣和學習積極性有所提高,使學生確實在學習過程中享受到自我創(chuàng)造的快樂。

  在同學們完成證明之后,可讓他們對照課本把證明過程嚴格的閱讀一遍充分發(fā)揮教科書的作用養(yǎng)成學生看書的習慣這也是在培養(yǎng)學生的自學能力。

  (三)鞏固提高

  本著由淺入深的`原則安排了三個題目。演示第一題比較簡單(判斷下列三條線段組成的三角形是不是直角三角形,比如15、8、17;13、14、15等等)讓學生口答讓所有的學生都能完成。

  第二題則進了一層用字母代替了數(shù)字,繞了一個彎,既可以檢查本課知識又可以提高靈活運用以往知識的能力。

  思維提高了課堂教學的效果和利用率。在變式訓練中我還采用講、說、練結合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學生的學習過程,隨時反饋調節(jié)教法同時注意加強有針對性的個別指導把發(fā)展學生的思維和隨時把握學生的學習效果結合起來。

  (四)小結作業(yè)

  在小結環(huán)節(jié),我會隨機詢問學生勾股定理的逆定理是什么?如果判斷一個三角形是不是直角三角形,以及勾股定理的逆定理的應用需要注意點什么等問題,先讓學生歸納本節(jié)知識和技能,然后教師作必要的補充,尤其是注意總結思想方法培養(yǎng)能力方面比如輔助線的添法。

  設計意圖:這樣設計可以幫助學生以反思的形式回憶本節(jié)課所學的知識,加深對知識的印象,有利于學生良好的數(shù)學學習習慣的養(yǎng)成。

  由于學生的思維素質存在一定的差異,教學要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。第一組是基礎題,我會用ppt出示關于勾股定理的逆定理的計算題目,這樣有利于學生學習習慣的培養(yǎng),以及提高他們學好數(shù)學的信心。第二組是開放性題目,讓學生課后思考總結一下判定一個三角形是直角三角形的方法。

《勾股定理》說課稿4

  各位專家領導,上午好:今天我說課的課題是《勾股定理》

  一、教材分析:

 。ㄒ唬┍竟(jié)內容在全書和章節(jié)的地位

  這節(jié)課是九年制義務教育課程標準實驗教科書(華東版),八年級第十九章第二節(jié)“勾股定理”第一課時。勾股定理是學生在已經掌握了直角三角形有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關系,它可以解決直角三角形的主要依據之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學生的動手操作能力和觀察分析問題的能力;通過實際分析,拼圖等活動,使學生獲得較為直觀的印象;通過聯(lián)系比較,理解勾股定理,以便于正確的進行運用。

 。ǘ┤S教學目標:

  1.【知識與能力目標】

 、崩斫獠⒄莆展垂啥ɡ淼膬热莺妥C明,能夠靈活運用勾股定理及其計算;

 、餐ㄟ^觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。

  2. 【過程與方法目標】

  在探索勾股定理的過程中,讓學生經歷“觀察-猜想-歸納-驗證”的數(shù)學思想,并體會數(shù)形結合和從特殊到一般的思想方法。

  3.【情感態(tài)度與價值觀】

  通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國和熱愛祖國悠久文化的思想感情,培養(yǎng)學生的民族自豪感和鉆研精神。

 。ㄈ┙虒W重點、難點:

  【教學重點】

  勾股定理的證明與運用

  【教學難點】

  用面積法等方法證明勾股定理

  【難點成因】

  對于勾股定理的得出,首先需要學生通過動手操作,在觀察的基礎上,大膽猜想數(shù)學結論,而這需要學生具備一定的分析、歸納的思維方法和運用數(shù)學的思想意識,但學生在這一方面的可預見性和耐挫折能力并不是很成熟,從而形成困難。

  【突破措施】

 、眲(chuàng)設情景,激發(fā)思維:創(chuàng)設生動、啟發(fā)性的問題情景,激發(fā)學生的問題沖突,讓學生在感到“有趣”、“有意思”的狀態(tài)下進入學習過程;

  ⒉自主探索,敢于猜想:充分讓自己動手操作,大膽猜想數(shù)學問題的結論,老師是整個活動的組織者,更是一位參入者,學生之間相互交流、協(xié)作,從而形成生動的'課堂環(huán)境;

 、硰垞P個性,展示風采:實行“小組合作制”,各小組中自己推薦一人擔任“發(fā)言人”,一人擔任“書記員”,在討論結束后,由小組的“發(fā)言人”匯報本小組的討論結果,并可上臺利用“多媒體視頻展示臺”展示本組的優(yōu)秀作品,其他小組給予評價。這樣既保證討論的有效性,也調動了學生的學習積極性。

  二、教法與學法分析

  【教法分析】

  數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科,因此在教學中,不僅要使學生“知其然”,而且還要使學生“知其所以然”。針對初二年級學生的認知結構和心理特征,本節(jié)課可選擇“引導探索法”,由淺到深,由特殊到一般的提出問題。引導學生自主探索,合作交流,這種教學理念緊隨新課改理念,也反映了時代精神。基本的教學程序是“創(chuàng)設情景-動手操作-歸納驗證-問題解決-課堂小結-布置作業(yè)”六個方面。

  【學法分析】

  新課標明確提出要培養(yǎng)“可持續(xù)發(fā)展的學生”,因此教師要有組織、有目的、有針對性的引導學生并參入到學習活動中,鼓勵學生采用自主探索,合作交流的研討式學習方式,培養(yǎng)學生“動手”、“動腦”、“動口”的習慣與能力,使學生真正成為學習的主人。

  三、教學過程設計

 。ㄒ唬﹦(chuàng)設情景

  多媒體課件演示FLASH小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?

  問題的設計有一定的挑戰(zhàn)性,目的是激發(fā)學生的探究欲望,老師要注意引導學生將實際問題轉化為數(shù)學問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學生會感到一些困難,從而老師指出學習了今天的這節(jié)課后,同學們就會有辦法解決了。這種以實際問題作為切入點導入新課,不僅自然,而且也反映了“數(shù)學來源于生活”,學習數(shù)學是為更好“服務于生活”。

 。ǘ﹦邮植僮

 、闭n件出示課本P99圖19.2.1:

  觀察圖中用陰影畫出的三個正方形,你從中能夠得出什么結論?

  學生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵學生用語言進行描述,引導學生發(fā)現(xiàn)SP+SQ=SR(此時讓小組“發(fā)言人”發(fā)言),從而讓學生通過正方形的面積之間的關系發(fā)現(xiàn):對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當∠C=90°,AC=BC時,則AC2+BC2=AB2。這樣做有利于學生參與探索,感受數(shù)學學習的過程,也有利于培養(yǎng)學生的語言表達能力,體會數(shù)形結合的思想。

 、簿o接著讓學生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結論呢?于是再利用多媒體投影出P100圖19.2.2(一般直角三角形)。學生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時可讓學生在預先準備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學生就能夠發(fā)現(xiàn):對于一般的以整數(shù)為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學生的動手操作、合作交流,來獲取知識,這樣設計有利于突破難點,也讓學生體會到觀察、猜想、歸納的數(shù)學思想及學習過程,提高學生的分析問題和解決問題的能力。

 、吃賳枺寒斶呴L不為整數(shù)的直角三角形是否也存在這一結論呢?投影例題:一個邊長分別為1.5,3.6,3.9這種含有小數(shù)的直角三角形,讓學生計算。這樣設計的目的是讓學生體會到“從特殊到一般”的情形,這樣歸納的結論更具有一般性。

  (三)歸納驗證

  【歸納】通過動手操作、合作交流,探索邊長為整數(shù)的等腰直角三角形到一般的直角三角形,再到邊長為小數(shù)的直角三角形的兩直角邊與斜邊的關系,讓學生在整個學習過程中感受學數(shù)學的樂趣,,使學生學會“文字語言”與“數(shù)學語言”這兩種表達方式,各小組“發(fā)言人”的積極表現(xiàn),整堂課充分發(fā)揮學生的主體作用,真正獲取知識,解決問題。

  【驗證】先后三次驗證“勾股定理”這一結論,期間學生動手進行了畫圖、剪圖、拼圖,還有測量、計算等活動,使學生從中體會到數(shù)形結合和從特殊到一般的數(shù)學思想,而且這一過程也有利于培養(yǎng)學生嚴謹、科學的學習態(tài)度。

 。ㄋ模﹩栴}解決

 、弊寣W生解決開始上課前所提出的問題,前后呼應,讓學生體會到成功的快樂。

 、沧詫W課本P101例1,然后完成P102練習。

  (五)課堂小結

  1.小組成員從內容、數(shù)學思想方法、獲取知識的途徑進行小結,后由“發(fā)言人”匯報,小組間要互相比一比,看看哪一個小組表現(xiàn)最佳。

  2.教師用多媒體介紹“勾股定理史話”

 、佟吨荀滤銖健罚何髦艿纳谈撸ü磺Ф嗄昵埃┌l(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律。

 、诳滴鯏(shù)學專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨創(chuàng)。

  目的是對學生進行愛國主義教育,激勵學生奮發(fā)向上。

  (六)布置作業(yè)

  課本P104習題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學生進一步體會定理與實際生活的聯(lián)系。

  以上內容,我僅從“說教材”,“說學情”、“說教法”、“說學法”、“說教學過程”上來說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領導對本次說課提出寶貴的意見,謝謝!

