當前位置:育文網(wǎng)>教學文檔>說課稿> 五年級數(shù)學說課稿

五年級數(shù)學說課稿

時間:2022-04-03 12:12:27 說課稿 我要投稿

【推薦】五年級數(shù)學說課稿模板合集9篇

  作為一位無私奉獻的人民教師,時常要開展說課稿準備工作,說課稿可以幫助我們提高教學效果。優(yōu)秀的說課稿都具備一些什么特點呢?下面是小編整理的五年級數(shù)學說課稿9篇,歡迎大家借鑒與參考,希望對大家有所幫助。

【推薦】五年級數(shù)學說課稿模板合集9篇

五年級數(shù)學說課稿 篇1

  各位老師大家好!

  今天我說課的題目是蘇教版教材五年級上冊《公因數(shù)和最大公因數(shù)》。

  分析教材

  本課是蘇教版教材五年級上冊第三單元《公倍數(shù)和公因數(shù)》中的內容。在四年級(下冊)教材里,學生已經(jīng)建立了倍數(shù)和因數(shù)的概念,會找10以內自然數(shù)的倍數(shù),100以內自然數(shù)的因數(shù)。本單元繼續(xù)教學倍數(shù)和因數(shù)的知識,要理解公倍數(shù)、最小公倍數(shù)和公因數(shù)、最大公因數(shù)的意義,學會找兩個數(shù)的最小公倍數(shù)和最大公因數(shù)的方法。為以后進行通分、約分和分數(shù)四則計算作準備。

  《課程標準》要求學生“動手操作、自主探索、合作交流”,結合教材的特點,我力求達到下面的教學目標:

  1、經(jīng)歷找兩個數(shù)的最大公因數(shù)的過程,理解公因數(shù)和最大公因數(shù)的意義。探索找公因數(shù)的方法,會正確找出兩個數(shù)的公因數(shù)和最大公因數(shù)。

  2、結合具體實例,滲透集合思想,培養(yǎng)學生有序思考的能力,讓學生養(yǎng)成不重復、不遺漏、不重復的思考習慣。

  3、培養(yǎng)學生能用自己的語言表述自己的發(fā)現(xiàn),善于發(fā)現(xiàn)規(guī)律,利用規(guī)律解決問題的能力。

  依據(jù)《課程標準》的要求和教學目標,我確定本課教學重點是理解公因數(shù)和最大公因數(shù)的意義,教學難點是會求兩個數(shù)的公因數(shù)和最大公因數(shù)。

  設計理念

  在教學中我發(fā)揮“教師是學習活動的組織者、引導者與合作者”的作用, 激發(fā)學生興趣、引導學生自己探索。學生才是學習的主體,讓學生在玩中學、學中玩,合作交流中學、學后合作交流并根據(jù)學生原有的認識基礎和認知規(guī)律,并結合“以學生的`發(fā)展為本“的理念, 力求突出以下三點:

  1、將教學內容活動化,讓學生在做中學。

  2、采用小組合作學習,讓學生在交往互動中學。

  3、充分利用原有的認知經(jīng)驗,在遷移中學。

  教學過程

  依據(jù)教材特點及小學生認知規(guī)律和發(fā)展水平,整個教學過程安排了四個環(huán)節(jié):

  一、 活動探究,認識公因數(shù)

  分為五個步驟:

  1、動手操作:在教學公因數(shù)的概念時,讓學生經(jīng)歷操作思考的過程,認識公因數(shù)。首先讓學生用事先準備好的小長方形紙片,分別用邊長6厘米和邊長4厘米的正方形紙片鋪滿一個長18厘米、寬12浪漫的的長方形操作活動。通過學生的操作,引導學生觀察正方形的邊長與長方形的長、寬之間的關系,讓學生看看正方形每條邊各鋪了幾次?怎樣用算式表示?,來說明為什么?

  2、想象延伸:接下來讓學生思考還有那些邊長是整厘米數(shù)的正方形也能鋪滿大長方形。學生思考后,回答邊長是1厘米,2厘米,3厘米的正方形也能鋪滿大長方形。引導學生說出只要邊長“既是”18的因數(shù)“又是”12的因數(shù),就能鋪滿大長方形。從而引出公倍數(shù)的概念,再強調因為一個數(shù)的因數(shù)的個數(shù)是有限的,所以兩個數(shù)的公因數(shù)的個數(shù)也是有限的(最小是1),讓學生在自主參與、發(fā)現(xiàn)、歸納的基礎上認識并建立公因數(shù)的概念的過程。

  3、歸納總結:只要正方形的邊長既是12的因數(shù)又是18的因數(shù),這樣的正方形就能鋪滿大長方形。1、2、3、6既是12的因數(shù)又是18的因數(shù),它們就是12和18的公因數(shù)。

  4、根據(jù) 學生的總結我及時板書課題,讓學生的形象思維轉變成抽象思維。

  5、反例教學:讓學生說明4是12和18的公因數(shù)嗎?為什么?

  學生通過上面的一正一反教學總結出:公因數(shù)要同時是兩個數(shù)的因數(shù)。

  為了及時鞏固,完成練一練:先讓學生在圖上畫一畫,找出公因數(shù)和最大因數(shù),填寫在書上。

 。ㄔO計目的:通過具體的操作和交流活動,幫助學生理解公因數(shù),使知識不在枯燥無。讓學生到感受成功的喜悅。)

  二、自主探索,求最大公因數(shù):

  學生在已經(jīng)掌握公因數(shù)概念的基礎上,讓學生學習怎樣找兩個數(shù)的公因數(shù),學以致用。教學例4時,讓學生獨立思考,自主探索解決問題的方法,然后小組交流。通過具體的運用,鞏固公因數(shù)的概念。讓學生說說怎樣找12和18的公因數(shù),學生可能說三種方法,一是先找12的因數(shù),從12的因數(shù)中找18的因數(shù);二是先找18的因數(shù),再從中找出12 的因數(shù),三是分別找出12和18的因數(shù),再找出相同的因數(shù)。通過比較三種方法,讓學生感受哪種方法比較簡捷。在此基礎上,揭示最大公因數(shù)的含義,并介紹用集合圈的形式來表示12和18的公因數(shù)和最大公因數(shù),明確集合圖中省略號的作用。

