當前位置:育文網>教學文檔>說課稿> 《函數(shù)奇偶性》說課稿

《函數(shù)奇偶性》說課稿

時間:2022-02-15 18:29:47 說課稿 我要投稿

《函數(shù)奇偶性》說課稿3篇

  在教學工作者實際的教學活動中,有必要進行細致的說課稿準備工作,借助說課稿可以更好地提高教師理論素養(yǎng)和駕馭教材的能力。快來參考說課稿是怎么寫的吧!下面是小編整理的《函數(shù)奇偶性》說課稿,僅供參考,大家一起來看看吧。

《函數(shù)奇偶性》說課稿3篇

《函數(shù)奇偶性》說課稿1

  一、教材分析

  函數(shù)是中學數(shù)學的重點和難點,函數(shù)的思想貫穿于整個高中數(shù)學之中。函數(shù)的奇偶性是函數(shù)中的一個重要內容,它不僅與現(xiàn)實生活中的對稱性密切相關聯(lián),而且為后面學習指、對、冪函數(shù)的性質作好了堅實的準備和基礎。因此,本節(jié)課的內容是至關重要的,它對知識起到了承上啟下的作用。

  二。教學目標

  1.知識目標:

  理解函數(shù)的奇偶性及其幾何意義;學會運用函數(shù)圖象理解和研究函數(shù)的性質;學會判斷函數(shù)的奇偶性。

  2.能力目標:

  通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學生觀察、歸納、抽象的能力,滲透數(shù)形結合的數(shù)學思想。

  3.情感目標:

  通過函數(shù)的奇偶性教學,培養(yǎng)學生從特殊到一般的概括歸納問題的能力。

  三。教學重點和難點

  教學重點:函數(shù)的奇偶性及其幾何意義。

  教學難點:判斷函數(shù)的奇偶性的方法與格式。

  四、教學方法

  為了實現(xiàn)本節(jié)課的教學目標,在教法上我采。

  1、通過學生熟悉的函數(shù)知識引入課題,為概念學習創(chuàng)設情境,拉近未知與

  已知的`距離,激發(fā)學生求知欲,()調動學生主體參與的積極性。

  2、在形成概念的過程中,緊扣概念中的關鍵語句,通過學生的主體參與,正確地形成概念。

  3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用,要教會學生清晰的思維、嚴謹?shù)耐评恚㈨樌赝瓿蓵姹磉_。

  五、學習方法

  1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍。

  2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養(yǎng)學生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。

  六。教學程序

  (一)創(chuàng)設情景,揭示課題

  "對稱"是大自然的一種美,這種"對稱美"在數(shù)學中也有大量的反映,讓我們看看下列各函數(shù)有什么共性?

  觀察下列函數(shù)的圖象,總結各函數(shù)之間的共性。

  f(x)= x2 f(x)=x

  x

  通過討論歸納:函數(shù) 是定義域為全體實數(shù)的拋物線;函數(shù)f(x)=x是定義域為全體實數(shù)的直線;各函數(shù)之間的共性為圖象關于 軸對稱。觀察一對關于 軸對稱的點的坐標有什么關系?

  歸納:若點 在函數(shù)圖象上,則相應的點 也在函數(shù)圖象上,即函數(shù)圖象上橫坐標互為相反數(shù)的點,它們的縱坐標一定相等。

 。ǘ┗咏涣 研討新知

  函數(shù)的奇偶性定義:

  1.偶函數(shù)

  一般地,對于函數(shù) 的定義域內的任意一個 ,都有 ,那么 就叫做偶函數(shù)。(學生活動)依照偶函數(shù)的定義給出奇函數(shù)的定義。

  2.奇函數(shù)

  一般地,對于函數(shù) 的定義域的任意一個 ,都有 ,那么 就叫做奇函數(shù)。

  注意:

  1.函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質。

  2.由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內的任意一個 ,則 也一定是定義域內的一個自變量(即定義域關于原點對稱)。

  3.具有奇偶性的函數(shù)的圖象的特征

  偶函數(shù)的圖象關于 軸對稱;奇函數(shù)的圖象關于原點對稱。

  (三)質疑答辯,排難解惑,發(fā)展思維。

  例1.判斷下列函數(shù)是否是偶函數(shù)。

  (1)

 。2)

  解:函數(shù) 不是偶函數(shù),因為它的定義域關于原點不對稱。

  函數(shù) 也不是偶函數(shù),因為它的定義域為 ,并不關于原點對稱。

  例2.判斷下列函數(shù)的奇偶性

 。1) (2) (3) (4)

  解:(略)

  小結:利用定義判斷函數(shù)奇偶性的格式步驟:

  ①首先確定函數(shù)的定義域,并判斷其定義域是否關于原點對稱;

 、诖_定 ;

 、圩鞒鱿鄳Y論:

  若 ;

  若 .

