- 勾股定理的逆定理說課稿 推薦度:
- 勾股定理說課稿 推薦度:
- 《勾股定理》的說課稿 推薦度:
- 相關(guān)推薦
勾股定理說課稿范文集合八篇
作為一位杰出的老師,時常需要編寫說課稿,說課稿可以幫助我們提高教學效果。那么說課稿應(yīng)該怎么寫才合適呢?以下是小編為大家收集的勾股定理說課稿8篇,歡迎閱讀與收藏。
勾股定理說課稿 篇1
一、教材分析
。ㄒ唬┙滩牡匚:這節(jié)課是九年制義務(wù)教育初級中學教材北師大版七年級第二章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎(chǔ)上對直角三角形有進一步的認識和理解。
(二)教學目標:
知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題.
過程與方法:經(jīng)歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學生的合情推理意識、主動探究的習慣,感受數(shù)形結(jié)合和從特殊到一般的思想.
情感態(tài)度與價值觀:激發(fā)學生愛國熱情,讓學生體驗自己努力得到結(jié)論的成就感,體驗數(shù)學充滿探索和創(chuàng)造,體驗數(shù)學的美感,從而了解數(shù)學,喜歡數(shù)學.
(三)教學重點:經(jīng)歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。
教學難點:用面積法(拼圖法)發(fā)現(xiàn)勾股定理。
突出重點、突破難點的辦法:發(fā)揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解.
二、教法與學法分析:
學情分析:七年級學生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠.另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.
教法分析:結(jié)合七年級學生和本節(jié)教材的特點,在教學中采用“問題情境----建立模型----解釋應(yīng)用---拓展鞏固”的模式,選擇引導探索法。把教學過程轉(zhuǎn)化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。
學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人.
三、教學過程設(shè)計
1.創(chuàng)設(shè)情境,提出問題
2.實驗操作,模型構(gòu)建
3.回歸生活,應(yīng)用新知
4.知識拓展,鞏固深化
5.感悟收獲,布置作業(yè)
(一)創(chuàng)設(shè)情境提出問題
(1)圖片欣賞勾股定理數(shù)形圖1955年希臘發(fā)行美麗的勾股樹20xx年國際數(shù)學的一枚紀念郵票大會會標
設(shè)計意圖:通過圖形欣賞,感受數(shù)學美,感受勾股定理的文化價值.
(2)某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?
設(shè)計意圖:以實際問題為切入點引入新課,反映了數(shù)學來源于實際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個“數(shù)學化”的過程,從而引出下面的環(huán)節(jié).
二、實驗操作模型構(gòu)建
1.等腰直角三角形(數(shù)格子)2.一般直角三角形(割補)
問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?
設(shè)計意圖:這樣做利于學生參與探索,利于培養(yǎng)學生的語言表達能力,體會數(shù)形結(jié)合的思想.
問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關(guān)系嗎?(割補法是本節(jié)的難點,組織學生合作交流)
設(shè)計意圖:不僅有利于突破難點,而且為歸納結(jié)論打下基礎(chǔ),讓學生的分析問題解決問題的能力在無形中得到提高.
通過以上實驗歸納總結(jié)勾股定理.
設(shè)計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學生抽象、概括的能力,同時發(fā)揮了學生的主體作用,體驗了從特殊——一般的認知規(guī)律.
三.回歸生活應(yīng)用新知
讓學生解決開頭情景中的問題,前呼后應(yīng),增強學生學數(shù)學、用數(shù)學的.意識,增加學以致用的樂趣和信心.
四、知識拓展鞏固深化
基礎(chǔ)題,情境題,探索題.
設(shè)計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關(guān)注學生的個性發(fā)展.知識的運用得到升華.
基礎(chǔ)題:直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個數(shù)學問題?你能解決所提出的問題嗎?
設(shè)計意圖:這道題立足于雙基.通過學生自己創(chuàng)設(shè)情境,鍛煉了發(fā)散思維.
情境題:小明媽媽買了一部29英寸(74厘米)的電視機.小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了.你同意他的想法嗎?
設(shè)計意圖:增加學生的生活常識,也體現(xiàn)了數(shù)學源于生活,并用于生活。
探索題:做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。
設(shè)計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發(fā)展空間想象能力.
五、感悟收獲布置作業(yè):
這節(jié)課你的收獲是什么?
作業(yè):
1、課本習題2.1
2、搜集有關(guān)勾股定理證明的資料.
板書設(shè)計探索勾股定理
如果直角三角形兩直角邊分別為a,b,斜邊為c,那么
設(shè)計說明:
1.探索定理采用面積法,為學生創(chuàng)設(shè)一個和諧、寬松的情境,讓學生體會數(shù)形結(jié)合及從特殊到一般的思想方法.
2.讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現(xiàn)出來的思維水平、表達水平.