《勾股定理》說課稿5

  一、 教材分析

 。ㄒ唬┙滩牡匚

  這節(jié)課是九年制義務教育初級中學教材北師大版八年級第一章第一節(jié)《探索勾股定理》第一課時,它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

 。ǘ┙虒W目標

  知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題.

  過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學生的合情推理意識、主動探究的習慣,感受數(shù)形結合和從特殊到一般的思想.

  情感態(tài)度與價值觀:激發(fā)學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數(shù)學充滿探索和創(chuàng)造,體驗數(shù)學的美感,從而了解數(shù)學,喜歡數(shù)學.

 。ㄈ┙虒W重點:經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

  教學難點:用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點、突破難點的辦法:發(fā)揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解.

  二、教法與學法分析:

  學情分析:八年級學生已經具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠.另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.

  教法分析:結合八年級學生和本節(jié)教材的特點,在教學中采用“問題情境----建立模型----解釋應用---拓展鞏固”的模式, 選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。

  學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人.

  三、 教學過程設計

  1.創(chuàng)設情境,提出問題

  2.實驗操作,模型構建

  3.回歸生活,應用新知

  4.知識拓展,鞏固深化5.感悟收獲,布置作業(yè)

  (一)創(chuàng)設情境提出問題

  (1)圖片欣賞 勾股定理數(shù)形圖 1955年希臘發(fā)行 美麗的'勾股樹 20xx年國際數(shù)學 的一枚紀念郵票 大會會標 設計意圖:通過圖形欣賞,感受數(shù)學美,感受勾股定理的文化價值.

  (2) 某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?

  設計意圖:以實際問題為切入點引入新課,反映了數(shù)學來源于實際生活,產生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個“數(shù)學化”的過程,從而引出下面的環(huán)節(jié).

  二、實驗操作模型構建

  1.等腰直角三角形(數(shù)格子)

  2.一般直角三角形(割補)

  問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系?

  設計意圖:這樣做利于學生參與探索,利于培養(yǎng)學生的語言表達能力,體會數(shù)形結合的思想.

  問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?(割補法是本節(jié)的難點,組織學生合作交流)

  設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高.

  通過以上實驗歸納總結勾股定理.

  設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學生抽象、概括的能力,同時發(fā)揮了學生的主體作用,體驗了從特殊—— 一般的認知規(guī)律.

  三.回歸生活應用新知

  讓學生解決開頭情景中的問題,前呼后應,增強學生學數(shù)學、用數(shù)學的意識,增加學以致用的樂趣和信心.

  四、知識拓展鞏固深化

  基礎題,情境題,探索題.

  設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發(fā)展.知識的運用得到升華.

  基礎題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據條件提出多少個數(shù)學問題?你能解決所提出的問題嗎?

  設計意圖:這道題立足于雙基.通過學生自己創(chuàng)設情境,鍛煉了發(fā)散思維.

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機.小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了.你同意他的想法嗎?

  設計意圖:增加學生的生活常識,也體現(xiàn)了數(shù)學源于生活,并用于生活。

  探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。

  設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發(fā)展空間想象能力.

  五、感悟收獲布置作業(yè): 這節(jié)課你的收獲是什么?

  作業(yè): 李景萍《探索勾股定理》第一課時說課稿 1、課本習題2.1 2、搜集有關勾股定理證明的資料.

  板書設計 探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

  李景萍《探索勾股定理》第一課時說課稿

  設計說明::1.探索定理采用面積法,為學生創(chuàng)設一個和諧、寬松的情境,讓學生體會數(shù)形結合及從特殊到一般的思想方法.

  2.讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現(xiàn)出來的思維水平、表達水平.

《勾股定理》說課稿6

各位專家領導:

  上午好!今天我說課的課題是《勾股定理》。

  一、教材分析:

  (一)本節(jié)內容在全書和章節(jié)的地位。

  這節(jié)課是九年制義務教育課程標準實驗教科書(華東版),八年級第十九章第二節(jié)“勾股定理”第一課時。勾股定理是學生在已經掌握了直角三角形有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關系,它可以解決直角三角形的主要依據之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學生的動手操作能力和觀察分析問題的能力;通過實際分析,拼圖等活動,使學生獲得較為直觀的印象;通過聯(lián)系比較,理解勾股定理,以便于正確的進行運用。

  (二)三維教學目標:

  1、知識與能力目標。

 。1)理解并掌握勾股定理的內容和證明,能夠靈活運用勾股定理及其計算;

 。2)通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。

  2、過程與方法目標。

  在探索勾股定理的過程中,讓學生經歷“觀察-猜想-歸納-驗證”的數(shù)學思想,并體會數(shù)形結合和從特殊到一般的思想方法。

  3、情感態(tài)度與價值觀。

  通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國和熱愛祖國悠久文化的思想感情,培養(yǎng)學生的民族自豪感和鉆研精神。

  (三)教學重點、難點:

  1、教學重點:勾股定理的證明與運用

  2、教學難點:用面積法等方法證明勾股定理

  3、難點成因:

  對于勾股定理的得出,首先需要學生通過動手操作,在觀察的基礎上,大膽猜想數(shù)學結論,而這需要學生具備一定的分析、歸納的思維方法和運用數(shù)學的思想意識,但學生在這一方面的可預見性和耐挫折能力并不是很成熟,從而形成困難。

  4、突破措施:

 。1)創(chuàng)設情景,激發(fā)思維:

  創(chuàng)設生動、啟發(fā)性的問題情景,激發(fā)學生的問題沖突,讓學生在感到“有趣”、“有意思”的狀態(tài)下進入學習過程;

 。2)自主探索,敢于猜想:

  充分讓自己動手操作,大膽猜想數(shù)學問題的結論,老師是整個活動的組織者,更是一位參入者,學生之間相互交流、協(xié)作,從而形成生動的課堂環(huán)境;

 。3)張揚個性,展示風采:

  實行“小組合作制”,各小組中自己推薦一人擔任“發(fā)言人”,一人擔任“書記員”,在討論結束后,由小組的“發(fā)言人”匯報本小組的討論結果,并可上臺利用“多媒體視頻展示臺”展示本組的優(yōu)秀作品,其他小組給予評價。這樣既保證討論的有效性,也調動了學生的學習積極性。

  二、教法與學法分析:

  1、教法分析:

  數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科,因此在教學中,不僅要使學生“知其然”,而且還要使學生“知其所以然”。針對初二年級學生的認知結構和心理特征,本節(jié)課可選擇“引導探索法”,由淺到深,由特殊到一般的提出問題。引導學生自主探索,合作交流,這種教學理念緊隨新課改理念,也反映了時代精神;镜慕虒W程序是“創(chuàng)設情景-動手操作-歸納驗證-問題解決-課堂小結-布置作業(yè)”六個方面。

  2、學法分析:

  新課標明確提出要培養(yǎng)“可持續(xù)發(fā)展的學生”,因此教師要有組織、有目的、有針對性的引導學生并參入到學習活動中,鼓勵學生采用自主探索,合作交流的研討式學習方式,培養(yǎng)學生“動手”、“動腦”、“動口”的習慣與能力,使學生真正成為學習的主人。

  三、教學過程設計:

  (一)創(chuàng)設情景:

  多媒體課件演示FLASH小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?

  問題的設計有一定的挑戰(zhàn)性,目的是激發(fā)學生的探究欲望,老師要注意引導學生將實際問題轉化為數(shù)學問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學生會感到一些困難,從而老師指出學習了今天的這節(jié)課后,同學們就會有辦法解決了。這種以實際問題作為切入點導入新課,不僅自然,而且也反映了“數(shù)學來源于生活”,學習數(shù)學是為更好“服務于生活”。

  (二)動手操作:

  1、課件出示課本P99圖19.2.1:

  觀察圖中用陰影畫出的三個正方形,你從中能夠得出什么結論?

