《抽屜原理》六年級數(shù)學說課稿
作為一名人民教師,常常要根據(jù)教學需要編寫說課稿,借助說課稿可以更好地提高教師理論素養(yǎng)和駕馭教材的能力。優(yōu)秀的說課稿都具備一些什么特點呢?以下是小編為大家整理的《抽屜原理》六年級數(shù)學說課稿,供大家參考借鑒,希望可以幫助到有需要的朋友。
《抽屜原理》六年級數(shù)學說課稿1
今天我們在培訓中心大廳聽了來自××縣的××老師的一節(jié)錄像課《抽屜原理》。抽屜原理這節(jié)課不同于六年級其他課型,與前后知識點沒有聯(lián)系,比較孤立。抽屜原理也很抽像,對于師生而言,這節(jié)課比較難上!痢晾蠋熓峭ㄟ^幾個直觀例子,借助實際操作,向學生介紹“抽屜原理”的,使學生在理解的基礎上,對一些簡單的實際問題加以“模型化”,并會用“抽屜原理”加以解決。
××老師上的《抽屜原理》一課雖然樸實,但是結構完整,過程清晰,充分體現(xiàn)了學生的主體地位,為學生提供了足夠的自主探究的空間,引導學生在觀察、猜測、操作、推理和交流等數(shù)學活動中初步了解“抽屜原理”,并學會了用“抽屜原理”解決簡單的實際問題。
優(yōu)點:
1.本節(jié)課充分放手,讓學生自主思考,采用自己的方法證明:把4支筆放入3個杯子中,不管怎么放,總有一個杯子中至少放進2支筆。然后交流活動,為后面開展教學活動做了鋪墊。此處注意了從最簡單的數(shù)據(jù)開始擺放,有利于學生觀察理解,有利于調動所有學生的積極性。在有趣的類推活動中,引導學生得出一般性的結論,讓學生體驗理解最基本的“抽屜原理”:當物體個數(shù)大于抽屜個數(shù)是,一定有一個抽屜放進了2個物體。這樣的教學過程,從方法和知識層面對學生進行了提升,有助于發(fā)展學生的類推能力,形成比較抽象的'數(shù)學思維。
2.在教學過程中充分發(fā)揮了學生的主體性,在抽屜原理的推導過程中,至少是商+余數(shù),還是商+1個物體放進同一個抽屜里。讓學生互相爭辯,在由學生驗證,使學生更好的理解抽屜原理。
3.注意滲透數(shù)學和生活的聯(lián)系,并在游戲中深化知識。課前教師設計了一組簡單真實的生活情境:讓一名學生在去掉了大小王的撲克牌中,任意抽取5張。老師猜,總有一種花色的牌有2張。學完抽屜原理后,讓學生用學過的知識來解釋這一現(xiàn)象,有效的滲透“數(shù)學來源于生活,又換源于生活”的理念。
建議:
1、3個杯子放4支筆時說的基本原理在后面不適用,教師應該強調。
2、在得出抽屜原理后應該讓學生多加練習并加以說明。
3. 應該不斷在活動中使學生感受到了數(shù)學魅力。
“抽屜原理”的建立是學生在觀察、操作思考、推理的基礎上理解和發(fā)現(xiàn)的,學生學的積極主動。老師上的比較扎實,是一節(jié)好課。
《抽屜原理》六年級數(shù)學說課稿2
××老師的《抽屜原理》一課結構完整,過程清晰,充分體現(xiàn)了學生的主體地位,為學生提供了足夠的自主探索的空間,引導學生在觀察、猜測、操作、推理和交流等數(shù)學活動中初步了解“抽屜原理”,并學會了用“抽屜原理”解決簡單的實際問題。