 。ㄔO計目的:通過學生自主學習,弄清怎樣用集合圖來表示兩個數(shù)的公因數(shù)。幫助學生更加直觀地理解概念,感受數(shù)學方法的嚴謹性。)

  三、 綜合實踐、學以致用

  為了體現(xiàn)數(shù)學來源與生活,用與生活的理念我設計三個層次的練習:

  首先設計關于公因數(shù)和最大公因數(shù)的概念判斷題,進一步讓學生對公因數(shù)和最大公因數(shù)的認識。做到知識和技能融為一體。

  接著讓學生完成練習五第1題。學生獨立完成后交流。

  然后分別完成2、3題。小組交流。

 。ň毩暤脑O計是從認識到理解,再到拓展應用,逐層加深,培養(yǎng)學生抽象概括能力和合作意識,教學由課內到課外延伸,增加運用實踐機會。)

  四、全課小結、過程回顧

  這節(jié)課我們認識了兩個數(shù)的公因數(shù)和最大公因數(shù),說說你掌握的方法。

  學生回憶整堂課所學知識。學生通過這一環(huán)節(jié)可以將整個學習過程進行回顧、按一定的線索梳理新知,形成整體印象,便于知識的理解記憶。

五年級數(shù)學說課稿 篇2

  一、教材分析:

  我說課的內容是:人教版五年級下冊第88~90頁的《最小公倍數(shù)》一課。最小公倍數(shù)是在學生掌握了倍數(shù)、因數(shù)和公因數(shù)概念的基礎上進行教學的,主要是為了以后學習通分做準備。在生活實際中也存在它自身的的意義和作用,這節(jié)課是一節(jié)以概念為本的教學。教材的編寫意圖是使抽象的數(shù)學知識與生活實際相聯(lián)系,建立概念 ;用自己想到的方法嘗試求兩個數(shù)的最小公倍數(shù),體現(xiàn)算法的多樣化。

  二、學情分析:

  在不同的學校、班級進行前測,直接讓不同認知水平的學生,用模擬的小長方形墻磚鋪成正方形。在動手操作中,由于受密鋪的影響,橫拼豎擺,不但耗時過長,而且很難有效的構建公倍數(shù)內在的結構關系。因此在設計操作環(huán)節(jié)時,我搭建 “腳手架”。通過構建公倍數(shù)內在的結構關系和構建公倍數(shù)體系兩個環(huán)節(jié)進行有效教學。成功搭建起教學內容與學生求知心理之間的橋梁。

  三、教學目標:

  (1)建立公倍數(shù)與最小公倍數(shù)的概念,會用集合圖表示。掌握求100以內兩個數(shù)最小公倍數(shù)的方法。

  (2)通過動手操作、獨立思考、合作探究、合作交流等方式,建立公倍數(shù)和最小公倍數(shù)的概念,培養(yǎng)發(fā)現(xiàn)問題、解決問題的能力。

  (3)學會用數(shù)學的眼光觀察生活、思考問題。積極參與到對數(shù)學問題的探究活動中。真真切切地體驗到學習數(shù)學的快樂和價值。

  教學重點:建立公倍數(shù)與最小公倍數(shù)的概念。

  教學難點:掌握求100以內兩個數(shù)最小公倍數(shù)的方法。

  四、教學準備:

  游戲卡片一套,模擬墻壁的平面圖、模擬長方形墻磚多套,作業(yè)紙多張和多媒體課件一套。

  五、教法和學法:

  加點理念課堂上我采用嘗試教學法和啟發(fā)教學法。

  學生通過動手操作、獨立思考、合作探究、合作交流等方法進行學習。

  六、教學過程:

  這節(jié)課我按照下面五個環(huán)節(jié)進行教學:初步感知,建立表象;動手操作,建立概念;自主探究,歸納方法;實際應用,回歸生活;全課總結,延伸課外。

  (一)、初步感知,建立表象。

  首先我從游戲中引入,我把枯燥的倍數(shù)復習設計成“搶倍數(shù)的游戲”。讓學生初步感悟公倍數(shù)。(預設5-6分鐘)

  具體操作:

  首先我手里拿著數(shù)字卡片,給學生說,今天老師給大家?guī)硪粋風靡我們全班的游戲—搶倍數(shù)游戲。面對全體同學講一下規(guī)則:找兩個同學上來,一個負責搶3的倍數(shù),一個負責搶2的倍數(shù)。老師把卡片放到黑板上,過了搶的時間老師會把卡片收起來。最后搶的多的同學獲勝。

  然后把全班分成兩大組,要求每組快速派一名代表上來。當兩名學生上臺進行游戲,其他學生做裁判共同參與。

  接下來游戲,當?shù)?張卡片出來的時候,兩個同學會同時搶6這個數(shù)字。如果沒有出現(xiàn)搶的局面。我會再出示12這個數(shù)字。學生很容易發(fā)現(xiàn)并說出:數(shù)字6是決定游戲勝負的關鍵,因為6既是2的倍數(shù),又是3的倍數(shù)。

  緊跟著追問:“為什么都來搶6這張卡片”。先讓這兩個代表說說,再讓其他同學說說。

  然后揭示出公倍數(shù)的概念。6既是2的倍數(shù),又是3的倍數(shù),也就是說6是3和2公有的倍數(shù),我們把6叫做3和2的公倍數(shù).(板書公倍數(shù)及概念。)

  引導學生想想:那你還知道哪個數(shù)是3和2的公倍數(shù)?