  學生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵學生用語言進行描述,引導學生發(fā)現(xiàn)SP+SQ=SR(此時讓小組“發(fā)言人”發(fā)言),從而讓學生通過正方形的面積之間的關系發(fā)現(xiàn):對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當∠C=90°,AC=BC時,則 AC2+BC2=AB2。這樣做有利于學生參與探索,感受數(shù)學學習的過程,也有利于培養(yǎng)學生的語言表達能力,體會數(shù)形結合的思想。

  2、緊接著讓學生思考:

  上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結論呢?于是再利用多媒體投影出P100圖 19.2.2(一般直角三角形)。學生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時可讓學生在預先準備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學生就能夠發(fā)現(xiàn):對于一般的以整數(shù)為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學生的動手操作、合作交流,來獲取知識,這樣設計有利于突破難點,也讓學生體會到觀察、猜想、歸納的數(shù)學思想及學習過程,提高學生的'分析問題和解決問題的能力。

  3、再問:

  當邊長不為整數(shù)的直角三角形是否也存在這一結論呢?投影例題:一個邊長分別為1.5,3.6,3.9這種含有小數(shù)的直角三角形,讓學生計算。這樣設計的目的是讓學生體會到“從特殊到一般”的情形,這樣歸納的結論更具有一般性。

  (三)歸納驗證:

  1、歸納:

  通過動手操作、合作交流,探索邊長為整數(shù)的等腰直角三角形到一般的直角三角形,再到邊長為小數(shù)的直角三角形的兩直角邊與斜邊的關系,讓學生在整個學習過程中感受學數(shù)學的樂趣,,使學生學會“文字語言”與“數(shù)學語言”這兩種表達方式,各小組“發(fā)言人”的積極表現(xiàn),整堂課充分發(fā)揮學生的主體作用,真正獲取知識,解決問題。

  2、驗證:

  先后三次驗證“勾股定理”這一結論,期間學生動手進行了畫圖、剪圖、拼圖,還有測量、計算等活動,使學生從中體會到數(shù)形結合和從特殊到一般的數(shù)學思想,而且這一過程也有利于培養(yǎng)學生嚴謹、科學的學習態(tài)度。

  (四)問題解決:

  1、讓學生解決開始上課前所提出的問題,前后呼應,讓學生體會到成功的快樂。

  2、自學課本P101例1,然后完成P102練習。

  (五)課堂小結:

  1、小組成員從內容、數(shù)學思想方法、獲取知識的途徑進行小結,后由“發(fā)言人”匯報,小組間要互相比一比,看看哪一個小組表現(xiàn)最佳。

  2、教師用多媒體介紹“勾股定理史話”。

 。1)《周髀算徑》:西周的商高(公元一千多年前)發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律。

 。2)康熙數(shù)學專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨創(chuàng)。

  3、目的:對學生進行愛國主義教育,激勵學生奮發(fā)向上。

  (六)布置作業(yè):

  課本P104習題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學生進一步體會定理與實際生活的聯(lián)系。

  以上內容,我僅從“說教材”,“說學情”、“說教法”、“說學法”、“說教學過程”上來說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領導對本次說課提出寶貴的意見,謝謝!

《勾股定理》說課稿7

  一、教材分析

  (一)教材所處的地位

  這節(jié)課是九年制義務教育課程標準實驗教科書八年級第十八章第一節(jié)勾股定理第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

  (二)根據課程標準,本課的教學目標是:

  1、知識技能:了解勾股定理的.文化背景,體驗勾股定理的探索過程。

  2、數(shù)學思考:在勾股定理的探索過程中,發(fā)展合情推理能力,體會數(shù)形結合的思想。

  3、解決問題:①通過拼圖活動,體驗數(shù)學思維的嚴謹性,發(fā)展形象思維。

 、谠谔骄窟^程中,學會與人合作并能與他人交流思維的過程和探究的結果。

  4、情感態(tài)度:①通過介紹勾股定理在中國古代的研究,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想,激發(fā)學生發(fā)奮學習。

 、谠谔骄窟^程中,體驗解決問題方法的多樣性,培養(yǎng)學生的合作交流意識和探索精神。

  (三)本課的教學重點:探索和證明勾股定理

  本課的教學難點:用拼圖的方法證明勾股定理

  二、教法與學法分析:

  教法分析:針對八年級學生的知識結構和心理特征,本節(jié)課可選擇引導探索法,由淺入深,由特殊到一般地提出問題。引導學生自主探索,合作交流,這種教學理念反映了時代精神,有利于提高學生的思維能力,能有效地激發(fā)學生的思維積極性,基本教學流程是:提出問題實驗操作歸納驗證問題解決鞏固練習課堂小結 布置作業(yè)七部分。

  學法分析:在教師的組織引導下,采用自主探索、合作交流的研討式學習方式,讓學生思考問題,獲取知識,掌握方法,借此培養(yǎng)學生動手、動腦、動口的能力,使學生真正成為學習的主體。

  三、教學過程設計

  (一)提出問題:

  首先提出問題1:你知道下圖所表示的意義嗎?創(chuàng)設問題情境,2002年在北京召開了第24屆國際數(shù)學家大會,它是最高水平的全球性數(shù)學科學學術會議,被譽為數(shù)學界的奧運會,這就是本屆大會會徽的圖案,你聽說過勾股定理嗎?通過提出問題,從而激發(fā)學生的求知欲。

  其次提出問題2:你知道勾三、股四、弦五的意義嗎?此問題由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學生的學習興趣,激發(fā)學生的求知欲。

《勾股定理》說課稿8

  一、 說教材分析

  1. 教材的地位和作用

  華師大版八年級上直角三角形三邊關系是學生在學習數(shù)的開方和整式的乘除后的一段內容,它是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它揭示了一個直角三角形三條邊之間的數(shù)量關系,為后面解直角三角形的作好鋪墊,它也是幾何中最重要的定理,它將形和數(shù)密切聯(lián)系起來,在數(shù)學的發(fā)展中起著重要的作用。

  因此他的教育教學價值就具體體現(xiàn)在如下三維目標中:

  知識與技能:

  1、經歷勾股定理的探索過程,體會數(shù)形結合思想。

  2、理解直角三角形三邊的關系,會應用勾股定理解決一些簡單的實際問題。

  過程與方法:

  1、經歷觀察—猜想—歸納—驗證等一系列過程,體會數(shù)學定理發(fā)現(xiàn)的過程,由特殊到一般的解決問題的方法。

  2、在觀察、猜想、歸納、驗證等過程中培養(yǎng)學生的數(shù)學語言表達能力和初步的邏輯推理能力。

  情感、態(tài)度與價值觀:

  1、通過對勾股定理歷史的了解,感受數(shù)學文化,激發(fā)學習興趣。

  2、在探究活動中,體驗解決問題方法的多樣性,培養(yǎng)學生的合作意識和然所精神。

  3、讓學生通過動手實踐,增強探究和創(chuàng)新意識,體驗研究過程,學習研究方法,逐步養(yǎng)成一種積極的生動的,自助合作探究的學習方式。

  由于八年級的學生具有一定分析能力,但活動經驗不足,所以

  本節(jié)課教學重點:勾股定理的探索過程,并掌握和運用它。

  教學難點:分割,補全法證面積相等,探索勾股定理。

  二、說教法學法分析:

  要上好一堂課,就是要把所確定的三維目標有機地溶入到教學過程中去,所以我采用了“引導探究式”的教學方法:

  先從學生熟知的生活實例出發(fā),以生活實踐為依托,將生活圖形數(shù)學化,然后由特殊到一般地提出問題,引導學生在自主探究與合作交流中解決問題,同時也真正體現(xiàn)了數(shù)學課堂是學生自己的課堂。

  學法:我想通過“操作+思考”這樣方式,有效地讓學生在動手、動腦、自主探究與合作交流中來發(fā)現(xiàn)新知,同時讓學生感悟到:學習任何知識的最好方法就是自己去探究。

  三、 說教學程序設計

  1、 故事引入新課,激起學生學習興趣。

  牛頓,瓦特的故事,讓學生科學家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學,我們應該學會觀察、思考,將學習與生活緊密結合起來。畢達哥拉斯的發(fā)現(xiàn)引入新課。

  2、探索新知

  在這里我設計了四個內容:

 、偬剿鞯妊苯侨切稳叺年P系

 、谶呴L為3、4、5為邊長的直角三角形的三邊關系

 、蹖W生畫兩直角邊為2,6的直角三角形,探索三邊的關系

 、苋厼閍、b、c的直角三角形的三邊的關系,(證明)

 、莨垂啥ɡ須v史介紹,讓學生體會勾股定理的文化價值。

  體現(xiàn)從特殊到一般的發(fā)現(xiàn)問題的過程。

  3、新知運用:

 、倥e出勾股定理在生活中的運用。(老師講解勾股定理在生活中的運用)

 、谠谥苯侨切沃校阎 B=90° ,AB=6,BC=8,求AC.