  例3.判斷下列函數(shù)的奇偶性:

  ①

  ②

  分析:先驗證函數(shù)定義域的對稱性,再考察 .

  解:(1) >0且 > = < < ,它具有對稱性。因為 ,所以 是偶函數(shù),不是奇函數(shù)。

 。2)當 >0時,-<0,于是

  當<0時,->0,于是

  綜上可知,在r-∪r+上, 是奇函數(shù)。

  例4.利用函數(shù)的奇偶性補全函數(shù)的圖象。

  教材p41思考題:

  規(guī)律:偶函數(shù)的圖象關于 軸對稱;奇函數(shù)的圖象關于原點對稱。

  說明:這也可以作為判斷函數(shù)奇偶性的依據。

  例5.已知 是奇函數(shù),在(0,+∞)上是增函數(shù)。

  證明: 在(-∞,0)上也是增函數(shù)。

  證明:(略)

  小結:偶函數(shù)在關于原點對稱的區(qū)間上單調性相反;奇函數(shù)在關于原點對稱的區(qū)間上單調性一致。

 。ㄋ模╈柟躺罨,反饋矯正

 。1)課本p42 練習1.2 p46 b組題的1.2.3

  (2)判斷下列函數(shù)的奇偶性,并說明理由。

 、

  ②

 、

 、

 。ㄎ澹w納小結,整體認識

  本節(jié)主要學習了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時,必須注意首先判斷函數(shù)的定義域是否關于原點對稱,單調性與奇偶性的綜合應用是本節(jié)的一個難點,需要學生結合函數(shù)的圖象充分理解好單調性和奇偶性這兩個性質。

  (六)設置問題,留下懸念

  1.書面作業(yè):課本p46習題a組1.3.9.10題

  2.設 >0時,

  試問:當<0時, 的表達式是什么?

《函數(shù)奇偶性》說課稿2

  各位老師,大家好!

  今天我說課的課題是高中數(shù)學人教A版必修一第一章第三節(jié)"函數(shù)的基本性質"中的"函數(shù)的奇偶性",下面我將從教材分析,教法、學法分析,教學過程,教輔手段,板書設計等方面對本課時的教學設計進行說明。

  一、教材分析

 。ㄒ唬┙滩奶攸c、教材的地位與作用

  本節(jié)課的主要學習內容是理解函數(shù)的奇偶性的概念,掌握利用定義和圖象判斷函數(shù)的奇偶性,以及函數(shù)奇偶性的幾個性質。

  函數(shù)的奇偶性是函數(shù)中的一個重要內容,它不僅與現(xiàn)實生活中的對稱性密切相關,而且為后面學習冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的性質打下了堅實的基礎。因此本節(jié)課的內容是至關重要的,它對知識起到了承上啟下的作用。

 。ǘ┲攸c、難點

  1、本課時的教學重點是:函數(shù)的奇偶性及其幾何意義。

  2、本課時的教學難點是:判斷函數(shù)的奇偶性的方法與格式。

 。ㄈ┙虒W目標

  1、知識與技能:使學生理解函數(shù)奇偶性的概念,初步掌握判斷函數(shù)奇偶性的`方法;

  2、方法與過程:引導學生通過觀察、歸納、抽象、概括,自主建構奇函數(shù)、偶函數(shù)等概念;能運用函數(shù)奇偶性概念解決簡單的問題;使學生領會數(shù)形結合思想方法,培養(yǎng)學生發(fā)現(xiàn)問題、分析問題和解決問題的能力。

  3、情感態(tài)度與價值觀:在奇偶性概念形成過程中,使學生體會數(shù)學的科學價值和應用價值,培養(yǎng)學生善于觀察、勇于探索的良好習慣和嚴謹?shù)目茖W態(tài)度。

  二、教法、學法分析

  1.教學方法:啟發(fā)引導式

  結合本章實際,教材簡單易懂,重在應用、解決實際問題,本節(jié)課準備采用"引導發(fā)現(xiàn)法"進行教學,引導發(fā)現(xiàn)法可激發(fā)學生學習的積極性和創(chuàng)造性,分享到探索知識的方法和樂趣,在解決問題的過程中,體驗成功與失敗,從而逐步建立完善的認知結構。使用多媒體輔助教學,突出了知識的產生過程,又增加了課堂的趣味性。