  學生答出12、18、24等數(shù),并用這些數(shù)完整的表述出公倍數(shù)的概念。

  及時表揚說的對,說的完整的同學。多讓幾個同學說說,并讓同桌說說,強化公倍數(shù)的概念。

  【設計理念:布魯納說過:“獲得的知識如果沒有完整的結構把他們連在一起,那是多半會遺忘的知識!睂W習一個概念,需要組織起適當?shù)恼J知結構,并使之成為內部知識網(wǎng)絡的一部分。所以復習倍數(shù)的知識是理解公倍數(shù)、最小公倍數(shù)意義的關鍵。為了創(chuàng)設學生樂學的氛圍,讓學生從無意識的玩到有意識的關注6是3和2的公倍數(shù),建立公倍數(shù)的概念。體現(xiàn)了認知的由淺入深的過程。】

  (二)、動手操作,建立概念。

  這一大環(huán)節(jié)是深刻理解公倍數(shù),建立最小公倍數(shù)的重點內容,為此我分兩個層次進行教學。

  (1) 固定的正方形邊長,選擇長方形墻磚。(預設6-7分)

  首先在前面通過游戲感悟公倍數(shù)的基礎上,過渡到生活中。讓學生體驗公倍數(shù)能在生活中幫我們做什么。

  (出示生活情境,課件顯示。)

  當學生明白題意后,要求學生利用模擬的長方形墻磚和墻壁正方形平面圖,

  分小組活動進行動手操作。學生通過擺一擺,畫一畫,得到不同的方案。

  然后讓學生匯報想法,誰來說說:你們小組選擇的是長幾分米,寬幾分米的墻磚,怎樣鋪的?

  在匯報方案時,學生都會選擇長3分米,寬2分米的墻磚。讓學生說說自己的想法。適時進行追問:“正方形墻面墻壁的邊長所用墻磚的長和寬有什么關系?”

  讓學生自主發(fā)現(xiàn):按照要求進行,所鋪成的正方形邊長必須是小長方形長和寬的公倍數(shù)這一結論。

  這個時候多讓幾個學生說說這一結論。

  其次我再追問:“大家為什么都不選擇長5分米,寬3分米的墻磚?”

  學生很容易答出,因為12不是5和3的公倍數(shù)。

  最后我作課堂小結:“看來所鋪正方形墻壁的邊長必須是長方形墻磚長3分米,寬2分米的公倍數(shù)。”

  【設計意圖:這一環(huán)節(jié)搭建的“腳手架”過程,讓學生直觀的感受到公倍數(shù)的意義,這樣由實際生活抽象出概念,既有利于培養(yǎng)學生的數(shù)學抽象能力,也有利揭示數(shù)學與現(xiàn)實世界的聯(lián)系,幫助學生理解公倍數(shù)、最小公倍數(shù)概念的'現(xiàn)實意義!

  (2) 用固定的長方形墻磚,鋪多個的正方形。(預設6-7分)

  從上個環(huán)節(jié)直接過渡到問題中!巴瑢W們,真了不起,通過動手操作,獲得很有價值的發(fā)現(xiàn)。(課件出示情境)用這種長3分米寬2分米的長方形墻磚,整塊整塊的鋪,還可以鋪成邊長是多少分米的正方形?”

  然后先讓學生獨立思考。當有的同學有想法后,請同學們拿出表格,填寫完整。

  讓學生填出表格,空間想象能力好的學生能直接想到這些正方形的邊長都是2和3的公倍數(shù),想象不出來的,允許動手擺一擺,畫一畫。

  其次把兩個同學的表格用實物投影儀打出。讓學生交流這樣填的想法。

  學生有可能答出:發(fā)現(xiàn)這些正方形的邊長必須是所鋪長方形墻磚長和寬的公倍數(shù)。及時表揚:“你能用今天所學的公倍數(shù)知識解決問題,這了不起”

  還可能發(fā)現(xiàn):其他公倍數(shù)都是6的倍數(shù);最小的公倍數(shù);公倍數(shù)是有很多個…

  如果沒有學生說出來,及時追問:“察這些公倍數(shù),最小的是幾?”學生很容易

  說出6是公倍數(shù)中最小的。 揭示出:6是最小的公倍數(shù)。叫做3和2的最小公倍數(shù)。(板書:最小)

  及時強化最小公倍數(shù)的概念。讓多個學生說說6是3和2的什么數(shù)?同桌也互相說說。

  再次追問:3和2有沒有最大的公倍數(shù)?這些公倍數(shù)能寫完嗎?讓學生說出公倍數(shù)是無限的。

  【設計意圖:怎樣能讓學生深刻理解最小公倍數(shù)的意義,是本節(jié)課的一個重點。學生構建數(shù)學概念的過程,決不能是簡單“告知”的過程,以概念為本的學習需要經(jīng)歷一些經(jīng)驗性的活動過程。通過學生親自操作和體驗,在一種富有生命活力的再創(chuàng)造過程中,主動建立概念。完成數(shù)形結合思想的滲透!

  (3) 用集合圈表示倍數(shù)、公倍數(shù)、最小公倍數(shù)。(預設4-5分)

  首先讓學生用數(shù)學上的集合圈的形式表示3的倍數(shù)和2的倍數(shù)。并把3和2的公倍數(shù)畫出來。(課件出示兩個空白的集合圈)。學生寫完后,匯報結果。同時課件顯示出答案。

  然后利用課件使集合圈重疊一部分。給學生問題:如果這兩個集合圈這樣放在一起,該怎樣填呢?(課件出示空白的交叉的集合圈)

  讓學生思考、交流。明白各部分填什么,怎樣填。讓學生在作業(yè)紙上

  完成后匯報結果。(課件出示答案)并讓學生說說3和2的公倍數(shù)和最小公倍數(shù),再次理解公倍數(shù)和最小公倍數(shù)。

  【設計意圖:根據(jù)弗賴登塔爾“數(shù)學是一項人類活動”的觀點,從學生熟悉的生活開始,從生活中的問題到數(shù)學問題,從具體到抽象概念,從特殊關系到一般規(guī)則,逐步通過學生自己的發(fā)現(xiàn)去學習數(shù)學。進行集合思想和極限思想的滲透。感受數(shù)學化的簡潔美!