勾股定理說課稿 篇2
本節(jié)課設(shè)計力求讓學生參與知識的發(fā)現(xiàn)過程,體現(xiàn)以學生為主體,以促進學生發(fā)展為本的教學理念,變知識的傳授者為學生自主探求知識的引導者、指導者、合作者。并利用多媒體,直觀教具演示,營造一個聲像同步,能動能靜的教學情境,給學生提供一個探索的空間,促使學生主動參與,親身體驗勾股定理的探索證明過程,從而鍛煉思維、激發(fā)創(chuàng)造,優(yōu)化課堂教學。努力做到有傳統(tǒng)的教學課堂像實驗課堂轉(zhuǎn)變,使學生真正成為學習的主人,培養(yǎng)了學生的素質(zhì)能力,達到了良好的教學效果。
(一)創(chuàng)設(shè)情境,引入新課
課前首先讓學生閱讀趙爽的弦圖相關(guān)知識讓他們體會中國古代科學的發(fā)達。在課堂上緊密結(jié)合前面已學的知識進行導入。如提出問題:你見過這個圖案嗎?你聽說過勾股定理嗎?你還記得三角形的三邊遵循什么規(guī)律嗎?等等一系列的問題激起學生學生的熱情和求知欲,然后順利進入探究。本節(jié)我們就來學習一下直角三角形的三條邊除具備前面的性質(zhì)外還有什么新的特征。
(二)引導學生,探究新知
、俪醪礁兄ɡ恚哼@一環(huán)節(jié)我選擇了教材的圖片,講述畢達哥拉斯到朋友家做客時發(fā)現(xiàn)用磚鋪成的地面,其中含有直角三角形三邊的數(shù)量關(guān)系,創(chuàng)設(shè)感知情境,提出問題,現(xiàn)在請同學觀察,看看有什么發(fā)現(xiàn)?(學案出示)使問題更形象、具體。
②提出猜想:在活動1的基礎(chǔ)上,學生已發(fā)現(xiàn)一些規(guī)律,進一步通過活動2進行看一看、填一填、想一想、議一議、做一做,讓學生感受不只是等腰直角三角形才具有這樣的性質(zhì),學生再由淺到深,由特殊到一般的提出問題,啟發(fā)學生得出猜想,直角三角形的兩直角邊的平分和等于斜邊的平方。
、圩C明猜想:是不是所有的直角三角形都有這樣的特點呢?這就需要我們對一個一般的直角三角形進行證明:通過活動3我充分引導學生利用直觀教具,進行拼圖實驗,在動手操中放手讓學生思考、討論、合作、交流、探究問題的多種方法。,并對學生的做法給予表揚,使學生在學習過程中,感受到自我創(chuàng)造的`快樂,從而分散了教學難點,發(fā)現(xiàn)了利用面積相等去證明勾股定理的方法。
、芸偨Y(jié)定理:讓學生自己總結(jié),不完善之處由教師補充,在前面探究活動的基礎(chǔ)上,學生容易得出直角三角形的三邊數(shù)量關(guān)系即勾股定理。
(三)反饋訓練,鞏固新知
學生對所學的知識是否掌握了,達到了什么程度?為了檢測學生對本課的達成情況和加強對學生能力的培養(yǎng),我設(shè)計了一組坡有難度的練習題。
(四)歸納總結(jié),深化新知
本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進一步研究的問題是什么?……
通過小結(jié),使學生進一步明確掌握教學目標,使知識成為體系。
(五)布置作業(yè)。拓展新知
讓學生收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流。使本節(jié)知識得到拓展、延伸,培養(yǎng)了學生能力和思維的深刻性,讓學生感受數(shù)學深厚的文化底蘊。
(六)板書設(shè)計,明確新知
勾股定理說課稿 篇3
一、 教材分析
1. 教材的地位和作用
它也是幾何中最重要的定理,它將形和數(shù)密切聯(lián)系起來,在數(shù)學的發(fā)展中起著重要的作用。
因此他的教育教學價值就具體體現(xiàn)在如下三維目標中:
知識與技能:
1、經(jīng)歷勾股定理的探索過程,體會數(shù)形結(jié)合思想。
2、理解直角三角形三邊的關(guān)系,會應(yīng)用勾股定理解決一些簡單的實際問題。
過程與方法:
1、經(jīng)歷觀察—猜想—歸納—驗證等一系列過程,體會數(shù)學定理發(fā)現(xiàn)的過程,由特殊到一般的解決問題的方法。
2、在觀察、猜想、歸納、驗證等過程中培養(yǎng)學生們的數(shù)學語言表達能力和初步的邏輯推理能力。
情感、態(tài)度與價值觀:
1、通過對勾股定理歷史的了解,感受數(shù)學文化,激發(fā)學習興趣。
2、在探究活動中,體驗解決問題方法的多樣性,培養(yǎng)學生們的合作意識和然所精神。
3、讓學生們通過動手實踐,增強探究和創(chuàng)新意識,體驗研究過程,學習研究方法,逐步養(yǎng)成一種積極的生動的,自助合作探究的學習方式。
由于八年級的學生們具有一定分析能力,但活動經(jīng)驗不足,所以
本節(jié)課教學重點:勾股定理的探索過程,并掌握和運用它。
教學難點:分割,補全法證面積相等,探索勾股定理。
二..教法學法分析:
要上好一堂課,就是要把所確定的三維目標有機地溶入到教學過程中去,所以我采用了“引導探究式”的教學方法:
先從學生們熟知的生活實例出發(fā),以生活實踐為依托,將生活圖形數(shù)學化,然后由特殊到一般地提出問題,引導學生們在自主探究與合作交流中解決問題,同時也真正體現(xiàn)了數(shù)學課堂是學生們自己的課堂。
學法:我想通過“操作+思考”這樣方式,有效地讓學生們在動手、動腦、自主探究與合作交流中來發(fā)現(xiàn)新知,同時讓學生們感悟到:學習任何知識的最好方法就是自己去探究。
三、 教學程序設(shè)計
1、 故事引入新課,激起學生們學習興趣。
牛頓,瓦特的'故事,讓學生們科學家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學,我們應(yīng)該學會觀察、思考,將學習與生活緊密結(jié)合起來。畢達哥拉斯的發(fā)現(xiàn)引入新課。
2、探索新知
在這里我設(shè)計了四個內(nèi)容:
、偬剿鞯妊苯侨切稳叺年P(guān)系
②邊長為3、4、5為邊長的直角三角形的三邊關(guān)系
、蹖W生們畫兩直角邊為2,6的直角三角形,探索三邊的關(guān)系
、苋厼閍、b、c的直角三角形的三邊的關(guān)系,(證明)
、莨垂啥ɡ須v史介紹,讓學生們體會勾股定理的文化價值。
體現(xiàn)從特殊到一般的發(fā)現(xiàn)問題的過程。
3、新知運用:
①舉出勾股定理在生活中的運用。(老師講解勾股定理在生活中的運用)
、谠谥苯侨切沃,已知∠ B=90° ,AB=6,BC=8,求AC.