  ③要做一個人字梯,要求人字梯的跨度為6米,高為4米,請問怎么做?

 、苋鐖D,學校有一塊長方形花鋪,有極少數(shù)人為了避開拐角走“捷徑”,在花鋪內走出了一條“路”.他們僅僅少走了 步路(假設2步為1米),卻踩傷了花草.

  4、小結本課:

  學完了這節(jié)課,你有什么收獲?

  老師補充:科學家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學,我們應該學會觀察、思考,將學習與生活緊密結合起來。數(shù)學來源于實踐,而又應用于實踐。解決一個問題的'方法是多樣性的,我們要多思考。 勾股定是數(shù)學史上的明珠,證明方法有很多種,我們將在下一節(jié)課學習它。

  反思:

  教學設計主要是體現(xiàn)從特殊到一般的知識形成過程,探索問題的設計上有點難,第二個問題應加個3,3為直角邊的等腰直角三角形讓學生分割或者補全,這樣過度,降低3,4為直角邊的探索探索;在2,6為直角邊時,這個問題可以不用設計進去,就為后面的練習留足時間。探索時間較長,整個課程推行進度較慢,練習較少。

  對學生的啟發(fā)不夠,對學生的關注不夠,學生對問題的思考不能及時想出來,沒有及時很好的引導,啟發(fā),應讓學生多一些思考的空間,并及時交給思考的方法。學生反應不是太好,能力差,也或許是因為問題設計的較難,沒有很好的體現(xiàn)出探究。

  預期的目標沒有很好的達成,學生雖然掌握了勾股定理,但探索熱情沒有點燃,思維能力,動手能力,探索精神沒有很好的得到發(fā)展。

《勾股定理》說課稿9

  一、說教材

  (一)教材分析

  本節(jié)內容選自人教版八年級數(shù)學下冊第17章第二節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學習的一個直角三角形的判定定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學習中的重要內容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應用,同時在應用中滲透了利用代數(shù)計算的方法來證明幾何問題的思想,為將來學習解析幾何埋下了伏筆。

 。ǘ┙虒W目標

  根據數(shù)學課標的要求和教材的具體內容,結合學生實際我確定了本節(jié)課的教學目標。

  知識技能:

  理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。

  掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形。

  了解逆命題的概念,以及原命題為真時,它的逆命題不一定為真。

  過程方法:

  1、通過對勾股定理的逆定理的探索,經歷知識的發(fā)生、發(fā)展與形成的過程

  2、通過用三角形三邊的數(shù)量關系來判斷三角形的形狀,體驗數(shù)形結合方法的應用

  3、通過勾股定理的逆定理的證明,體會數(shù)與形結合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題。

  情感態(tài)度:

  在探究勾股定理的逆定理的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神

 。ㄈ⿲W情分析

  盡管已到初二下學期的.學生知識增多,能力增強,但思維的局限性還很大,能力之間也有差距,而利用“構造法”證明勾股定理的逆定理學生第一次見到,它要求根據已知條件構造一個直角三角形,根據學生的智能狀況,學生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點,而勾股定理逆定理的應用是本節(jié)重點

  重點:勾股定理逆定理的應用

  難點:勾股定理逆定理的證明

  二、說教法學法

  數(shù)學課程不僅注重知識、技能,以及情感意識和創(chuàng)造力的培養(yǎng),同樣注重社會實踐和體驗,教學要遵循以教師為主導,學生為主體的原則,因此我采用的教法學法如下:

  在教學中以小組合作,自主探索為形式,采用“提問引導法”,通過“提出疑問”來啟發(fā)誘導學生,讓學生自覺主動地去分析問題、解決問題,學生在操作過程中不斷“發(fā)現(xiàn)問題——解決問題”,變學生“學會”為“會學”.這樣不僅使學生學習目標明確,而且能夠培養(yǎng)他們的合作精神和自主學習的能力。根據學法指導自主性和差異性原則,本節(jié)我主要采用自主探究學習法,通過設計一系列問題,引導學生主動探究新知,體現(xiàn)學習自主性,從不同層面發(fā)掘不同學生的不同能力。

  三、說教學準備

  1、多媒體教學課件

  2、紙片、直尺、圓規(guī)等

  3、對學生事先分組

  四、說教學過程

  根據本課教學內容以及數(shù)學課程學科特點,結合八年級學生的實際認知水平,我設計了如下六個教學環(huán)節(jié):

  (一)復習提問、引入新課

  問題1:前面我們學習了勾股定理,你能說出它的題設和結論嗎?

  問題2:若一個三角形三邊具有a2+b2=c2,能否確定這個三角形是直角三角形?

 。ǘ﹦邮植僮鳌⒂^察猜想

  探究一:分組做實驗

  第一組同學每人畫一個邊長為3cm、4 cm、5 cm的三角形;

  第二組同學每人畫一個邊長為2.5 cm、6 cm、7.5 cm的三角形;

  第三組同學每人畫一個邊長為4 cm、7.5 cm、8.5 cm的三角形;

  第四組同學每人畫一個邊長為2 cm、5 cm、6 cm的三角形。

  問題1:觀察這些三角形,它們分別是什么形狀呢?并測量驗證

  問題2:前三個三角形三邊具有怎樣的關系呢?

  問題3: 結合三角形三邊長度的平方關系,你能猜一猜三角形的三邊長度與三角形的形狀之間有怎樣的關系嗎?

  學生活動:動手、觀察、測量、思考、猜想

  設計意圖:由特殊到一般,歸納猜想得出勾股定理的逆命題,既培養(yǎng)學生動手操作能力和尋求解決數(shù)學問題的一般方法,又體驗了數(shù)與形的內在聯(lián)系。

 。ㄈ⿲嵺`驗證,歸納證明

  教師出示問題

  問題1:對于一個真命題,它的逆命題是否也為真?學生舉例說明。

  勾股定理的逆命題是否也正確?怎么證明?

  問題2:三邊長度分別3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么關系,你是怎樣得到的?(出示紙片)

  問題3:你能否借鑒問題2的方法來證明勾股定理的逆命題呢?

  學生活動:觀察思考,動手操作,分組討論,交流合作(教師引導學生主動探索,在師生互動中完成證明,得到勾股定理的逆定理)

  設計意圖:把“構造直角三角形”這一方法的獲取過程交給學生,讓他們在不斷的嘗試、探究的過程中,親身體驗參與發(fā)現(xiàn)的愉悅,有效地突破本節(jié)的難點。

《勾股定理》說課稿10

  課題:“勾股定理”第一課時

  內容:教材分析、教學過程設計、設計說明

  一、教材分析

 。ㄒ唬┙滩乃幍牡匚

  這節(jié)課是九年制義務教育課程標準實驗教科書八年級第一章第一節(jié)探索勾股定理第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

 。ǘ└鶕n程標準,本課的教學目標是:

  1、能說出勾股定理的內容。

  2、會初步運用勾股定理進行簡單的計算和實際運用。

  3、在探索勾股定理的過程中,讓學生經歷“觀察—猜想—歸納—驗證”的數(shù)學思想,并體會數(shù)形結合和特殊到一般的思想方法。

  4、通過介紹勾股定理在中國古代的研究,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發(fā)奮學習。

 。ㄈ┍菊n的教學重點:探索勾股定理

  本課的教學難點:以直角三角形為邊的正方形面積的計算。

  二、教法與學法分析:

  教法分析:針對初二年級學生的知識結構和心理特征,本節(jié)課可選擇引導探索法,由淺入深,由特殊到一般地提出問題。引導學生自主探索,合作交流,這種教學理念反映了時代精神,有利于提高學生的思維能力,能有效地激發(fā)學生的思維積極性,基本教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結—布置作業(yè)六部分。

  學法分析:在教師的組織引導下,采用自主探索、合作交流的研討式學習方式,讓學生思考問題,獲取知識,掌握方法,借此培養(yǎng)學生動手、動腦、動口的能力,使學生真正成為學習的'主體。

  三、教學過程設計

 。ㄒ唬┨岢鰡栴}:

  首先創(chuàng)設這樣一個問題情境:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?問題設計具有一定的挑戰(zhàn)性,目的是激發(fā)學生的探究欲望,教師引導學生將實際問題轉化成數(shù)學問題,也就是“已知一直角三角形的兩邊,如何求第三邊?”的問題。學生會感到困難,從而教師指出學習了今天這一課后就有辦法解決了。這種以實際問題為切入點引入新課,不僅自然,而且反映了數(shù)學來源于實際生活,數(shù)學是從人的需要中產生這一認識的基本觀點,同時也體現(xiàn)了知識的發(fā)生過程,而且解決問題的過程也是一個“數(shù)學化”的過程。