1、本節(jié)課充分放手,讓學生自主思考,采用自己的方法“證明”:“把4枝筆放入3個文具盒中,不管怎么放,總有一個杯子里至少放進2枝筷子”,然后交流展示,為后面開展教與學的活動做了鋪墊。此處設計注意了從最簡單的數(shù)據(jù)開始擺放,有利于學生觀察、理解,有利于調動所有學生的積極性。在有趣的類推活動中,引導學生得出一般性的結論,讓學生體驗和理解“抽屜原理”的最基本原理:當物體個數(shù)大于抽屜個數(shù)時,一定有一個抽屜中放進了至少2個物體。這樣的教學過程,有助于發(fā)展學生的類推能力,形成比較抽象的.數(shù)學思維。在評價學生各種“證明”方法,針對學生的不同方法教師給予針對性的鼓勵和指導,讓學生在自主探索中體驗成功,獲得發(fā)展。在學生自主探索的基礎上,進一步比較優(yōu)化,讓學生逐步學會運用一般性的數(shù)學方法來思考問題。
2、在教學過程中充分發(fā)揮了學生的主體性,在抽屜原理(2)的推導過程中,至少是“商+余數(shù)”,還是“商+1”個物體放進同一個抽屜。讓學生互相爭辯,再由學生自己想辦法來進行驗證,使學生更好的理解了抽屜原理。另外,本節(jié)課中,學生爭先恐后的學習行為,積極參與自學、交流、合作、展示、補充、互評、提問、質疑、反思等的學習過程,“自主、合作、探究”的學習方式,給人留下了深刻的印象,學生主體地位得到了充分的落實。
3、 注意滲透數(shù)學和生活的聯(lián)系。并在游戲中深化知識。
學了“抽屜原理”有什么用?能解決生活中的什么問題?教學中教師注重了聯(lián)系學生的生活實際。課前老師設計一個游戲:“學生在一副去掉了大小王的撲克牌中,任意抽取五張,老師猜:總有一種花色的牌至少有兩張!边@是為什么?學生很驚訝。于是,學生的積極性被調動起來了,總想接開其中的奧秘。學完抽屜原理后,讓學生用學過的知識來解釋這些現(xiàn)象,有效的滲透“數(shù)學來源于生活,又還原于生活”的理念。
商討之處:
學生對“至少”一詞的理解還顯得有些欠缺,學生僅僅理解了字面上的意思,對“至少”一詞的指向性還不明確,就我理解,“至少”應該是指的在每一種情況中出現(xiàn)的最大數(shù)中的最小數(shù),而有學生卻理解成是每一種情況中的最小數(shù)。如何讓學生的理解更準確,更深刻,還需探究。
《抽屜原理》六年級數(shù)學說課稿3
一、說教材:
1、教學內容:我說課的內容是人教版六年級數(shù)學下冊數(shù)學廣角《抽屜原理》第一課時,也就是教材70—71頁的例1和例2、
2、教材地位及作用及學情分析
本單元用直觀的方法,介紹了“抽屜原理”的兩種形式,并安排了很多具體問題和變式,幫助學生通過“說理”的方式來理解“抽屜原理”,有助于提高學生的邏輯思維能力,為以后學習較嚴密的數(shù)學證明做準備。
教材中,有三處孩子們不好理解的地方:
1)“總有一個”、“至少”這兩個關鍵詞的解讀;
2)為了達到“至少”而進行“平均分”的思路;
3)把什么看做物體,把什么看做抽屜,這樣一個數(shù)學模型的建立。
六年級的學生對于總結規(guī)律的方法接觸比較少,尤其對于“數(shù)學證明”。于是我安排通過例1的直觀操作教學,及例2的適當抽象建模,讓全體學生真實地經歷“抽屜原理”的探究過程,把他們在學習中可能會遇到的幾個困難,弄懂、弄通,建立清晰的基本概念、思路、方法。
3、本節(jié)課的教學目標
根據(jù)《數(shù)學課程標準》和教材內容,我確定本節(jié)課學習目標如下:
知識性目標:初步了解抽屜原理,會用抽屜原理解決簡單的實際問題。
能力性目標:經歷抽屜原理的探究過程,通過實踐操作,發(fā)現(xiàn)、歸納、總結原理。