  (三)、自主探究,歸納方法。(預設7-8分鐘)

  這一環(huán)節(jié)是讓學生自主探究出找兩個數(shù)的最小公倍數(shù)的方法。

  直接出示問題:那給你兩個數(shù)6和8,怎樣求這兩個數(shù)的最小公倍數(shù)。(板書:怎樣求6和8的最小公倍數(shù)。)

  這時候給學生獨立思考的時間。當學生有了想法后,讓學生拿出作業(yè)紙,把過程寫出來。

  然后讓學生小組可以互相交流一下。

  接下來讓學生進行匯報。(找?guī)讉不同的方法,用實物投影儀展示出來。)

  在展示過程中,讓學生交流、爭辯,在交流各種方法的同時,可能發(fā)現(xiàn):兩個數(shù)相乘方法和倍數(shù)關系時找最大數(shù)的局限性。認識到列舉法的普遍性。

  在學生交流各自的方法后。我會說:老師非常欣賞大家的方法。我這也

  有個方法。我們可以把這些數(shù)在有方向的直線上表示出來。上面表示6的倍數(shù),下面表示8的倍數(shù)。所圈重疊的線段是6和8的公倍數(shù)。

  (教材中出現(xiàn)了數(shù)軸上表示倍數(shù)的方法,考慮到學生想不到這種方法,我參與活動中,最后展示這種圖形結合的方法。)

  【設計理念:探究學習是新一輪基礎教育課程改革所倡導的學習方式。在教學中,創(chuàng)設一種類似學術研究的情境,通過學生自主發(fā)現(xiàn)問題,獲得能力發(fā)展和深層次的情感體驗。滲透數(shù)學歸納思想,體現(xiàn)方法的多樣化,個性化!

  (四)、實際應用,回歸生活。(預設3-4分鐘)

  做一個課堂小結,轉到學生解決問題中!按蠹彝ㄟ^自己的努力,認識了公倍數(shù)和最小公倍 。掌握了求兩個數(shù)的最小公倍數(shù)的方法。相信大家一定有很深的收獲。讓我們帶著收獲進行下面的練習。相信你一定沒有問題!

  課件出示一道生活情境題)

  2、學生交流匯報得出:全班可能有48人或24人,最少為24人。

  【教學理念:數(shù)學教育的出發(fā)點和歸宿都應當是學生熟悉的現(xiàn)實生活。學生得到抽象化的數(shù)學知識之后,應及時把它們應用到新的現(xiàn)實問題中去。】

  (五)、全課總結,延伸課外。(預設3分鐘)

  告訴學生在天文學中也有最小公倍數(shù)的知識,讓學生邊聽邊看屏幕:

  (隨著音樂的響起,播放圖片。)。

  我朗誦:中國人對日食現(xiàn)象的記載,已有將近四千年的歷史。在漢代就發(fā)現(xiàn)日食出現(xiàn)具有一定的周期。月球從月初到下一次月初是一個朔望月,平均約長30天。太陽從月球軌道的升交點再回到升交點是一交點年,平均約長347天。朔望月與交點年的最小公倍數(shù)就和日食的周期有關。

  課堂結語:“奇妙吧!如果大家還想繼續(xù)了解,回去可以上網(wǎng)查找一下相關的資料。讓我們帶著收獲,下課!”

  【教學理念:數(shù)學與生活有著密切的聯(lián)系。利用收集到的生活資料,開發(fā)出更多的教學資源,讓學生整體感知數(shù)學在生活中的應用,真正體驗“數(shù)學來源于生活,又運用于生活”。 學生是帶著問號走進課堂,又將帶著問號走出課堂?這樣的數(shù)學教學帶給學生的是智慧的行囊,生命的啟迪!

五年級數(shù)學說課稿 篇3

  我今天說課的內容是分數(shù)與除法中的第一課時。我將就“教學內容和教學要求、教學目的、重點、難點的確定、教學方法的選擇、教學過程的設計”等四方面進行說明。

  (一)、關于教學內容和教學要求的認識

  “分數(shù)與除法的關系”這一教學內容,是小學教學第十冊第四單元中第一小節(jié)的授課內容,這部分內容是在學過分數(shù)除法的意義和計算法則、分數(shù)乘法應用題、用方程解已知一個數(shù)的幾分之幾是多少求這個數(shù)的文字題的基礎上進行教學的。同求一個數(shù)的幾分之幾是多少的應用題一樣,本小節(jié)教學的一個數(shù)的幾分之幾是多少求這個數(shù)的應用題,也是由于分數(shù)乘法意義的擴展,相應地除法意義的具體含義也有了擴展而產生的新的應用題。本節(jié)課承接了分數(shù)的意義等知識,又為今后學習單位名稱的轉化和分數(shù)的大小比較等內容做好知識的鋪墊,所以讓學生很好的掌握分數(shù)與除法之間的關系,體會量與率的區(qū)別十分重要。指導思想是以培養(yǎng)學生動手操作能力,創(chuàng)新能力以及收集信息和處理信息的能力,發(fā)展學生空間觀念。

  (二)、關于教學目的、重點、難點的確定

  根據(jù)對教學內容和教學要求的認識,針對學生的學習水平,我確定本節(jié)課的教學目標如下:

  1、知識目標:理解并掌握分數(shù)與除法的關系,知道如何用分數(shù)來表示除法算式的商。

  2、能力目標:培養(yǎng)學生動手操作的能力,合作交流的能力,發(fā)展學生的邏輯思維和分析處理問題的能力。

  3、情感目標:在生生合作中學會傾聽,收集他人的信息,在師生合作中,大膽創(chuàng)新勇于發(fā)現(xiàn),不畏艱難。勇于探索和思考,培養(yǎng)學生轉化的思想。

  本節(jié)的重點是理解分數(shù)與除法之間的關系。而本節(jié)的難點是具體體會每一個商的由來,它具體表示的意義,也就是通過分數(shù)與除法之間各部分關系的教學,實際上要將分數(shù)的意義在學生的感性認識上進行一次升華。本節(jié)課我采取利用具體實物,圖形相結合的教學手段來進行教學,教學過程的設計采取在大量的數(shù)活動和數(shù)學信息中感知知識產生和發(fā)展的過程。在教學進行中,要充分創(chuàng)設讓學生主動探究的學習氛圍,設計生動有趣,富有個性的數(shù)學活動,在學習中使學生獲得有價值的數(shù)學,實實在在的學好基礎知識,讓每個學生通過學都得到不同程度的發(fā)展營造民主、和諧、活躍的學習空間,培養(yǎng)學生學習數(shù)學的能力。