 。ǘ⿲嶒灢僮鳎

  1、投影課本圖1—1,圖1—2的有關直角三角形問題,讓學生計算正方形A,B,C的面積,學生可能有不同的方法,不管是通過直接數(shù)小方格的個數(shù),還是將C劃分為4個全等的等腰直角三角形來求等等,各種方法都應予于肯定,并鼓勵學生用語言進行表達,引導學生發(fā)現(xiàn)正方形A,B,C的面積之間的數(shù)量關系,從而學生通過正方形面積之間的關系容易發(fā)現(xiàn)對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學生參與探索,感受數(shù)學學習的過程,也有利于培養(yǎng)學生的語言表達能力,體會數(shù)形結合的思想。

  2、接著讓學生思考:如果是其它一般的直角三角形,是否也具備這一結論呢?于是投影圖1—3,圖1—4,同樣讓學生計算正方形的面積,但正方形C的面積不易求出,可讓學生在預先準備的方格紙上畫出圖形,在剪一剪,拼一拼后學生也不難發(fā)現(xiàn)對于一般的以整數(shù)為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設計不僅有利于突破難點,而且為歸納結論打下了基礎,讓學生體會到觀察、猜想、歸納的思想,也讓學生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學習及有幫助。

  3、給出一個邊長為0.5,1.2,1.3,這種含小數(shù)的直角三角形,讓學生計算是否也滿足這個結論,設計的目的是讓學生體會到結論更具有一般性。

  (三)歸納驗證:

  1、歸納通過對邊長為整數(shù)的等腰直角三角形到一般直角三角形再到邊長含小數(shù)的直角三角形三邊關系的研究,讓學生用數(shù)學語言概括出一般的結論,盡管學生可能講的不完全正確,但對于培養(yǎng)學生運用數(shù)學語言進行抽象、概括的能力是有益的,同時發(fā)揮了學生的主體作用,也便于記憶和理解,這比教師直接教給學生一個結論要好的多。

  2、驗證為了讓學生確信結論的正確性,引導學生在紙上任意作一個直角三角形,通過測量、計算來驗證結論的正確性。這一過程有利于培養(yǎng)學生嚴謹、科學的學習態(tài)度。然后引導學生用符號語言表示,因為將文字語言轉化為數(shù)學語言是學習數(shù)學學習的一項基本能力。接著教師向學生介紹“勾,股,弦”的含義、勾股定理,進行點題,并指出勾股定理只適用于直角三角形。最后向學生介紹古今中外對勾股定理的研究,對學生進行愛國主義教育。

 。ㄋ模﹩栴}解決:

  讓學生解決開頭的實際問題,前后呼應,學生從中能體會到成功的喜悅。完成課本“想一想”進一步體會勾股定理在實際生活中的應用,數(shù)學是與實際生活緊密相連的。

 。ㄎ澹┱n堂小結:

  主要通過學生回憶本節(jié)課所學內容,從內容、應用、數(shù)學思想方法、獲取新知的途徑方面先進行小結,后由教師總結。

 。┎贾米鳂I(yè):

  課本P6習題1.11,2,3,4一方面鞏固勾股定理,另一方面進一步體會定理與實際生活的聯(lián)系。另外,補充一道開放題。

  四、設計說明

  1、本節(jié)課是公式課,根據學生的知識結構,我采用的教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結—布置作業(yè)六部分,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結合的思想。

  2、探索定理采用了面積法,引導學生利用實驗由特殊到一般再到更一般的對直角三角形三邊關系的研究,得出結論。這種方法是認識事物規(guī)律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好思維品質的形成有重要作用,對學生的終身發(fā)展也有一定的作用。

  3、關于練習的設計,除兩個實際問題和課本習題以外,我準備設計一道開放題,大致思路是在已畫出斜邊上的高的直角三角形中讓學生盡量地找出線段之間的關系。

  4、本課小結從內容,應用,數(shù)學思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結,又有方法的提煉,這樣對于學生學知識,用知識的意識是有很大的促進的。

《勾股定理》說課稿11

  一、 教材分析

 。ㄒ唬┙滩牡匚慌c作用

  勾股定理它揭示的是直角三角形中三邊的數(shù)量關系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

 。ǘ┙虒W目標 知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。 過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學生的合情推理意識、主動探究的習慣,感受數(shù)形結合和從特殊到一般的思想。 情感態(tài)度與價值觀: 激發(fā)愛國熱情,體驗自己努力得到結論的成就感,體驗數(shù)學充滿探索和創(chuàng)造,體驗數(shù)學的美感,從而了解數(shù)學,喜歡數(shù)學。

 。ㄈ┙虒W重點:經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

  教學難點:用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點、突破難點的辦法:發(fā)揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解。

  二、教法與學法分析:

  學情分析:七年級學生已經具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠。另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.

  教法分析:結合七年級學生和本節(jié)教材的特點,在教學中采用“問題情境----建立模型----解釋應用---拓展鞏固”的模式, 選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。

  學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人。

  三、 教學過程設計

  1、創(chuàng)設情境,提出問題 2、實驗操作,模型構建 3、回歸生活,應用新知 4、知識拓展,鞏固深化5、感悟收獲,布置作業(yè)

  (一)創(chuàng)設情境提出問題

  (1)圖片欣賞 勾股定理數(shù)形圖 1955年希臘發(fā)行 美麗的勾股樹20xx年國際數(shù)學的一枚紀念郵票 大會會標

  設計意圖:通過圖形欣賞,感受數(shù)學美,感受勾股定理的文化價值。

  (2) 某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6。5米長的云梯,如果梯子的底部離墻基的距離是2。5米,請問消防隊員能否進入三樓滅火?

  設計意圖:以實際問題為切入點引入新課,反映了數(shù)學來源于實際生活,產生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個“數(shù)學化”的過程,從而引出下面的環(huán)節(jié)。

  二、實驗操作模型構建

  1、等腰直角三角形(數(shù)格子)

  2、一般直角三角形(割補)

  問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系? 設計意圖:這樣做利于學生參與探索,利于培養(yǎng)學生的語言表達能力,體會數(shù)形結合的思想。

  問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?(割補法是本節(jié)的難點,組織學生合作交流)

  設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高。

  通過以上實驗歸納總結勾股定理。

  設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學生抽象、概括的能力,同時發(fā)揮了學生的主體作用,體驗了從特殊—— 一般的認知規(guī)律。

  三;貧w生活應用新知

  讓學生解決開頭情景中的問題,前呼后應,增強學生學數(shù)學、用數(shù)學的.意識,增加學以致用的樂趣和信心。

  四、知識拓展鞏固深化

  基礎題,情境題,探索題。

  設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發(fā)展。知識的運用得到升華。

  基礎題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據條件提出多少個數(shù)學問題?你能解決所提出的問題嗎?

  設計意圖:這道題立足于雙基.通過學生自己創(chuàng)設情境 ,鍛煉了發(fā)散思維.

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?

  設計意圖:增加學生的生活常識,也體現(xiàn)了數(shù)學源于生活,并用于生活。

  探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。

  設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發(fā)展空間想象能力。

  五、感悟收獲布置作業(yè): 這節(jié)課你的收獲是什么?

  作業(yè):1、課本習題2、1

  2、搜集有關勾股定理證明的資料。

  板書設計 探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2?b2?c2

  設計說明:1、探索定理采用面積法,為學生創(chuàng)設一個和諧、寬松的情境,讓學生體會數(shù)形結合及從特殊到一般的思想方法.