情感性目標:通過“抽屜原理”的靈活應用,提高學生解決數(shù)學問題的能力和興趣,感受到數(shù)學的魅力。
4、教學重、難點的確定
教學重點:經歷抽屜原理的探究過程,發(fā)現(xiàn)、總結并理解抽屜原理。
教學難點:理解抽屜原理中“至少”的含義,并會用抽屜原理解決實際問題。
二、說教法、學法:
六年級學生既好動又內斂,于是教法上本節(jié)課主要采用了設疑激趣法、講授法、實踐操作法。課堂始終以設疑及觀察思考討論貫穿于整個教學環(huán)節(jié)中,采用師生互動的教學模式進行啟發(fā)式教學。學法上主要采用了自主合作、探究交流的學習方式。體現(xiàn)數(shù)學知識的形成過程,感受數(shù)學學習的樂趣。
三、說教學過程:
一)游戲激趣,初步體驗。
師:同學們,你們玩過搶椅子的游戲嗎?現(xiàn)在,老師這里準備了2把椅子,請3個同學上來,誰愿來?
1、游戲要求:你們3位同學圍著椅子走動,等音樂定下來后請你們3個都坐在椅子上,每個人必須都坐下。
2、師:老師不用看就知道總有一把椅子上至少坐著兩名同學,是這樣的嗎?如果不相信咱們再做一次,好不好?
引入:不管怎么坐,總有一把椅子上至少坐兩個同學?你知道這是什么道理嗎?這其中蘊含著一個有趣的數(shù)學原理,這節(jié)課我們就一起來研究這個原理。【設計意圖:第一次與學生接觸,在課前進行的游戲激趣,一使教師和學生進行自然的溝通交流;二激發(fā)學生的興趣,引起探究的愿望;三為今天的探究埋下伏筆】
二)操作探究,發(fā)現(xiàn)規(guī)律。
1、提出問題:把4支鉛筆放進3個文具盒中,不管怎么放,總有一個文具盒至少放進支鉛筆。讓學生猜測“至少會是”幾支?
2、驗證結論:不管學生猜測的結論是什么,都要求學生借助實物進行操作,來驗證結論。學生以小組為單位進行操作和交流時,教師深入了解學生操作情況,找出列舉所有情況的學生。
。1)先請列舉所有情況的學生進行匯報,一說明列舉的不同情況,二結合操作說明自己的結論。(教師根據(jù)學生的回答板書所有的情況)
學生匯報完后,教師再利用枚舉法的`示意圖,指出每種情況中都有幾支鉛筆被放進了同一個文具盒。
【設計意圖:抽屜原理對于學生來說,比較抽象,特別是“總有一個文具盒中至少放進2支鉛筆”這句話的理解。所以通過具體的操作,列舉所有的情況后,引導學生直接關注到每種分法中數(shù)量最多的文具盒,理解“總有一個文具盒”以及“至少2支”。讓學生初步經歷“數(shù)學證明”的過程,訓練學生的邏輯思維能力】
。2)提出問題:不用一一列舉,想一想還有其它的方法來證明這個結論嗎?
學生匯報了自己的方法后,教師圍繞假設法,組織學生展開討論:為什么每個文具盒里都要放1支鉛筆呢?請相互之間討論一下。
在討論的基礎上,教師小結:假如每個文具盒放入一支鉛筆,剩下的一支還要放進一個文具盒,無論放在哪個文具盒里,一定能找到一個文具里至少有2支鉛筆。只有平均分才能將鉛筆盡可能的分散,保證“至少”的情況。
【設計意圖:鼓勵學生積極的自主探索,尋找不同的證明方法,在枚舉法的基礎上,學生意識到了要考慮最少的情況,從而引出假設法滲透平均分的思想】
(3)初步觀察規(guī)律。
教師繼續(xù)提問:6支鉛筆放進5個文具盒里呢?你還用一一列舉所有的擺法嗎?7支鉛筆放進6個文具盒里呢?100支鉛筆放進99個文具盒呢?你發(fā)現(xiàn)了什么?