、垡鲆粋人字梯,要求人字梯的跨度為6米,高為4米,請問怎么做?
④如圖,學校有一塊長方形花鋪,有極少數(shù)人為了避開拐角走“捷徑”,在花鋪內(nèi)走出了一條“路”.他們僅僅少走了 步路(假設(shè)2步為1米),卻踩傷了花草.
4、小結(jié)本課:
學完了這節(jié)課,你有什么收獲?
老師補充:科學家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學,我們應(yīng)該學會觀察、思考,將學習與生活緊密結(jié)合起來。數(shù)學來源于實踐,而又應(yīng)用于實踐。解決一個問題的方法是多樣性的,我們要多思考。 勾股定是數(shù)學史上的明珠,證明方法有很多種,我們將在下一節(jié)課學習它。
勾股定理說課稿 篇4
一、 教材分析
(一)教材地位
這節(jié)課是九年制義務(wù)教育初級中學教材北師大版八年級第一章第一節(jié)《探索勾股定理》第一課時,它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎(chǔ)上對直角三角形有進一步的認識和理解。
(二)教學目標
知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題.
過程與方法:經(jīng)歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學生的合情推理意識、主動探究的習慣,感受數(shù)形結(jié)合和從特殊到一般的思想.
情感態(tài)度與價值觀:激發(fā)學生愛國熱情,讓學生體驗自己努力得到結(jié)論的成就感,體驗數(shù)學充滿探索和創(chuàng)造,體驗數(shù)學的美感,從而了解數(shù)學,喜歡數(shù)學.
(三)教學重點:經(jīng)歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。
教學難點:用面積法(拼圖法)發(fā)現(xiàn)勾股定理。
突出重點、突破難點的辦法:發(fā)揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解.
二、教法與學法分析:
學情分析:八年級學生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠.另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.
教法分析:結(jié)合八年級學生和本節(jié)教材的特點,在教學中采用“問題情境----建立模型----解釋應(yīng)用---拓展鞏固”的模式, 選擇引導探索法。把教學過程轉(zhuǎn)化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。
學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人.
三、 教學過程設(shè)計
1.創(chuàng)設(shè)情境,提出問題
2.實驗操作,模型構(gòu)建
3.回歸生活,應(yīng)用新知
4.知識拓展,鞏固深化5.感悟收獲,布置作業(yè)
(一)創(chuàng)設(shè)情境提出問題
(1)圖片欣賞 勾股定理數(shù)形圖 1955年希臘發(fā)行 美麗的勾股樹 20xx年國際數(shù)學 的一枚紀念郵票 大會會標 設(shè)計意圖:通過圖形欣賞,感受數(shù)學美,感受勾股定理的文化價值.
(2) 某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?
設(shè)計意圖:以實際問題為切入點引入新課,反映了數(shù)學來源于實際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個“數(shù)學化”的過程,從而引出下面的環(huán)節(jié).
二、實驗操作模型構(gòu)建
1.等腰直角三角形(數(shù)格子)
2.一般直角三角形(割補)
問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?
設(shè)計意圖:這樣做利于學生參與探索,利于培養(yǎng)學生的語言表達能力,體會數(shù)形結(jié)合的思想.
問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關(guān)系嗎?(割補法是本節(jié)的難點,組織學生合作交流)
設(shè)計意圖:不僅有利于突破難點,而且為歸納結(jié)論打下基礎(chǔ),讓學生的分析問題解決問題的能力在無形中得到提高.
通過以上實驗歸納總結(jié)勾股定理.
設(shè)計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學生抽象、概括的'能力,同時發(fā)揮了學生的主體作用,體驗了從特殊—— 一般的認知規(guī)律.
三.回歸生活應(yīng)用新知
讓學生解決開頭情景中的問題,前呼后應(yīng),增強學生學數(shù)學、用數(shù)學的意識,增加學以致用的樂趣和信心.
四、知識拓展鞏固深化
基礎(chǔ)題,情境題,探索題.
設(shè)計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關(guān)注學生的個性發(fā)展.知識的運用得到升華.
基礎(chǔ)題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個數(shù)學問題?你能解決所提出的問題嗎?