  2.學法指導:引導學生采用自主探索與互相協(xié)作相結合的學習方式。讓每一位學生都能參與研究,并最終學會學習。

  三、教輔手段

  以學生獨立思考、自主探究、合作交流,教師啟發(fā)引導為主,以多媒體演示為輔的教學方式進行教學

  四、教學過程

  為了達到預期的教學目標,我對整個教學過程進行了系統(tǒng)地規(guī)劃,設計了五個主要的教學程序:設疑導入,觀圖激趣。指導觀察,形成概念。學生探索、發(fā)展思維。知識應用,鞏固提高。歸納小結,布置作業(yè)。

 。ㄒ唬┰O疑導入,觀圖激趣

  讓學生感受生活中的美:展示圖片蝴蝶,雪花

  學生舉例生活中的對稱現(xiàn)象

  折紙:取一張紙,在其上畫出直角坐標系,并在第一象限任畫一函數(shù)的圖象,以y軸為折痕將紙對折,并在紙的背面(即第二象限)畫出第一象限內圖形的痕跡,然后將紙展開,觀察坐標系中的圖形。

  問題:將第一象限和第二象限的圖形看成一個整體,觀察圖象上相應的點的坐標有什么特點

  以y軸為折痕將紙對折,然后以x 軸為折痕將紙對折,在紙的背面(即第三象限)畫出第二象限內圖象的痕跡,然后將紙展開。觀察坐標喜之中的圖形:

  問題:將第一象限和第三象限的圖形看成一個整體,觀察圖象上相應的點的坐標有什么特點

 。ǘ┲笇в^察,形成概念

  這節(jié)課我們首先從兩類對稱:軸對稱和中心對稱展開研究。

  思考:請同學們作出函數(shù)y=x2的圖象,并觀察這兩個函數(shù)圖象的對稱性如何

  給出圖象,然后問學生初中是怎樣判斷圖象關于 軸對稱呢此時提出研究方向:今天我們將從數(shù)值角度研究圖象的這種特征體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律

  借助課件演示,學生會回答自變量互為相反數(shù),函數(shù)值相等。接著再讓學生分別計算f(1),f(-1),f(2),f(-2),學生很快會得到f(-1)=f(1),f(-2)=f(2),進而提出在定義域內是否對所有的x,都有類似的情況借助課件演示,學生會得出結論,f(-x)=f(x),從而引導學生先把它們具體化,再用數(shù)學符號表示。

  思考:由于對任一x,必須有一-x與之對應,因此函數(shù)的定義域有什么特征

  引導學生發(fā)現(xiàn)函數(shù)的定義域一定關于原點對稱。根據以上特點,請學生用完整的語言敘述定義,同時給出板書:

 。1)函數(shù)f(x)的定義域為A,且關于原點對稱,如果有f(-x)=f(x),則稱f(x)為偶函數(shù)

  提出新問題:函數(shù)圖象關于原點對稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢 (同時打出 y=1/x的圖象讓學生觀察研究)

  學生可類比剛才的方法,很快得出結論,再讓學生給出奇函數(shù)的定義:

 。2)函數(shù)f(x)的定義域為A,且關于原點對稱,如果有f(-x)=f(x), 則稱f(x)為奇函數(shù)

  強調注意點:"定義域關于原點對稱"的條件必不可少。

  接著再探究函數(shù)奇偶性的判斷方法,根據前面所授知識,歸納步驟:

  (1)求出函數(shù)的定義域,并判斷是否關于原點對稱

  (2)驗證f(-x)=f(x)或f(-x)=-f(x) 3)得出結論

  給出例題,加深理解:

  例1,利用定義,判斷下列函數(shù)的奇偶性:

 。1)f(x)= x2+1

 。2)f(x)=x3-x

 。3)f(x)=x4-3x2-1

  (4)f(x)=1/x3+1

  提出新問題:在例1中的函數(shù)中有奇函數(shù),也有偶函數(shù),但象(4)這樣的是什么函數(shù)呢?

  得到注意點:既不是奇函數(shù)也不是偶函數(shù)的稱為非奇非偶函數(shù)

  接著進行課堂鞏固,強調非奇非偶函數(shù)的原因有兩種,一是定義域不關于原點對稱,二是定義域雖關于原點對稱,但不滿足f(-x)=f(x)或f(-x)=-f(x)

  然后根據前面引入知識中,繼續(xù)探究函數(shù)奇偶性的第二種判斷方法:圖象法:

  函數(shù)f(x)是奇函數(shù)=圖象關于原點對稱

  函數(shù)f(x)是偶函數(shù)=圖象關于y軸對稱

  給出例2:書P63例3,再進行當堂鞏固,

  1,書P65ex2

  2,說出下列函數(shù)的奇偶性:

  Y=x4 ; Y=x-1 ;Y=x ;Y=x-2 ;Y=x5 ;Y=x-3

  歸納:對形如:y=xn的函數(shù),若n為偶數(shù)則它為偶函數(shù),若n為奇數(shù),則它為奇函數(shù)

 。ㄈ⿲W生探索,發(fā)展思維。

  思考:1,函數(shù)y=2是什么函數(shù)

  2,函數(shù)y=0有是什么函數(shù)

 。ㄋ模┎贾米鳂I(yè): 課本P39 習題1.3(A組) 第6題, B組第3

  五、板書設計

《函數(shù)奇偶性》說課稿3

  一、教材分析

  1、教材所處的地位和作用

  “奇偶性”是人教A版第一章“集合與函數(shù)概念”的第3節(jié)“函數(shù)的基本性質”的第2小節(jié)。

  奇偶性是函數(shù)的一條重要性質,教材從學生熟悉的及入手,從特殊到一般,從具體到抽象,注重信息技術的應用,比較系統(tǒng)地介紹了函數(shù)的奇偶性。從知識結構看,它既是函數(shù)概念的拓展和深化,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)的基礎。因此,本節(jié)課起著承上啟下的重要作用。

  2、學情分析

  從學生的認知基礎看,學生在初中已經學習了軸對稱圖形和中心對稱圖形,并且有了一定數(shù)量的簡單函數(shù)的儲備。同時,剛剛學習了函數(shù)單調性,已經積累了研究函數(shù)的基本方法與初步經驗。

  從學生的思維發(fā)展看,高一學生思維能力正在由形象經驗型向抽象理論型轉變,能夠用假設、推理來思考和解決問題、

  3、教學目標

  基于以上對教材和學生的分析,以及新課標理念,我設計了這樣的教學目標:

  【知識與技能】

  1、能判斷一些簡單函數(shù)的奇偶性。

  2、能運用函數(shù)奇偶性的代數(shù)特征和幾何意義解決一些簡單的問題。

  【過程與方法】

  經歷奇偶性概念的形成過程,提高觀察抽象能力以及從特殊到一般的歸納概括能力。

  【情感、態(tài)度與價值觀】

  通過自主探索,體會數(shù)形結合的思想,感受數(shù)學的對稱美。

  從課堂反應看,基本上達到了預期效果。

  4、教學重點和難點

  重點:函數(shù)奇偶性的概念和幾何意義。

  幾年的教學實踐證明,雖然“函數(shù)奇偶性”這一節(jié)知識點并不是很難理解,但知識點掌握不全面的學生容易出現(xiàn)下面的錯誤。他們往往流于表面形式,只根據奇偶性的定義檢驗成立即可,而忽視了考慮函數(shù)定義域的問題。因此,在介紹奇、偶函數(shù)的定義時,一定要揭示定義的隱含條件,從正反兩方面講清定義的內涵和外延。因此,我把“函數(shù)的奇偶性概念”設計為本節(jié)課的重點。在這個問題上我除了注意概念的講解,還特意安排了一道例題,來加強本節(jié)課重點問題的講解。

  難點:奇偶性概念的數(shù)學化提煉過程。

  由于,學生看待問題還是靜止的、片面的,抽象概括能力比較薄弱,這對建構奇偶性的概念造成了一定的困難。因此我把“奇偶性概念的數(shù)學化提煉過程”設計為本節(jié)課的難點。

  二、教法與學法分析

  1、教法

  根據本節(jié)教材內容和編排特點,為了更有效地突出重點,突破難點,按照學生的認知規(guī)律,遵循教師為主導,學生為主體,訓練為主線的指導思想,采用以引導發(fā)現(xiàn)法為主,直觀演示法、類比法為輔。教學中,精心設計一個又一個帶有啟發(fā)性和思考性的問題,創(chuàng)設問題情景,誘導學生思考,使學生始終處于主動探索問題的積極狀態(tài),從而培養(yǎng)思維能力。從課堂反應看,基本上達到了預期效果。

  2、學法

  讓學生在“觀察一歸納一檢驗一應用”的學習過程中,自主參與知識的發(fā)生、發(fā)展、形成的過程,從而使學生掌握知識。

  三、教學過程

  具體的教學過程是師生互動交流的過程,共分六個環(huán)節(jié):設疑導入、觀圖激趣;指導觀察、形成概念;學生探索、領會定義;知識應用,鞏固提高;總結反饋;分層作業(yè),學以致用。下面我對這六個環(huán)節(jié)進行說明。