  (三)、教學方法的選擇

  貫徹“以學生為主體,教師為主導,訓練思維為主線”的原則。

  1、自主探究、尋求方法

  讓學生充分自主探究、尋求分數(shù)除法的解題方法。

  2、設計教法體現(xiàn)主體

  課堂設計以學生為主體,教師是領路人,注重學生間的合作與交流各抒已見、取長補短、共同提高。

  3、分層練習、注重發(fā)展

  練習有層次,由嘗試練習到綜合練習到發(fā)展練習,層層深入。

  (四)、教學過程的設計

  一、激情引入,自主建構。

  這一部分的`目的是在已有的知識上學習新知識,讓學生感知知識產生和發(fā)展的過程,為重點的落實,難點的突破鋪路搭橋。

 。1)(課件展示)

  1)6塊月餅分給3人,每人分多少塊?

  2)1塊月餅分給2人,每人分多少塊?

  3)1塊月餅分給3人,每人分多少塊?

 。2)問一問他們怎樣計算每人分得的塊數(shù)?

  (3)當他們發(fā)現(xiàn)不能得到整數(shù)的商時,引導他們討論應該怎樣表示他的結果。

  從而板書課題——分數(shù)與除法。

 。4)介紹分數(shù)表示除法的商的由來。

  二、在目標的遞進中,獲得積極的數(shù)學學習情感。

  這一部分的目的是在學生已初步建立了分數(shù)與除法的關系時,將數(shù)學活動變成師生之間,生生之間交往互動與共同發(fā)展的過程,遵循學生認知的特點,進一步發(fā)展思維能力,創(chuàng)造有現(xiàn)實性,挑戰(zhàn)性和趣味性的數(shù)學活動。

 。1)出示例1:例1:把1個蛋糕平均分給3人,每人分得多少個?

  1)生討論

  1在討論過程中,啟發(fā)學生用一個數(shù)表示

  2在小組中說一說,你是怎么想的。

  2)生匯報討論結果

  生1:從圖上我可以知道每人分得這塊蛋糕的

  生2:求每人分得多少個,要算1÷3得多少?

  師:1÷3得多少呢?

 。2)出示例2:把3塊餅平均分給4個孩子,每人平均分得多少塊?

  ——首先請他們估算一下每個人應分得多少塊?

  參考答案:

  A、半塊B、半塊多c、一塊

  ——其次,小組合作動手操作。

  ——最后展示分法

 。3)列出完整的算式,并用分數(shù)來表示具體的結果。

  (4)在教授完例1和例2后,不忙于理論的總結,因為在這里學生都只是停留在表面的感性認識。那么教學設計為請他們觀察黑板上的算式和結果,猜測分數(shù)與除法之間有什么關系,根據(jù)學生不同的認知情況,安排模仿練習,感性體驗數(shù)學活動。

  把1米長的鋼管平均分成3份,每份長多少米?

  體會當?shù)貌坏秸麛?shù)結果的時候,用分數(shù)來表示他們的商,發(fā)現(xiàn)分數(shù)的分子是除法里的被除數(shù),分母是除法里得出術,在總結完各部分關系與分母公式后,請他們推理一下,除法理由具體要求嗎?(除數(shù)不能為零)那分數(shù)有沒有要求呢?說一說理由,教師板書b≠0,引導進行驗證從分母所表示的意義說明沒有意義。

  三、掌握知識技能,實現(xiàn)數(shù)學思想的深入。

  結合本書的重點,難點,這一部分教學的目的要是學生理解并掌握,分數(shù)與除法之間的關系,并能在應用中形成一定的技能。在有層次的練習中,能體驗到成功的快樂,建構知識的框架,實現(xiàn)數(shù)學思想的逐步深入。

  練習設計主要分為以下幾個層次:

 、購娀謹(shù)與除法的關系:

  4÷5=5÷12=7÷8=

  讓學生敘述一下你觀察到了什么?發(fā)展學生的口頭表達能力。然學生想一想,你都可以知道什么?發(fā)展學生的空間想象觀念訓練知識的遷移能力。怎樣解答?進一步鞏固所學的知識。

 、谟梅謹(shù)表示商的意義的總體認識。

  單位換算:9cm=()dm3cm=()m7dm=()m

  11秒=()分5分=()時8時=()天

  四、畫龍點睛,留下個性發(fā)展的空間。

  課程的最后以學習目標進行提綱式小結,便于學生形成知識的網(wǎng)絡,再次重申本節(jié)的重點和難點,培養(yǎng)學生質疑問難的好習慣教師引導思考練習一中每段的長度都不一樣,要將分數(shù)與除法之間的關系從認識上、意義上、聯(lián)系上進行一次升華。給學生一個完整的認識,為今后的繼續(xù)學習留下個性發(fā)展的空間,釋放無窮的潛能。

  五、板書設計。

  第一部分為新授例題。

  第二部分為總結的分數(shù)與除法的關系知識。

  第三部分為分層次的發(fā)展思維。

  這樣設計的目的再現(xiàn)了知識產生和發(fā)展的過程,體現(xiàn)了一切事物發(fā)展的本質特點,更重要的是滲透給學生,從實踐中上升為理論,又用于指導新的實踐,在實踐中檢驗理論的真實性,從而樹立從小愛科學的唯物主義世界觀。

五年級數(shù)學說課稿 篇4

  教學內容:

  小數(shù)點位置移動引起小數(shù)大小的變化(《現(xiàn)代小學數(shù)學》第八冊).

  教學目的:

  1.理解并掌握小數(shù)點位置移動引起小數(shù)大小變化的規(guī)律;

  2.通過觀察、操作、概括、總結,培養(yǎng)學生思維能力;

  3.教育學生養(yǎng)成細致認真的學習習慣.

  教學重點:

  在總結、歸納“規(guī)律”的過程中,培養(yǎng)學生的概括能力.