  2、讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現(xiàn)出來的思維水平、表達水平。

《勾股定理》說課稿12

  說課,就是教師備課之后講課之前(或者在講課之后)把教材、教法、學法、授課程序等方面的思路、教學設計、|板書設計及其依據面對面地對同行(同學科教師)或其他聽眾作全面講述的一項教研活動或交流活動。以下是小編整理的初中數(shù)學《勾股定理的逆定理》說課稿,歡迎大家閱讀參考。

  一、教材分析:

 。ㄒ唬、本節(jié)課在教材中的地位作用

  “勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學習的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學習中的重要內容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應用,同時在應用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學習解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內容之一。課標要求學生必須掌握。

 。ǘ、教學目標:

  根據數(shù)學課標的要求和教材的具體內容,結合學生實際我確定了本節(jié)課的教學目標。

  知識技能:

  1、理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。

  2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形

  過程與方法:

  1、通過對勾股定理的逆定理的探索,經歷知識的發(fā)生、發(fā)展與形成的過程

  2、通過用三角形三邊的數(shù)量關系來判斷三角形的形狀,體驗數(shù)與形結合方法的應用

  3、通過勾股定理的逆定理的證明,體會數(shù)與形結合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題。

  情感態(tài)度:

  1、通過用三角形三邊的數(shù)量關系來判斷三角形的形狀,體驗數(shù)與形的內在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關系

  2、在探究勾股定理的逆定理的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神

  (三)、學情分析:

  盡管已到初二下學期學生知識增多,能力增強,但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學生第一次見到,它要求根據已知條件構造一個直角三角形,根據學生的智能狀況,學生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點,這樣如何添輔助線就是解決它的關鍵,這樣就確定了本節(jié)課的重點、難點和關鍵。

  重點:勾股定理逆定理的應用

  難點:勾股定理逆定理的證明

  關鍵:輔助線的添法探索

  二、教學過程:

  本節(jié)課的設計原則是:使學生在動手操作的基礎上和合作交流的良好氛圍中,通過巧妙而自然地在學生的認識結構與幾何知識結構之間筑了一個信息流通渠道,進而達到完善學生的數(shù)學認識結構的目的。

  (一)、復習回顧:復習回顧與勾股定理有關的內容,建立新舊知識之間的聯(lián)系。

 。ǘ、創(chuàng)設問題情境

  一開課我就提出了與本節(jié)課關系密切、學生用現(xiàn)有的知識可探索卻又解決不好的問題,去提示本節(jié)課的.探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結,然后用樁釘如圖那樣的三角形,便得到一個直角三角形。這是為什么?……。這個問題一出現(xiàn)馬上激起學生已有知識與待研究知識的認識沖突,引起了學生的重視,激發(fā)了學生的興趣,因而全身心地投入到學習中來,創(chuàng)造了我要學的氣氛,同時也說明了幾何知識來源于實踐,不失時機地讓學生感到數(shù)學就在身邊。

 。ㄈ、學生在教師的指導下嘗試解決問題,總結規(guī)律(包括難點突破)

  因為幾何來源于現(xiàn)實生活,對初二學生來說選擇適當?shù)臅r機,讓他們從個體實踐經驗中開始學習,可以提高學習的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。

  這樣設計是因為勾股定理逆定理的證明方法是學生第一次見到,它要求按照已知條件作一個直角三角形,根據學生的智能狀況學生是不容易想到的,為了突破這個難點,我讓學生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數(shù)學模型。

  接下來就是利用這個數(shù)學模型,從理論上證明這個定理。從動手操作到證明,學生自然地聯(lián)想到了全等三角形的性質,證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉化,同時學生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學生不是被動接受勾股定理的逆定理,因而使學生感到自然、親切,學生的學習興趣和學習積極性有所提高。使學生確實在學習過程中享受到自我創(chuàng)造的快樂。

  在同學們完成證明之后,可讓他們對照課本把證明過程嚴格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學生看書的習慣,這也是在培養(yǎng)學生的自學能力。

 。ㄋ模、組織變式訓練

  本著由淺入深的原則,安排了三個題目。(演示)第一題比較簡單,讓學生口答,讓所有的學生都能完成。第二題則進了一層,字母代替了數(shù)字,繞了一個彎,既可以檢查本課知識,又可以提高靈活運用以往知識的能力。第三題則要求更高,要求學生能夠推出可能的結論,這些作法培養(yǎng)了學生靈活轉換、舉一反三的能力,發(fā)展了學生的思維,提高了課堂教學的效果和利用率。在變式訓練中我還采用講、說、練結合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學生的學習過程,隨時反饋,調節(jié)教法,同時注意加強有針對性的個別指導,把發(fā)展學生的思維和隨時把握學生的學習效果結合起來。

  (五)、歸納小結,納入知識體系

  本節(jié)課小結先讓學生歸納本節(jié)知識和技能,然后教師作必要的補充,尤其是注意總結思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結合的思想,并告訴同學今天的勾股定理逆定理是同學們通過自己親手實踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題認識問題的好方法,希望同學在課外練習時注意用這種方法,這都是教給學習方法。

 。、作業(yè)布置

  由于學生的思維素質存在一定的差異,教學要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。A組是基本的思維訓練項目,全體都要做,這樣有利于學生學習習慣的培養(yǎng),以及提高他們學好數(shù)學的信心。B組題適當加大難度,拓寬知識,供有能力又有興趣的學生做,日積月累,對訓練和培養(yǎng)他們的思維素質,發(fā)展學生的個性有積極作用。

  三、說教法、學法與教學手段

  為貫徹實施素質教育提出的面向全體學生,使學生全面發(fā)展主動發(fā)展的精神和培養(yǎng)創(chuàng)新活動的要求,根據本節(jié)課的教學內容、教學要求以及初二學生的年齡和心理特征以及學生的認知規(guī)律和認知水平,本節(jié)課我主要采用了以學生為主體,引導發(fā)現(xiàn)、操作探究的教學方法,即不違反科學性又符合可接受性原則,這樣有利于培養(yǎng)學生的學習興趣,調動學生的學習積極性,發(fā)展學生的思維;有利于培養(yǎng)學生動手、觀察、分析、猜想、驗證、推理能力和創(chuàng)新能力;有利于學生從感性認識上升到理性認識,加深對所學知識的理解和掌握;有利于突破難點和突出重點。

  此外,本節(jié)課我還采用了理論聯(lián)系實際的教學原則,以教師為主導、學生為主體的教學原則,通過聯(lián)系學生現(xiàn)有的經驗和感性認識,由最鄰近的知識去向本節(jié)課遷移,通過動手操作讓學生獨立探討、主動獲取知識。

  總之,本節(jié)課遵循從生動直觀到抽象思維的認識規(guī)律,力爭最大限度地調動學生學習的積極性;力爭把教師教的過程轉化為學生親自探索、發(fā)現(xiàn)知識的過程;力爭使學生在獲得知識的過程中得到能力的培養(yǎng)。

《勾股定理》說課稿13

尊敬的各位領導,各位老師:

  大家好!今天我說課的內容是初中八年級數(shù)學人教版教材第十八章第一節(jié)《勾股定理》(第一課時),下面我分五部分來匯報我這節(jié)課的教學設計,這就是"教材分析"、"學情分析"、"教法選擇"、"學法指導"、"教學過程"。

  一、教材分析

 。ㄒ唬 教材地位和作用

  勾股定理是幾何中的重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關系,將幾何圖形與數(shù)字聯(lián)系起來。它在數(shù)學的發(fā)展中起過重要的作用,在生產生活中有著廣泛的應用。而且它在其它自然學科中也常常用到。因此,這節(jié)課有著舉足輕重的地位。

 。ǘ┙虒W目標

  根據新課程標準的要求和本課的特點,結合學生的實際情況,我確定了本課的教學目標:

  1、知識與技能方面

  了解勾股定理的文化背景,經歷探索勾股定理的過程,掌握直角三角形三邊之間的數(shù)量關系, 并能簡單應用。

  2、過程與方法方面

  經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,能感受到數(shù)學思考過程的條理性,發(fā)展數(shù)學的說理和簡單的推理的意識,和語言表達的能力,并體會數(shù)形結合和特殊到一般的思想方法。

  3、情感態(tài)度與價值觀方面

 。1)通過了解勾股定理的歷史,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發(fā)奮學習。

 。2) 通過研究一系列富有探 究性的問題,培養(yǎng)學生與他人交流、合作的意識和品質。

 。ㄈ┙虒W重點難點

  教學重點:掌握勾股定理,并能用它來解決一些簡單的問題。

  教學難點:勾股定理的證明。

  二、學情分析

  我們班日常經常使用多媒體輔助教學。經過一年多的幾何學習,學生對幾何圖形的觀察,幾何圖形的分析能力已初步形成。部分學生解題思維能力比較高,能夠正確 歸納所學知識,通過學習小組討論交流,能夠形成解決問題的思路。 現(xiàn)在的學生已經厭倦教師單獨的說教方式,希望教師設計便于他們進行觀察的幾何環(huán)境,給他們自己探索、發(fā)表自己見解和表現(xiàn)自己才華的機會;更希望教師滿足他 們的創(chuàng)造愿望。

  三、教法選擇

  根據本節(jié)課的教學目標、教學內容以及學生的認知特點,結合我校的“當堂達標”教學模式,我在教法上采用引導發(fā)現(xiàn)法為主,并以分析法、討論法相結合。設計" 觀察——討論—歸納"的教學方法,意在幫助學生通過自己動手實驗和直觀情景觀察,從實踐中獲取知識,并通過討論來深化對知識的理解。本節(jié)課采用了多媒體輔 助教學,能夠直觀、生動的反應圖形,增加課堂的容量,同時有利于突出重點、分散難點,增強教學形象性,更好的提高課堂效率。