設(shè)計意圖:這道題立足于雙基.通過學生自己創(chuàng)設(shè)情境,鍛煉了發(fā)散思維.
情境題:小明媽媽買了一部29英寸(74厘米)的電視機.小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了.你同意他的想法嗎?
設(shè)計意圖:增加學生的生活常識,也體現(xiàn)了數(shù)學源于生活,并用于生活。
探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。
設(shè)計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發(fā)展空間想象能力.
五、感悟收獲布置作業(yè): 這節(jié)課你的收獲是什么?
作業(yè): 李景萍《探索勾股定理》第一課時說課稿 1、課本習題2.1 2、搜集有關(guān)勾股定理證明的資料.
板書設(shè)計 探索勾股定理
如果直角三角形兩直角邊分別為a,b,斜邊為c,那么
李景萍《探索勾股定理》第一課時說課稿
設(shè)計說明::1.探索定理采用面積法,為學生創(chuàng)設(shè)一個和諧、寬松的情境,讓學生體會數(shù)形結(jié)合及從特殊到一般的思想方法.
2.讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現(xiàn)出來的思維水平、表達水平.
勾股定理說課稿 篇5
尊敬的各位評委:
您們好!我來自明光市張八嶺中學。今天我說課的課題是《勾股定理》。本課選自九年義務(wù)教育滬科版八年級下冊初中數(shù)學第十九章第一節(jié)的第一課時。
下面我從教學背景分析、教材處理、教學策略、教學流程方面對本課的設(shè)計進行說明。
一、教學背景分析
1、教材分析
本節(jié)課是學生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進行學習的,通過一枚1955年由希臘發(fā)行的郵票上圖案的故事,引入勾股定理,進而探索直角三角形三邊的數(shù)量關(guān)系,并應(yīng)用它解決問題。學好本節(jié)不僅為下節(jié)勾股定理的逆定理打下良好基礎(chǔ),而且為今后學習解直角三角形奠定基礎(chǔ),同時在實際生活中用途也很大。勾股定理是直角三角形的一條非常重要的性質(zhì),是幾何中一個非常重要的定理,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,將數(shù)與形密切地聯(lián)系起來,它有著豐富的歷史背景,在理論上占有重要的地位。
2、學情分析
學生已經(jīng)學習了有關(guān)三角形的一些知識,如三角形的三邊不等關(guān)系,三角形全等的判定等。也學過不少利用圖形面積來探求數(shù)式運算規(guī)律的例子,如探求乘法公式、單項式乘多項式法則、多項式乘多項式法則等。在學生這些原有的認知水平基礎(chǔ)上,探求直角三角形的又一重要性質(zhì)——勾股定理。讓學生的知識形成知識鏈,讓學生已具有的數(shù)學思維能力得以充分發(fā)揮和發(fā)展。
3、教學目標:
根據(jù)八年級學生的認知水平,依據(jù)新課程標準和教學大綱的要求,我制定了如下的教學目標:
知識與技能:了解勾股定理的發(fā)現(xiàn)過程,掌握勾股定理的內(nèi)容,會用面積法證明勾股定理;培養(yǎng)在實際生活中發(fā)現(xiàn)問題總結(jié)規(guī)律的意識和能力.
過程與方法:在探索勾股定理的過程中,讓學生經(jīng)歷“觀察—猜想—歸納—驗證”的'數(shù)學思想,并體會數(shù)形結(jié)合和從特殊到一般的思想方法。
情感態(tài)度價值觀:感受數(shù)學文化,激發(fā)學生學習的熱情,體驗合作學習成功的喜悅,滲透數(shù)形結(jié)合的思想。
4、教學重點、難點
通過研究分析可見,勾股定理是平面幾何的重要定理,有著承上啟下的作用,在今后的生活實踐中有著廣泛應(yīng)用。因此我確定本課的教學重點為勾股定理的證明與運用,教學難點為用面積法證明勾股定理
二、教材處理
根據(jù)學生情況,為有效培養(yǎng)學生能力,在教學過程中,我先以數(shù)學史中的一個有趣的故事來激發(fā)學生學習興趣,運用直觀教具、多媒體等手段,調(diào)動學生學習積極性,并開展以探究活動為主的教學模式,邊設(shè)疑,邊講解,邊操作,邊討論,啟發(fā)學生提出問題,分析問題,進而解決問題,以達到突出重點,攻破難點的目的。
三、教學策略
1、教法
“教必有法,而教無定法”,只有方法恰當,才會有效。根據(jù)本課內(nèi)容特點和八年級學生思維活動特點,我采用了引導發(fā)現(xiàn)教學法,合作探究教學法,逐步滲透教學法和師生共研相結(jié)合的方法。
2、學法
“授人以魚,不如授人以漁”,通過設(shè)計問題序列,引導學生主動探究新知,合作交流,體現(xiàn)學習的自主性,從不同層次發(fā)掘不同學生的不同能力,從而達到發(fā)展學生思維能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。
3、教學手段
充分利用多媒體,提高教學效率,增大教學容量;通過多媒體演示,激發(fā)學生學習興趣,啟迪學生思維的發(fā)展;通過直觀教具,進行動手操作,調(diào)動學生學習的積極性,培養(yǎng)學生思維的廣闊性。
4、教學模式
根據(jù)新課標要求,要積極倡導自主、合作、探究的學習方式,我采用了創(chuàng)設(shè)情境——探究新知——反饋訓練的教學模式,使學生獲取知識,提高素質(zhì)能力。
四、教學流程
(一)創(chuàng)設(shè)情境,引入新課(時長2~3分鐘)
我利用多媒體課件,給學生展示一枚1955年由希臘發(fā)行的郵票,并問學生是否想聽這枚郵票背后的故事?