  教學難點:

  熟練運用“規(guī)律”解決問題.

  教學用具:

  電腦輔教軟件,實物投影,填數(shù)用表,數(shù)學卡片和一個鈕扣.

  教學過程:

  一、復習檢查:

  1.出示數(shù)位順序表:

  問:(1)說出每個數(shù)所在數(shù)位,并表示多少?

  (2)看這個表,說明哪兩個數(shù)位間進率是10,或者進率是100?

  2.注意觀察(電腦演示)

  2.576<25.76<257.6

  (1)將25.76的“.”向右移一位,變成257.6.

  問:1)你看到了什么?

  2)比較25.76與257.6的大。

  (2)將25.76的“.”向左移一位,是2.576.

  問:1)你看到了什么?

  2)比較25.76與2.576的大。

  二、導入:

  看來小數(shù)點的位置直接影響了小數(shù)的.大小,那么小數(shù)點位置的移動,會引起小數(shù)大小的怎樣的變化呢?今天我們就一起研究這個問題(出示題目).

  三、新授:

  (一)下面我們以小組合作的方法研究這個問題.

  1.(每組一個學具袋一個表),請組長分工,大家一起利用學具按照表上的要求,邊擺邊填,并找出規(guī)律.

  2.反饋.

  3.說說填表的方法

  把0.6小數(shù)點向右移一位,0.6m→6m=600cm.

  把0.6小數(shù)點向右移二位,0.6m→60m=6000cm.

  把0.6小數(shù)點向右移三位,0.6m→600m=60000cm.

  4.獨立思考:將0.6m→6m,0.6m有什么變化?

  0.6m→6m原數(shù)擴大10倍.

  0.6m→60m原數(shù)擴大100倍.

  0.6m→600m原數(shù)擴大1000倍.

  5.你怎樣看出從0.6m→6m,原數(shù)擴大了10倍?還可以怎樣想?

 、僖驗6m的6在個位,0.6m的6在十分位,個位和十分位進率是10,所以原數(shù)擴大了10倍.

 、谶因為0.6m=60cm,6m=600cm,600cm是60cm的10倍.0.6m變成6m,原數(shù)擴大10倍.

  6.從0.6m→60m,擴大100倍,道理是什么?從0.6m→600m,擴大1000倍,道理也相同.

  7.根據(jù)大家發(fā)現(xiàn)的,你能概括出小數(shù)點右移,原數(shù)怎樣變化?

  小數(shù)點右移一位,原數(shù)擴大10倍.

  小數(shù)點右移二位,原數(shù)擴大100倍.

  小數(shù)點右移三位,原數(shù)擴大1000倍.

  8.老師板書“右移擴”.

  (二)

  1.還有沒有不同的移動方法?

  2.反饋:

  小數(shù)點左移一位,0.6m→0.06m,0.6m縮小10倍.

  小數(shù)點左移二位,0.6m→0.006m,0.6m縮小100倍.

  小數(shù)點左移三位,0.6m→0.0006m,0.6m縮小1000倍.

  3.你怎樣看出0.6m→0.06m,縮小10倍?還可以怎樣想?

  4.同組互相說其他道理.

  5.根據(jù)大家發(fā)現(xiàn),請你說說小數(shù)點左移,原數(shù)怎樣變化?

  左移一位,原數(shù)縮小10倍.

  左移二位,原數(shù)縮小100倍.

  左移三位,原數(shù)縮小1000倍.

  6.老師概括并板書“左移縮”.

  (三)

  1.根據(jù)以上發(fā)現(xiàn),我們可概括出原小數(shù)點位移的規(guī)律是:

  2.小組熟讀規(guī)律.

  3.老師有一問題,請教大家.

  (1)把0.6的小數(shù)點右移一位,為什么不寫成06?板書:06

  (06是6,沒有小數(shù)部分,0省略不寫.)

  (2)把0.6的小數(shù)點左移一位,為什么不寫成.06?板書:.06

  (因為整數(shù)部分沒有數(shù),要補0占位.)

  (四)小結:通過剛才的學習,我們不但發(fā)現(xiàn)了小數(shù)點位置移動引起小數(shù)大小變化的規(guī)律,而且還應記住在移動小數(shù)點時要注意添0去0的問題.

  四、鞏固練習.

  (一)選擇正確答案的序號,填入中:

  1.把0.09擴大100倍,小數(shù)點應向

  1.左移二位

  2.右移二位

  2.把3.72縮小100倍,小數(shù)點應向

  1.左移二位

  2.右移二位

  (二)根據(jù)箭頭指向,請說明小數(shù)點是怎樣移動的?引起原數(shù)怎樣的變化?

  (三)電腦出示練習

  1.師出生答:34.81→3.481 1.34→134

  2.師出生答:(可進行比賽游戲)

  3.師出生答:24.056×1000÷1000=24.056

  478.32÷100×1000=4783.2

  五、小結:

  這節(jié)課大家學得不錯,下面老師給大家講一個故事,故事叫——

  小數(shù)點的悲劇

  有一著名宇航員獨自駕駛“連萌一號”在太空中作業(yè),當他圓滿完成任務返航途中,突然飛船發(fā)生了不可解決的故障,原因是由于檢查員的疏忽點錯了重要數(shù)據(jù)的小數(shù)點.在人生最后兩個小時里,這位勇敢的宇航員沒有悲傷,而是堅持工作著.最后他在與女兒訣別時說:“我要告訴你,我親愛的女兒,我也要告訴全世界的小朋友,一定要認真對待學習中每一個數(shù),每一個小數(shù)點,不要再讓小數(shù)點的悲劇發(fā)生了!”“連萌一號”消失了,這場小數(shù)點的悲劇結束了,但是請同學們牢記住這位宇航員的話吧!

  下課!