  四、學法指導:

  為了充分體現(xiàn)《新課標》的要求,培養(yǎng)學生的觀察分析能力,邏輯思維能力,積累豐富的數(shù)學學習經驗,這節(jié)課主要采用觀察分析,自主探索與合作交流的學習方 法,使學生積極參與教學過程。在教學過程中展開思維,培養(yǎng)學生提出問題、分析問題、解決問題的能力,進一步體會觀察、類比、分析、從特殊到一般等數(shù)學思 想。借此培養(yǎng)學生動手、動腦、動口的能力,使學生真正成為學習的主人。

  五、教學過程

  根據《新課標》中"要引導學生投入到探索與交流的學習活動中"的教學要求,本節(jié)課的教學過程我是這樣設計的:

  (一)創(chuàng)設情境,引入新課

  一個設計合理的情境引入可以說在一定程度上決定著學生能否帶著興趣積極投入到本節(jié)課的學習中。為了體現(xiàn)數(shù)學源于生活,數(shù)學是從人的需要中產生的,學習數(shù)學的目的是為了用數(shù)學解決實際問題。我設計了以下題目:

  星期日老師帶領全班同學去某山風景區(qū)游玩,同學們看到山勢險峻,查看景區(qū)示意圖得知:這座山主峰高約為900米,如圖:為了方便游人,此景區(qū)從主峰A處向地面B處架了一條纜車線路,已知山底端C處與地面B處相距1200米,

  ∠ACB=90° ,你能用所學知識算出纜車路線AB長應為多少?

  答案是不能的。然后教師指出,通過這節(jié)課的學習,問題將迎刃而解。

  設計意圖:以趣味性題目引入。從而設置懸念,激發(fā)學生的學習興趣。 教師引導學生把實際問題轉化為數(shù)學問題,這其中滲透了一種數(shù)學思想,對于學生也是一種挑戰(zhàn),能激發(fā)學生探究的欲望,自然引出下面的環(huán)節(jié)。

  緊接著出示本節(jié)課的學習目標:

  1、了解勾股定理的文化背景,體驗勾股定理的探索過程。

  2、掌握勾股定理的內容,并會簡單應用。

  (二)勾股定理的探索

  1、猜想結論

 。1)探究一:等腰直角三角形三邊關系。

  由課本64頁畢達哥拉斯的`故事,探究等腰直角三角形三邊關系。結合課件中格點圖形的面積,學生自主探究,通過計算、討論、總結,得出結論:等腰直角三角形的斜邊的平方等于兩直角邊的平方和。

  在此過程中,給學生充分的時間、觀察、比較、交流,最后通過活動讓學生用語言概括總結。

  提問:等腰直角三角形有這樣的性質,其他的直角三角形也有這樣的性質嗎?

 。2、)探究二:一般的直角三角形三邊關系。

  在課件中的格點圖形中,利用面積,再次探究直角三角形的三邊關系。學生自主探究,通過計算、討論、總結,得出結論:在直角三角形中,兩直角邊的平方和等于斜邊的平方。

  設 計意圖:組織學生進行討論,在此基礎上教師引導學生從三邊的平方有何大小關系入手進行觀察。教師在多媒體課件上直觀地演示。通過學生自己探索、討論,由學 生自己得出結論。這樣,讓學生參與定理的再發(fā)現(xiàn)過程,他們通過自己觀察、計算所得出的定理,在心理產生自豪感,從而增強學生的學習數(shù)學的自信心。

  2、證明猜想

  目前世界上證明該勾股定理的方法有很多種,而我國古代數(shù)學家利用拼接、割補圖形,計算面積的思路提供了很多種證明方法,下面我們通過古人趙爽的方法進行證 明。學生分組活動,根據圖形的面積進行計算,推導出勾股定理的一般形式:a + b = c。即直角三角形兩直角邊的平方和等于斜邊的平方、

  設計意圖:通過利用多媒體課件的演示,更直觀、形象的向學生介紹用拼接、割補圖形,計算面積的證明方法,使學生認識到證明的必要性、結論的確定性,感受到前人的偉大和智慧。

  3、簡要介紹勾股定理命名的由來

  我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數(shù)學家商高就提出,將一根直尺折成一個直角,如果勾等于三,股等于四,那么弦就等于五,即 “勾三、股四、弦五”,它被記載于我國古代著名的數(shù)學著作《周髀算經》中、我國稱這個結論為"勾股定理",西方畢達哥拉斯于公元前五世紀發(fā)現(xiàn)了勾股定理, 但他比商高晚出生五百多年。

  設計意圖:對比以上事實對學生進行愛國主義教育,激勵他們奮發(fā)向上。

 。ㄈ┕垂啥ɡ淼膽

  1、利用勾股定理,解決引入中的問題。體會數(shù)學在實際生活中的應用。

  2、教學例1:課本66頁探究1

  師生討論、分析: 木板的寬2、2米大于1米,所以橫著不能從門框內通過.

  木板的寬2、2米大于2米,所以豎著不能從門框內通過.

  因為對角線AC的長度最大,所以只能試試斜著 能否通過.

  從而將實際問題轉化為數(shù)學問題.

  提示:

 。1)在圖中構造出一個直角三角形。(連接AC)

 。2)知道直角△ABC的那條邊?

 。3)知道直角三角形兩條邊長求第三邊用什么方法呢?

  設計意圖:此題是將實際為題轉化為數(shù)學問題,從中抽象出Rt△ABC,并求出斜邊A C的長。本例意在滲透實際問題和勾股定理的知識聯(lián)系。通過系列問題的設置和解決,旨在降低難度,分散難點,使難點予以突破,讓學生掌握勾股定理在具體問題中的應用,使學生獲得新知,體驗成功,從而增加學習興趣。

  (四)、課堂練習 習題18、1 1、5。 學生板演,師生點評。

  設計意圖:通過練習使學生加深對勾股定理的理解,讓學生比較練習題和例題中條件的異同,進一步讓學生理解勾股定理的運用。

 。ㄎ澹┱n堂小結

  對學生提問:"通過這節(jié)課的學習有什么收獲?"

  學生同桌間暢談自己的學習感受和體會,并請個別學生發(fā)言。

  設計意圖:讓學生自己小結,活躍了氣氛,做到全員參與,理清了知識脈絡,強化了重點,培養(yǎng)了學生口頭表達能力。

  (六)達標訓練與反饋

  設計意圖:必做題較為簡單,要求全體學生完成;選作題有一點的難度,基礎較好的學生能夠完成,體現(xiàn)分層教學。

  以上內容,我僅從"說教材","說學情"、"說教法"、"說學法"、"說教學過程"五個方面來說明這堂課"教什么"和"怎么教",也闡述了"為什么這樣 教",讓學生人人參與,注重對學生活動的評價, 探索過程中,會為學生創(chuàng)設一個和諧、寬松的情境。希望得到各位專家領導的指導與指正,謝謝!

《勾股定理》說課稿14

  一、教材分析

  (一)、本節(jié)課在教材中的地位作用

  “勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學習的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學習中的重要內容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應用,同時在應用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學習解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內容之一。課標要求學生必須掌握。

 。ǘ、教學目標

  1、知識技能:1理解并會證明勾股定理的逆定理;

  2會應用勾股定理的逆定理判定一個三角形是否為直角三角形; 3知道什么叫勾股數(shù),記住一些覺見的勾股數(shù).