在20xx多年前,古希臘有一位著名的數(shù)學家——畢達哥拉斯,有次參加一位政要人物邀請的餐會,這位主人的宮殿般豪華的餐廳鋪著正方形的美麗的大理石地磚,由于大餐遲遲不上桌,這些饑腸轆轆的貴賓頗有怨言,但這位善于觀察和理解的數(shù)學家卻凝視腳下這些排列規(guī)則,美麗的方形瓷磚,畢達哥拉斯不只是欣賞瓷磚的美麗,而是想到它們和“數(shù)”之間的關(guān)系,于是他拿了畫筆并且蹲在地板上,選了一塊瓷磚以它的對角線為邊畫了一個大正方形,同學們,你們知道他發(fā)現(xiàn)了什么嗎?
對學生的回答進行引導,梳理,總結(jié),可以得到有關(guān)三個正方形面積的結(jié)論。進而引入本節(jié)課的標題:19.1 勾股定理(板書)
。ㄒ孕」适录ぐl(fā)學生的興趣,隨后以開放式的問題形式,讓學生觀察猜想。本環(huán)節(jié)體現(xiàn)了人文關(guān)懷,并兼顧了教材中的探究,為下一步勾股定理的證明埋下伏筆。)
。ǘ┮龑W生,探究新知(教學時長15~20分鐘)
1、初步感知定理:
(1)用什么方法來探求:勾股定理即直角三角形三邊數(shù)量關(guān)系呢?
回憶我們曾經(jīng)利用圖形面積探索過數(shù)學公式,大家還記得在哪用過嗎?
(學生討論)
課件展示:平方差公式、完全平方公式、單項式乘多項式、多項式乘多項式的引出.
今天,讓我們試一試通過計算圖形的面積能不能得到直角三角形三邊數(shù)量關(guān)系. (從學生已有的學習經(jīng)驗出發(fā),將探求邊長之間的關(guān)系轉(zhuǎn)化為探求面積之間的關(guān)系,讓學生覺得解決今天問題的方法并不陌生,增強探索問題的信心.)
(2)展示課本上圖19—1和圖19—2(1)的圖形,觀察圖中三個正方形有什么關(guān)系?
讓學生通過觀察,計算出三個正方形的面積可以發(fā)現(xiàn):對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當∠C=90°,AC=BC時,則AB。
。ㄟ@樣做有利于學生參與探索,感受數(shù)學學習的過程,也有利于培養(yǎng)學生的語言表達能力,體會數(shù)形結(jié)合的思想。)
(3)緊接著讓學生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結(jié)論呢?于是再利用多媒體投影出圖19.2(2)(一般直角三角形)。學生可以同樣求出兩個小正方形面積,只是求大正方形的面積有一些困難,這時可讓學生在預(yù)先準備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學生就能夠發(fā)現(xiàn):對于一般的以整數(shù)為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。
給出書中的定理(板書)并用彎曲的手臂形象地表示勾、股、弦的概念,板書勾股定理,進而給出字母表達式.
通過學生的動手操作、合作交流,來獲取知識,這樣設(shè)計有利于突破難點,也讓學生體會到觀察、猜想、歸納的數(shù)學思想及學習過程,提高學生的分析問題和解決問題的能力。
2、證明結(jié)論(教學時長8~10分鐘):
出示書中圖19—3,與學生共同分析證明并板書過程。通過給出定理的證明過程讓學生體會到數(shù)學知識從特殊性到一般性,并對一般性結(jié)論進行論證的嚴謹性。
3、勾股定理簡介:(教學時長1~2分鐘)
借助多媒體課件,通過介紹古代在勾股定理研究方面取得的成就,感受數(shù)學文化,激發(fā)學生學習的熱情,體會古人偉大的智慧。
(三)反饋訓練,鞏固新知(教學時長6~8分鐘)
讓學生完成兩項任務(wù):
任務(wù)一:教材練習第一題;
任務(wù)二:1,Rt?ABC中,c為斜邊,a=3,b=4.,則c=?
2,?ABC中c為最長邊,a=3,b=4,則c=?
任務(wù)一和任務(wù)二中第一題都是基礎(chǔ)題,對于任務(wù)二中第二題是提高題,對于做錯的學生進行引導讓其思考,再告知錯誤的原因。通過練習,讓學生更好的體會到,勾股定理揭示的是直角三角形三邊之間的數(shù)量關(guān)系,讓學生能夠更好的將數(shù)與形緊密聯(lián)系起來進行思考。
(四)歸納小結(jié),深化新知(教學時長1~2分鐘)
本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進一步研究的的問題是什么???