五年級數(shù)學說課稿 篇5

  教材分析

  1、本部分內容實在學生掌握了整數(shù)四則運算,小數(shù)的意義和性質以及小數(shù)加減法的基礎上進行教學的。由于小數(shù)與整數(shù)有密切的聯(lián)系,所以這部分內容在編排上和講解上都注意聯(lián)系整數(shù)運算,一邊是學生把整數(shù)運算的知識遷移到小數(shù)運算中。

  2、教學的主要內容和教材編排的特點。小數(shù)乘法的意義是在整數(shù)乘法的意義、小數(shù)的意義、分數(shù)的初步認識(包括求一個數(shù)的幾分之幾的應用題)的基礎上進行教學的。小數(shù)乘法的意義比整數(shù)乘法的意義有了進一步的擴展。它包括兩種情況:小數(shù)乘以整數(shù),這同整數(shù)乘法的意義相同;一個數(shù)乘以小數(shù),則是求一個數(shù)的十分之幾、百分之幾……是乘法意義上的擴展。小數(shù)乘法的計算法則和整數(shù)乘法的計算法則相似,唯一不同的是在積里要確定小數(shù)點的位置。小數(shù)乘法的計算法則是在整數(shù)乘法積隨因數(shù)的變化的規(guī)律,小數(shù)點的位置的移動引起小數(shù)大小的變化的基礎上教學的。

  學情分析

  學生在以前的學習中掌握了整數(shù)的四則運算、小數(shù)的意義和性質以及小數(shù)加減法的基礎上已經(jīng)具備了一些知識和方法。在這種情況下進一步學習小數(shù)乘法的意義比整數(shù)乘法意義有了進一步的擴展。小數(shù)乘法的計算法則同整數(shù)乘法的計算法則相似。唯一不同的是要確定小數(shù)點的位置,這也許是有一定難度的,需要結合例題的講解來掌握其方法。

  學習目標

  1、使學生理解小數(shù)乘以整數(shù)的意義;

  2、掌握小數(shù)乘以整數(shù)的計算方法,并能正確地進行計算。

  教學重難點

  1、以練習為主;

  2、小數(shù)乘法的意義和計算法則。

  教學活動過程

 。ㄒ唬、復習。

  1、口算:

  2、4擴大( )倍是24;72縮。 )倍是7、2;

  5、24擴大( )倍是524;702縮。 )倍是0.702;

  0.056擴大( )倍是56;5320縮。 )倍是5.32;

  2、下面各數(shù),把小數(shù)點去掉,各擴大了多少倍?

  6.3 3.04 0.9 0.35 0.008

  3、下面各數(shù),縮小10倍,100倍,1000倍后各是多少?

  4 58 6340 5000 3090

  4、說出15×5,208×15各表示什么意義?并用豎式計算。

  (二)、新授

  1、提示課題

  今天我們從這節(jié)課開始學習小數(shù)乘法(板書)

  2、出示復習題,師生共同觀察討論

 。1)算出積填在空格里

 。2)觀察因數(shù)變化與積的變化關系

  從左到右觀察比較,提問:兩個因數(shù)有沒有變化?分別起了什么樣的變化?積起了什么樣的變化?

  從右到左觀察比較,提問:兩個因數(shù)又起了什么變化?積又起了什么變化?

  從而引發(fā)學生得出:一個因數(shù)不變,另一個因數(shù)擴大(或縮。10倍、100倍、1000倍……積也擴大(或縮。10倍、100倍、1000倍……

  3、教學例1

  花布每米1.50元,求買5米要用多少元?該怎樣列算式?

  (1)讀題,理解題意,根據(jù)題列式

  用加法計算:1.5+1.5+1.5+1.5+1.5+1.5

  提問:這幾個加數(shù)有什么特點?還能用別的方法來計算嗎?怎樣列式?

  用乘法計算:1.5×5

  提問:1.5×5表示意思?(5個1.5)也可以表示什么?(1.5的'5倍是多少?)

 。2)引導學生思考得出:小數(shù)乘以整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的簡便運算。

 。3)小數(shù)乘以整數(shù)的計算方法

 、偬釂枺盒(shù)乘法中含有小數(shù)位,能不能把這些小數(shù)乘法轉化成整數(shù)乘法呢?采用什么方法呢?

  ②指導學生看書,講解解題思路

  1.5擴大10倍 > 15

  × 5 ×5

  7.5縮小10倍 > 75

  1.5里有一位小數(shù),先把1.5擴大10倍變成15,把15乘以5得75,求得的積比原來要求的積擴大了10倍,根據(jù)是前面所復習的因數(shù)與積的變化規(guī)律,為了使原來的積不變,必須把75縮小10倍,即把積里的小數(shù)點向左移動一位,這樣乘得的積就應有一位小數(shù)。

 、酃餐〗Y:

  為什么要把1.5擴大10倍?(把小數(shù)轉化成整數(shù))為什么要把積縮小10倍?(使原來的積不變)小數(shù)乘以整數(shù)的計算步驟怎樣?(先把小數(shù)擴大成整數(shù),按照整數(shù)乘法的法則算出積,再把積縮小相同的倍數(shù),點上小數(shù)點)

  指出:實際計算時,不必寫出思維過程

  (三)鞏固練習

  1、根據(jù)小數(shù)乘以整數(shù)的計算方法邊說邊填

  2.5> ( ) 5.8 > ( )

  × 7 × 7 × 3 ×3

  ( ) < ( ) ( ) < ( )

  2、直接說出積是多少

  3.2 5、4 8.56、7 5.2、 1.2

  × 2 × 6 × 3 × 8 × 9 × 5

  得出:一位小數(shù)乘以整數(shù),計算方法也整數(shù)乘法相同,只是乘得的積是一位小數(shù)。

  3、試算“做一做”

  提問:你會做嗎?

  學生計算后繼續(xù)提問:你是怎樣算的?第一個乘數(shù)是幾位小數(shù)?積是幾位小數(shù)?第一個乘數(shù)小數(shù)位數(shù)與積的小數(shù)位數(shù)有什么關系?為什么?