  2、過程與方法:通過對勾股定理的逆定理的探索和證明,經歷知識的發(fā)生,發(fā)展與形成的過程,體驗“數(shù)形結合”方法的應用。

  3、情感、態(tài)度價值觀 培養(yǎng)數(shù)學思維以及合情推理意識,感悟勾股定理和逆定理的應用價值。滲透與他人交流、合作的意識和探究精神,體驗數(shù)與形的內在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關系。

 。ㄈ、學情分析:

  盡管已到初二下學期學生知識增多,能力增強,但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學生第一次見到,它要求根據已知條件構造一個直角三角形,根據學生的智能狀況,學生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點,這樣就確定了本節(jié)課的重點、難點。 教學重點:勾股定理逆定理的應用

  教學難點:勾股定理逆定理的證明

  二、教學過程

  本節(jié)課的設計原則是:使學生在動手操作的基礎上和合作交流的良好氛圍中,通過巧妙而自然地在學生的認識結構與幾何知識結構之間筑了一個信息流通渠道,進而達到完善學生的數(shù)學認識結構的目的。

 。ㄒ唬⿵土暬仡

  復習回顧與直角三角形、勾股定理有關的內容,建立新舊知識之間的聯(lián)系。

  (二)創(chuàng)設問題情境

  一開課我就提出了與本節(jié)課關系密切、學生用現(xiàn)有的知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結,然后用樁釘如圖那樣的三角形,便得到一個直角三角形。這是為什么?。這個問題一出現(xiàn)馬上激起學生已有知識與待研究知識的認識沖突,引起了學生的重視,激發(fā)了學生的興趣,因而全身心地投入到學習中來,創(chuàng)

  造了我要學的氣氛,同時也說明了幾何知識來源于實踐,不失時機地讓學生感到數(shù)學就在身邊。

 。ㄈ⿲W生在教師的指導下嘗試解決問題,總結規(guī)律(包括難點突破)

  因為幾何來源于現(xiàn)實生活,對初二學生來說選擇適當?shù)腵時機,讓他們從個體實踐經驗中開始學習,可以提高學習的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學生通過動手畫圖在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。

  這樣設計是因為勾股定理逆定理的證明方法是學生第一次見到,它要求按照已知條件作一個直角三角形,根據學生的智能狀況學生是不容易想到的,為了突破這個難點,我讓學生動手畫出了一個兩直角邊與所給三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數(shù)學模型。

  接下來就是利用這個數(shù)學模型,從理論上證明這個定理。從動手操作到證明,學生自然地聯(lián)想到了全等三角形的性質,證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉化,同時學生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學生不是被動接受勾股定理的逆定理,因而使學生感到自然、親切,學生的學習興趣和學習積極性有所提高。使學生確實在學習過程中享受到自我創(chuàng)造的快樂。

  在同學們完成證明之后,同時讓學生總結互逆命題、互逆定理的關系,并舉例指出哪些為互逆定理。然后讓他們對照課本把證明過程嚴格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學生看書的習慣,這也是在培養(yǎng)學生的自學能力。

 。ㄋ模┙M織變式訓練

  本著由淺入深的原則,安排了兩個例題。(演示)第一題比較簡單,讓學生口答,讓所有的學生都能完成。第二題則進了一層,不僅判斷是否為直接三角形,還繞了一個彎,指出哪一個角是直角。這樣既可以檢查本課知識,又可以提高靈活運用以往知識的能力。例題講解后安排了三個練習,循序漸進,由淺入深。培養(yǎng)了學生靈活轉換、舉一反三的能力,發(fā)展了學生的思維,提高了課堂教學的效果和利用率。讓學生知道勾股逆定理的用途,激發(fā)學生的學習興趣。我還采用講、說、練結合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學生的學習過程,隨時反饋,調節(jié)教法,同時注意加強有針對性的個別指導,把發(fā)展學生的思維和隨時把握學生的學習效果結合起來。

 。ㄎ澹w納小結,納入知識體系

  本節(jié)課小結先讓學生歸納本節(jié)知識和技能,然后教師作必要的補充,尤其是注意總結思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結合的思想,并

  告訴同學今天的勾股定理逆定理是同學們通過自己親手實踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題認識問題的好方法,希望同學在課外練習時注意用這種方法,這都是教給學習方法。

 。┳鳂I(yè)布置

  由于學生的思維素質存在一定的差異,教學要貫徹“因材施教”的原則,為此我安排了兩題作業(yè)。第一題是基本的思維訓練項目,全體都要做,這樣有利于學生學習習慣的培養(yǎng),以及提高他們學好數(shù)學的信心。第二題適當加大難度,拓寬知識,供有能力又有興趣的學生做,日積月累,對訓練和培養(yǎng)他們的思維素質,發(fā)展學生的個性有積極作用。

  三、說教法學法與教學手段

  為貫徹實施素質教育提出的面向全體學生,使學生全面發(fā)展主動發(fā)展的精神和培養(yǎng)創(chuàng)新活動的要求,根據本節(jié)課的教學內容、教學要求以及初二學生的年齡和心理特征以及學生的認知規(guī)律和認知水平,本節(jié)課我主要采用了以學生為主體,引導發(fā)現(xiàn)、操作探究的教學方法,即不違反科學性又符合可接受性原則,這樣有利于培養(yǎng)學生的學習興趣,調動學生的學習積極性,發(fā)展學生的思維;有利于培養(yǎng)學生動手、觀察、分析、猜想、驗證、推理能力和創(chuàng)新能力;有利于學生從感性認識上升到理性認識,加深對所學知識的理解和掌握;有利于突破難點和突出重點。

  此外,本節(jié)課我還采用了理論聯(lián)系實際的教學原則,以教師為主導、學生為主體的教學原則,通過聯(lián)系學生現(xiàn)有的經驗和感性認識,由最鄰近的知識去向本節(jié)課遷移,通過動手操作讓學生獨立探討、主動獲取知識。

  總之,本節(jié)課遵循從生動直觀到抽象思維的認識規(guī)律,力爭最大限度地調動學生學習的積極性;力爭把教師教的過程轉化為學生親自探索、發(fā)現(xiàn)知識的過程;力爭使學生在獲得知識的過程中得到能力的培養(yǎng)。

《勾股定理》說課稿15

  一、 教材分析

  (一)教材地位

  這節(jié)課是九年制義務教育初級中學教材北師大版八年級第一章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

  (二)教學目標

  知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。

  過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學生的合情推理意識、主動探究的習慣,感受數(shù)形結合和從特殊到一般的思想。

  情感態(tài)度與價值觀:激發(fā)學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數(shù)學充滿探索和創(chuàng)造,體驗數(shù)學的美感,從而了解數(shù)學,喜歡數(shù)學。

  (三)教學重點:

  經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

  教學難點:用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點、突破難點的辦法:發(fā)揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解。

  二、教法與學法分析:

  學情分析:八年級學生已經具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠。另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.

  教法分析:結合八年級學生和本節(jié)教材的特點,在教學中采用“問題情境————建立模型————解釋應用———拓展鞏固”的模式, 選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。

  學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人。

  三、 教學過程設計

  1、創(chuàng)設情境,提出問題

  2、實驗操作,模型構建

  3、回歸生活,應用新知

  4、知識拓展,鞏固深化5。感悟收獲,布置作業(yè)

  (一)創(chuàng)設情境提出問題

  樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6。5米長的云梯,如果梯子的`底部離墻基的距離是2。5米,請問消防隊員能否進入三樓滅火?

  設計意圖:以實際問題為切入點引入新課,反映了數(shù)學來源于實際生活,產生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個“數(shù)學化”的過程,從而引出下面的環(huán)節(jié)。

  實驗操作模型構建

  1、等腰直角三角形(數(shù)格子)

  2、一般直角三角形(割補)

  問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系?

  設計意圖:這樣做利于學生參與探索,利于培養(yǎng)學生的語言表達能力,體會數(shù)形結合的思想。

  問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?(割補法是本節(jié)的難點,組織學生合作交流)

  設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高。

  通過以上實驗歸納總結勾股定理。

  設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學生抽象、概括的能力,同時發(fā)揮了學生的主體作用,體驗了從特殊—— 一般的認知規(guī)律。

  回歸生活應用新知

  讓學生解決開頭情景中的問題,前呼后應,增強學生學數(shù)學、用數(shù)學的意識,增加學以致用的樂趣和信心。

  四、知識拓展鞏固深化

  基礎題,情境題,探索題。

  設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發(fā)展。知識的運用得到升華。

  基礎題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據條件提出多少個數(shù)學問題?你能解決所提出的問題嗎?

  設計意圖:這道題立足于雙基.通過學生自己創(chuàng)設情境,鍛煉了發(fā)散思維.

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?

  設計意圖:增加學生的生活常識,也體現(xiàn)了數(shù)學源于生活,并用于生活。

  探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。

  設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發(fā)展空間想象能力。

  五、感悟收獲布置作業(yè):

  這節(jié)課你的收獲是什么?

  1、課本習題2。1

  2、搜集有關勾股定理證明的資料。

  板書設計 探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

  李景萍《探索勾股定理》第一課時說課稿

  設計說明:

  1、探索定理采用面積法,為學生創(chuàng)設一個和諧、寬松的情境,讓學生體會數(shù)形結合及從特殊到一般的思想方法.

  2、讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現(xiàn)出來的思維水平、表達水平。

【《勾股定理》說課稿】相關文章:

勾股定理的說課稿,勾股定理說課稿范文05-06

《勾股定理》說課稿06-20

《勾股定理》說課稿12-16

探索勾股定理說課稿12-06

探索《勾股定理》說課稿01-04

《勾股定理》說課稿優(yōu)秀03-04

《勾股定理》優(yōu)秀說課稿02-13

關于勾股定理說課稿03-22

《勾股定理》的說課稿15篇01-18

勾股定理的逆定理說課稿05-15