通過小結(jié),使學生進一步明確掌握教學目標,使知識成為體系。
(五)布置作業(yè),拓展新知(教學時長1~2分鐘)
讓學生收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流.使本節(jié)知識得到拓展、延伸,培養(yǎng)了學生能力和思維的深刻性,讓學生感受數(shù)學深厚的文化底蘊。
(六)板書設(shè)計,明確新知
本節(jié)課的板書設(shè)計,它分為三塊:一塊是復(fù)習引入,一塊是勾股定理;一塊是例題解析。它突出了重點,層次清楚,便于學生掌握,為獲得知識服務(wù)。
以上內(nèi)容,我僅從教學背景分析、教材處理、教學策略、教學流程方面說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領(lǐng)導對本次說課提出寶貴的意見,謝謝!
勾股定理說課稿 篇6
一、教材分析
(一)、本節(jié)課在教材中的地位作用
“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學習的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學習中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時在應(yīng)用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學習解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標要求學生必須掌握。
。ǘ⒔虒W目標
1、知識技能:1理解并會證明勾股定理的逆定理;
2會應(yīng)用勾股定理的逆定理判定一個三角形是否為直角三角形; 3知道什么叫勾股數(shù),記住一些覺見的勾股數(shù).
2、過程與方法:通過對勾股定理的逆定理的探索和證明,經(jīng)歷知識的發(fā)生,發(fā)展與形成的過程,體驗“數(shù)形結(jié)合”方法的應(yīng)用。
3、情感、態(tài)度價值觀 培養(yǎng)數(shù)學思維以及合情推理意識,感悟勾股定理和逆定理的應(yīng)用價值。滲透與他人交流、合作的意識和探究精神,體驗數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關(guān)系。
。ㄈW情分析:
盡管已到初二下學期學生知識增多,能力增強,但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學生第一次見到,它要求根據(jù)已知條件構(gòu)造一個直角三角形,根據(jù)學生的智能狀況,學生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點,這樣就確定了本節(jié)課的重點、難點。 教學重點:勾股定理逆定理的應(yīng)用
教學難點:勾股定理逆定理的證明
二、教學過程
本節(jié)課的設(shè)計原則是:使學生在動手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過巧妙而自然地在學生的認識結(jié)構(gòu)與幾何知識結(jié)構(gòu)之間筑了一個信息流通渠道,進而達到完善學生的數(shù)學認識結(jié)構(gòu)的目的。
。ㄒ唬⿵(fù)習回顧
復(fù)習回顧與直角三角形、勾股定理有關(guān)的內(nèi)容,建立新舊知識之間的聯(lián)系。
。ǘ﹦(chuàng)設(shè)問題情境
一開課我就提出了與本節(jié)課關(guān)系密切、學生用現(xiàn)有的知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結(jié),然后用樁釘如圖那樣的三角形,便得到一個直角三角形。這是為什么?。這個問題一出現(xiàn)馬上激起學生已有知識與待研究知識的認識沖突,引起了學生的重視,激發(fā)了學生的興趣,因而全身心地投入到學習中來,創(chuàng)
造了我要學的氣氛,同時也說明了幾何知識來源于實踐,不失時機地讓學生感到數(shù)學就在身邊。
(三)學生在教師的指導下嘗試解決問題,總結(jié)規(guī)律(包括難點突破)
因為幾何來源于現(xiàn)實生活,對初二學生來說選擇適當?shù)臅r機,讓他們從個體實踐經(jīng)驗中開始學習,可以提高學習的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學生通過動手畫圖在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。
這樣設(shè)計是因為勾股定理逆定理的證明方法是學生第一次見到,它要求按照已知條件作一個直角三角形,根據(jù)學生的智能狀況學生是不容易想到的,為了突破這個難點,我讓學生動手畫出了一個兩直角邊與所給三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數(shù)學模型。
接下來就是利用這個數(shù)學模型,從理論上證明這個定理。從動手操作到證明,學生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉(zhuǎn)化,同時學生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學生不是被動接受勾股定理的逆定理,因而使學生感到自然、親切,學生的學習興趣和學習積極性有所提高。使學生確實在學習過程中享受到自我創(chuàng)造的快樂。
在同學們完成證明之后,同時讓學生總結(jié)互逆命題、互逆定理的關(guān)系,并舉例指出哪些為互逆定理。然后讓他們對照課本把證明過程嚴格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學生看書的習慣,這也是在培養(yǎng)學生的自學能力。
(四)組織變式訓練