 。ㄒ唬┰O疑導入、觀圖激趣

  由于本節(jié)內容相對獨立,專題性較強,所以我采用了“開門見山”導入方式,直接點明要學的內容,使學生的思維迅速定向,達到開始就明確目標突出重點的效果。

  用多媒體展示一組圖片,使學生感受到生活中的對稱美。再讓學生觀察幾個特殊函數(shù)圖象。通過讓學生觀察圖片導入新課,既激發(fā)了學生濃厚的學習興趣,又為學習新知識作好鋪墊。

 。ǘ┲笇в^察、形成概念

  在這一環(huán)節(jié)中共設計了2個探究活動。

  探究1、2數(shù)學中對稱的形式也很多,這節(jié)課我們就以函數(shù)和=︱x︱以及和為例展開探究。這個探究主要是通過學生的自主探究來實現(xiàn)的,由于有圖片的鋪墊,絕大多數(shù)學生很快就說出函數(shù)圖象關于Y軸(原點)對稱。接著學生填表,從數(shù)值角度研究圖象的這種特征,體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律?引導學生先把它們具體化,再用數(shù)學符號表示。借助課件演示(令比較得出等式,再令,得到)讓學生發(fā)現(xiàn)兩個函數(shù)的對稱性反應到函數(shù)值上具有的特性,()然后通過解析式給出嚴格證明,進一步說明這個特性對定義域內任意一個都成立。最后給出偶函數(shù)(奇函數(shù))定義(板書)。

  在這個過程中,學生把對圖形規(guī)律的感性認識,轉化成數(shù)量的規(guī)律性,從而上升到了理性認識,切實經歷了一次從特殊歸納出一般的過程體驗。

 。ㄈ⿲W生探索、領會定義

  探究3下列函數(shù)圖象具有奇偶性嗎?

  設計意圖:深化對奇偶性概念的理解。強調:函數(shù)具有奇偶性的前提條件是——定義域關于原點對稱。(突破了本節(jié)課的難點)

 。ㄋ模┲R應用,鞏固提高

  在這一環(huán)節(jié)我設計了4道題

  例1判斷下列函數(shù)的奇偶性

  選例1的第(1)及(3)小題板書來示范解題步驟,其他小題讓學生在下面完成。

  例1設計意圖是歸納出判斷奇偶性的步驟:

  (1)先求定義域,看是否關于原點對稱;

 。2)再判斷f(—x)=—f(x)還是f(—x)=f(x)。

  例2判斷下列函數(shù)的奇偶性:

  例3判斷下列函數(shù)的奇偶性:

  例2、3設計意圖是探究一個函數(shù)奇偶性的可能情況有幾種類型?

  例4(1)判斷函數(shù)的奇偶性。

 。2)如圖給出函數(shù)圖象的一部分,你能根據函數(shù)的奇偶性畫出它在y軸左邊的圖象嗎?

  例4設計意圖加強函數(shù)奇偶性的'幾何意義的應用。

  在這個過程中,我重點關注了學生的推理過程的表述。通過這些問題的解決,學生對函數(shù)的奇偶性認識、理解和應用都能提升很大一個高度,達到當堂消化吸收的效果。

 。ㄎ澹┛偨Y反饋

  在以上課堂實錄中充分展示了教法、學法中的互動模式,“問題”貫穿于探究過程的始終,切實體現(xiàn)了啟發(fā)式、問題式教學法的特色。

  在本節(jié)課的最后對知識點進行了簡單回顧,并引導學生總結出本節(jié)課應積累的解題經驗。知識在于積累,而學習數(shù)學更在于知識的應用經驗的積累。所以提高知識的應用能力、增強錯誤的預見能力是提高數(shù)學綜合能力的很重要的策略。

 。┓謱幼鳂I(yè),學以致用

  必做題:課本第36頁練習第1—2題。

  選做題:課本第39頁習題1。3A組第6題。

  思考題:課本第39頁習題1。3B組第3題。

  設計意圖:

  面向全體學生,注重個人差異,加強作業(yè)的針對性,對學生進行分層作業(yè),既使學生掌握基礎知識,又使學有余力的學生有所提高,進一步達到不同的人在數(shù)學上得到不同的發(fā)展。

【《函數(shù)奇偶性》說課稿】相關文章:

《函數(shù)的奇偶性》說課稿07-28

《函數(shù)奇偶性》說課稿02-15

《函數(shù)的奇偶性》說課稿6篇11-24

《數(shù)的奇偶性》的說課稿06-26

《數(shù)奇偶性》說課稿07-12

《數(shù)的奇偶性》說課稿07-19

數(shù)的奇偶性說課稿11-11

《函數(shù)的概念》說課稿07-26

《函數(shù)概念》說課稿07-07