【設計意圖:讓學生在這個連續(xù)的過程中初步感知方法的優(yōu)劣,發(fā)展了學生的類推能力,形成比較抽象的數(shù)學思維】
3、運用抽屜原理解決問題。
出示第70頁做一做,讓學生運用簡單的抽屜原理解決問題。在說理的過程中重點關注“余下的2只鴿子”如何分配?
【設計意圖:從余數(shù)1到余數(shù)2,讓學生再次體會要保證“至少”必須盡量平均分,余下的數(shù)也要進行二次平均分】
4、發(fā)現(xiàn)規(guī)律,初步建模。
我們將鉛筆、鴿子看做物體,文具盒、鴿舍看做抽屜,觀察物體數(shù)和抽屜數(shù),你發(fā)現(xiàn)了什么規(guī)律?(學生用自己的語言描述,只要大概意思正確即可)
小結:只要物體數(shù)量比抽屜的數(shù)量多,總有一個抽屜至少放進2個物體。這就叫做抽屜原理,F(xiàn)在你能解釋為什么老師肯定前兩排的同學中至少有2人的生日是同一個月份嗎?
【設計意圖:通過對不同具體情況的判斷,初步建立“物體”“抽屜”的模型,發(fā)現(xiàn)簡單的抽屜原理。研究的問題來源于生活,還要還原到生活中去,所以請學生對課前的游戲的解釋,也是一個建模的過程,讓學生體會“抽屜”不一定是看得見,摸得著】
5、用有余數(shù)的除法算式表示假設法的思維過程。
。1)教學例2,可以出示問題后,讓學生說理,然后問:這個思考過程可以用算式表示出來嗎?
。2)做一做:8只鴿子飛回3個鴿舍,至少有3支鴿子飛進同一個鴿舍。為什么?
【設計意圖:在例1和做一做的基礎上,相信學生會用平均分的方法解決“至少”的問題,將證明過程用有余數(shù)的除法算式表示,為下一步,學生發(fā)現(xiàn)結論與商和余數(shù)的關系做好鋪墊】
三)鞏固練習。
撲克牌游戲
、賻熍c生配合做
教師洗牌學生抽其中的任意5張,教師猜其中至少有2張是同花色的。
、趯W生做游戲
要求探尋規(guī)律并說明理由。
【設計意圖:用游戲的形式激發(fā)學生的興趣,用抽屜原理解決具體問題進行建模,讓學生體會抽屜的形式是多種多樣的】
四、小結全課,激發(fā)熱情
1、今天的你有什么收獲?
我們將鉛筆、鴿子、撲克看做物體數(shù),文具盒、鴿舍、四種花色看做抽屜,觀察物體數(shù)和抽屜數(shù),你發(fā)現(xiàn)了什么規(guī)律?(學生用自己的語言描述,只要大概意思正確即可)
小結:只要物體數(shù)量比抽屜的數(shù)量多,總有一個抽屜至少放進2個物體。這就叫做抽屜原理。
2、介紹課外知識。
介紹抽屜原理的發(fā)現(xiàn)者——數(shù)學家狄里克雷。
【設計意圖:讓學生體會平常事中也有數(shù)學原理,有探究的成就感,激發(fā)對數(shù)學的熱情】
【《抽屜原理》六年級數(shù)學說課稿】相關文章:
抽屜原理說課稿11-06
《抽屜原理》六年級數(shù)學說課稿11-04
《抽屜原理》教案07-28
抽屜原理教案04-07
六年級《抽屜原理》數(shù)學教學反思03-17
《抽屜原理》教學反思02-19
抽屜原理教學反思02-05
抽屜原理的教學反思04-06
抽屜原理教學反思15篇02-05