本著由淺入深的原則,安排了兩個例題。(演示)第一題比較簡單,讓學生口答,讓所有的.學生都能完成。第二題則進了一層,不僅判斷是否為直接三角形,還繞了一個彎,指出哪一個角是直角。這樣既可以檢查本課知識,又可以提高靈活運用以往知識的能力。例題講解后安排了三個練習,循序漸進,由淺入深。培養(yǎng)了學生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學生的思維,提高了課堂教學的效果和利用率。讓學生知道勾股逆定理的用途,激發(fā)學生的學習興趣。我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學生的學習過程,隨時反饋,調(diào)節(jié)教法,同時注意加強有針對性的個別指導,把發(fā)展學生的思維和隨時把握學生的學習效果結(jié)合起來。
。ㄎ澹w納小結(jié),納入知識體系
本節(jié)課小結(jié)先讓學生歸納本節(jié)知識和技能,然后教師作必要的補充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并
告訴同學今天的勾股定理逆定理是同學們通過自己親手實踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題認識問題的好方法,希望同學在課外練習時注意用這種方法,這都是教給學習方法。
。┳鳂I(yè)布置
由于學生的思維素質(zhì)存在一定的差異,教學要貫徹“因材施教”的原則,為此我安排了兩題作業(yè)。第一題是基本的思維訓練項目,全體都要做,這樣有利于學生學習習慣的培養(yǎng),以及提高他們學好數(shù)學的信心。第二題適當加大難度,拓寬知識,供有能力又有興趣的學生做,日積月累,對訓練和培養(yǎng)他們的思維素質(zhì),發(fā)展學生的個性有積極作用。
三、說教法學法與教學手段
為貫徹實施素質(zhì)教育提出的面向全體學生,使學生全面發(fā)展主動發(fā)展的精神和培養(yǎng)創(chuàng)新活動的要求,根據(jù)本節(jié)課的教學內(nèi)容、教學要求以及初二學生的年齡和心理特征以及學生的認知規(guī)律和認知水平,本節(jié)課我主要采用了以學生為主體,引導發(fā)現(xiàn)、操作探究的教學方法,即不違反科學性又符合可接受性原則,這樣有利于培養(yǎng)學生的學習興趣,調(diào)動學生的學習積極性,發(fā)展學生的思維;有利于培養(yǎng)學生動手、觀察、分析、猜想、驗證、推理能力和創(chuàng)新能力;有利于學生從感性認識上升到理性認識,加深對所學知識的理解和掌握;有利于突破難點和突出重點。
此外,本節(jié)課我還采用了理論聯(lián)系實際的教學原則,以教師為主導、學生為主體的教學原則,通過聯(lián)系學生現(xiàn)有的經(jīng)驗和感性認識,由最鄰近的知識去向本節(jié)課遷移,通過動手操作讓學生獨立探討、主動獲取知識。
總之,本節(jié)課遵循從生動直觀到抽象思維的認識規(guī)律,力爭最大限度地調(diào)動學生學習的積極性;力爭把教師教的過程轉(zhuǎn)化為學生親自探索、發(fā)現(xiàn)知識的過程;力爭使學生在獲得知識的過程中得到能力的培養(yǎng)。
勾股定理說課稿 篇7
一、教材分析
勾股定理就就是學生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進行學習的,它就就是直角三角形的一條非常重要的性質(zhì),就就是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計算問題,就就是解直角三角形的主要根據(jù)之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進行運用。
據(jù)此,制定教學目標如下:
1、理解并掌握勾股定理及其證明。
2、能夠靈活地運用勾股定理及其計算。
3、培養(yǎng)學生觀察、比較、分析、推理的能力。
4、通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
教學重點:勾股定理的證明和應(yīng)用。
教學難點:勾股定理的證明。
二、教法和學法
教法和學法就就是體現(xiàn)在整個教學過程中的,本課的教法和學法體現(xiàn)如下特點:
1、以自學輔導為主,充分發(fā)揮教師的主導作用,運用各種手段激發(fā)學生學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。
2、切實體現(xiàn)學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。
3、通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發(fā)學生鉆研新知的欲望。
三、教學程序
本節(jié)內(nèi)容的教學主要體現(xiàn)在學生動手、動腦方面,根據(jù)學生的認知規(guī)律和學習心理,教學程序設(shè)計如下:
。ㄒ唬﹦(chuàng)設(shè)情境 以古引新
1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾就就是3,股就就是4,那么弦等于5。這樣引起學生學習興趣,激發(fā)學生求知欲。
2、就就是不就就是所有的'直角三角形都有這個性質(zhì)呢?教師要善于激疑,使學生進入樂學狀態(tài)。
3、板書課題,出示學習目標。
。ǘ┏醪礁兄 理解教材
教師指導學生自學教材,通過自學感悟理解新知,體現(xiàn)了學生的自主學習意識,鍛煉學生主動探究知識,養(yǎng)成良好的自學習慣。
(三)質(zhì)疑解難 討論歸納
1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發(fā)學生的表現(xiàn)欲。
2、教師引導學生按照要求進行拼圖,觀察并分析;
(1)這兩個圖形有什么特點?
(2)你能寫出這兩個圖形的面積嗎?
(3)如何運用勾股定理?就就是否還有其他形式?
這時教師組織學生分組討論,調(diào)動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。
(四)鞏固練習 強化提高
1、出示練習,學生分組解答,并由學生總結(jié)解題規(guī)律。課堂教學中動靜結(jié)合,以免引起學生的疲勞。
2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習,進一步提高學生運用知識的能力,對練習中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。
(五)歸納總結(jié) 練習反饋
引導學生對知識要點進行總結(jié),梳理學習思路。分發(fā)自我反饋練習,學生獨立完成。
本課意在創(chuàng)設(shè)愉悅和諧的樂學氣氛,優(yōu)化教學手段,借助電教手段提高課堂教學效率,建立平等、民主、和諧的師生關(guān)系。加強師生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創(chuàng)新精神和實踐能力得到培養(yǎng)。
勾股定理說課稿 篇8
課題:“勾股定理”第一課時
內(nèi)容:教材分析、教學過程設(shè)計、設(shè)計說明
一、 教材分析
(一)教材所處的地位
這節(jié)課是九年制義務(wù)教育課程標準實驗教科書八年級第一章第一節(jié)探索勾股定理第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎(chǔ)上對直角三角形有進一步的認識和理解。
(二)根據(jù)課程標準,本課的教學目標是:
1、 能說出勾股定理的內(nèi)容。
2、 會初步運用勾股定理進行簡單的計算和實際運用。
3、 在探索勾股定理的過程中,讓學生經(jīng)歷“觀察—猜想—歸納—驗證”的數(shù)學思想,并體會數(shù)形結(jié)合和特殊到一般的思想方法。
4、 通過介紹勾股定理在中國古代的研究,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發(fā)奮學習。
。ㄈ┍菊n的教學重點:探索勾股定理
本課的教學難點:以直角三角形為邊的正方形面積的計算。
二、教法與學法分析:
教法分析:針對初二年級學生的知識結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導探索法,由淺入深,由特殊到一般地提出問題。引導學生自主探索,合作交流,這種教學理念反映了時代精神,有利于提高學生的思維能力,能有效地激發(fā)學生的思維積極性,基本教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結(jié)—布置作業(yè)六部分。
學法分析:在教師的組織引導下,采用自主探索、合作交流的研討式學習方式,讓學生思考問題,獲取知識,掌握方法,借此培養(yǎng)學生動手、動腦、動口的能力,使學生真正成為學習的主體。
三、 教學過程設(shè)計
(一)提出問題:
首先創(chuàng)設(shè)這樣一個問題情境:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?問題設(shè)計具有一定的挑戰(zhàn)性,目的是激發(fā)學生的探究欲望,教師引導學生將實際問題轉(zhuǎn)化成數(shù)學問題,也就是“已知一直角三角形的兩邊,如何求第三邊?” 的問題。學生會感到困難,從而教師指出學習了今天這一課后就有辦法解決了。這種以實際問題為切入點引入新課,不僅自然,而且反映了數(shù)學來源于實際生活,數(shù)學是從人的需要中產(chǎn)生這一認識的基本觀點,同時也體現(xiàn)了知識的發(fā)生過程,而且解決問題的過程也是一個“數(shù)學化”的過程。
。ǘ⿲嶒灢僮鳎
1、投影課本圖1—1,圖1—2的有關(guān)直角三角形問題,讓學生計算正方形A,B,C的面積,學生可能有不同的方法,不管是通過直接數(shù)小方格的個數(shù),還是將C劃分為4個全等的等腰直角三角形來求等等,各種方法都應(yīng)予于肯定,并鼓勵學生用語言進行表達,引導學生發(fā)現(xiàn)正方形A,B,C的面積之間的數(shù)量關(guān)系,從而學生通過正方形面積之間的關(guān)系容易發(fā)現(xiàn)對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學生參與探索,感受數(shù)學學習的過程,也有利于培養(yǎng)學生的語言表達能力,體會數(shù)形結(jié)合的思想。
2、接著讓學生思考:如果是其它一般的直角三角形,是否也具備這一結(jié)論呢?于是投影圖1—3,圖1—4,同樣讓學生計算正方形的面積,但正方形C的面積不易求出,可讓學生在預(yù)先準備的方格紙上畫出圖形,在剪一剪,拼一拼后學生也不難發(fā)現(xiàn)對于一般的以整數(shù)為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設(shè)計不僅有利于突破難點,而且為歸納結(jié)論打下了基礎(chǔ),讓學生體會到觀察、猜想、歸納的`思想,也讓學生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學習及有幫助。
3、給出一個邊長為0.5,1.2,1.3,這種含小數(shù)的直角三角形,讓學生計算是否也滿足這個結(jié)論,設(shè)計的目的是讓學生體會到結(jié)論更具有一般性。
(三)歸納驗證:
1、歸納 通過對邊長為整數(shù)的等腰直角三角形到一般直角三角形再到邊長含小數(shù)的直角三角形三邊關(guān)系的研究,讓學生用數(shù)學語言概括出一般的結(jié)論,盡管學生可能講的不完全正確,但對于培養(yǎng)學生運用數(shù)學語言進行抽象、概括的能力是有益的,同時發(fā)揮了學生的主體作用,也便于記憶和理解,這比教師直接教給學生一個結(jié)論要好的多。
2、驗證 為了讓學生確信結(jié)論的正確性,引導學生在紙上任意作一個直角三角形,通過測量、計算來驗證結(jié)論的正確性。這一過程有利于培養(yǎng)學生嚴謹、科學的學習態(tài)度。然后引導學生用符號語言表示,因為將文字語言轉(zhuǎn)化為數(shù)學語言是學習數(shù)學學習的一項基本能力。接著教師向?qū)W生介紹“勾,股,弦”的含義、勾股定理,進行點題,并指出勾股定理只適用于直角三角形。最后向?qū)W生介紹古今中外對勾股定理的研究,對學生進行愛國主義教育。
(四)問題解決:
讓學生解決開頭的實際問題,前后呼應(yīng),學生從中能體會到成功的喜悅。完完成課本“想一想”進一步體會勾股定理在實際生活中的應(yīng)用,數(shù)學是與實際生活緊密相連的。
【勾股定理說課稿】相關(guān)文章:
《勾股定理》的說課稿06-08
《勾股定理》說課稿12-16
勾股定理說課稿07-05
勾股定理說課稿02-11
探索勾股定理說課稿11-04
探索勾股定理說課稿12-06
《勾股定理》優(yōu)秀說課稿01-21
探索《勾股定理》說課稿01-04
精選勾股定理說課稿四篇01-13
勾股定理說課稿15篇11-12