  4、總結出計算方法:

  小數(shù)乘以整數(shù),先按照整數(shù)乘法法則算出積,再看第一個乘數(shù)有幾位小數(shù),就從積的右邊起數(shù)出幾位點上小數(shù)點。

五年級數(shù)學說課稿 篇6

  說教材

  《找次品》是人教版數(shù)學五年級下冊第七單元數(shù)學廣角的內容。這節(jié)課的學習中要找的次品是外觀與合格品完全相同,只是質量有所差異,且事先已經(jīng)知道次品比合格品輕(或重),另外在所有待測物品中只有唯一的一個次品。

  新課程標準中指出:培養(yǎng)學生良好的數(shù)學思維能力是數(shù)學教學要達到的重要目標之一。因而新課標教材系統(tǒng)而有步驟地滲透數(shù)學思想方法。“找次品”的教學,旨在通過“找次品”滲透優(yōu)化思想,讓學生充分感受到數(shù)學與日常生活的密切聯(lián)系。優(yōu)化是一種重要的數(shù)學思想方法,運用它可有效地分析和解決問題。本節(jié)課以“找次品”這一操作活動為載體,讓學生通過觀察、猜測、試驗等方式感受解決問題策略的多樣性,在此基礎上,通過歸納、推理的方法體會運用優(yōu)化策略解決問題的有效性,感受數(shù)學的魅力,培養(yǎng)觀察、分析、推理以及解決問題的能力。

  說學情

  解決問題的策略研究學生已經(jīng)不是第一次接觸,此前學習過的“沏茶”、“田忌賽馬”、“打電話”等都屬于這一范疇,在這幾節(jié)課的學習中,對簡單的優(yōu)化思想方法、通過畫圖的方式發(fā)現(xiàn)事物隱含的規(guī)律等都有所滲透,學生已經(jīng)具有一定的邏輯推理能力和綜合運用所學知識解決問題的能力。在以往學習等式的性質等知識時,學生對天平的結構、用法以及平衡與不平衡所反映的信息都已經(jīng)有了很好的掌握。另外,本節(jié)課中涉及到的 “可能”、“一定”等知識點學生在此之前都已學過。

  說教學目標

  知識技能目標:讓學生初步認識“找次品”這類問題的基本解決手段和方法。

  過程方法目標:學生通過觀察、猜測、試驗、推理等活動,體會解決問題策略的多樣性及運用優(yōu)化的方法解決問題的有效性。

  情感態(tài)度價值觀目標:感受到數(shù)學在日常生活中的廣泛應用,嘗試用數(shù)學的方法來解決實際生活中的簡單問題,初步培養(yǎng)學生的應用意識和解決實際問題的能力。

  說教學方法

  加強學生的試驗、操作活動。本節(jié)課內容的活動性和操作性比較強,可以采取學生動手實踐、小組討論、探究的方式教學。先多給學生一些時間,讓他們充分地操作、試驗、討論、研究,找到解決問題的多種策略;顒油瓿珊笤僮寣W生分組匯報結果。重視培養(yǎng)學生的猜測、推理能力和探索精神。引導學生從紛繁復雜的方法中,從簡化解題過程的角度,找出最優(yōu)的解決策略。引導學生逐步脫離具體的實物操作,轉而采用列表、畫圖等方式進行較為抽象的'分析,實現(xiàn)從具體到抽象的過渡。

  說教學過程

  一、課前播放航天飛機失事視頻。

  [設計意圖:吸引學生的注意力,在給眼睛和心靈極大震撼的同時,真切體會到次品的危害性,使學生能用一種嚴謹認真的態(tài)度對待下面的學習。]

  出示3瓶口香糖,說明:在這3瓶口香糖中有一瓶少裝了幾顆,你能幫我找出是哪一瓶少裝了嗎?學生自由發(fā)言。

  [設計意圖:在這一環(huán)節(jié)中,要引導學生根據(jù)次品的特點發(fā)現(xiàn)用天平“稱”的方法最好,知道并不需要稱出每個物品的具體質量,而只要根據(jù)天平的平衡原理對托盤兩邊的物品進行比較就可以了。]

  出示天平。說說怎樣利用天平來找出這瓶口香糖呢?

  學生回答后小結:可以把其中的2瓶分別放在天平的兩個托盤中,如果天平平衡則沒放上去的那一瓶少裝了;如果天平不平衡則翹起一端的托盤中所放的那一瓶少裝了。

  [設計意圖:數(shù)學教學活動必須建立在學生的認知發(fā)展水平和已有的知識經(jīng)驗基礎之上。在教學例1前,先以3個待測物品為起點,降低了學生思考的難度,能較順利地完成初步的邏輯推理:那就是并不需要把每

  個物品都放上去稱,3個物品中把2個放到天平上,無論平衡還是不平衡,都能準確地判斷出哪個是次品。只有理解了這些,后面的探究、推理活動才能順利進行。教學從具體的實物開始,為后面的抽象積累感性經(jīng)驗。]

  二、“找次品”的解決方法

  小組合作:從5瓶鈣片中找出少裝了的那瓶次品。

 。ê献饕螅河檬帜M天平,用5個學具當鈣片。你們是怎樣稱的?稱了幾次?組長負責作好記錄。)

  指名匯報,根據(jù)學生的回答同步用圖示法板書學生的操作步驟:

  平衡:11次

  5(2,2,1)

  不平衡:2(1,1) 2次

  5(1,1,1,1,1)1次或2次

  ……

  從這兒我們可以看出,用天平找次品的方法是多種多樣的。

  [設計意圖:有效的數(shù)學學習活動不能單純地依賴模仿與記憶,動手實踐、自主探究與合作交流是學生學習數(shù)學的重要方式。在這一環(huán)節(jié)中,讓學生動手動腦,親身經(jīng)歷分、稱、想的全過程,從不同的方法中體驗解決問題策略的多樣性。但考慮到學生用天平來稱在操作上會很麻煩,以前對天平的結構、用法以及平衡與不平衡所反映的信息都已經(jīng)有了很好的掌握,為了便于學生操作和節(jié)省時間,所以讓學生用手模擬天平來進行實踐探究。圖示法較為抽象,對學生來說不容易理解,在這里只是讓學生初步感知,教學時教師根據(jù)學生的回答同步板書,便于學生理解每項數(shù)據(jù)、每種符號的含義,為后面的學習打下一定的基礎。]

  觀察板書的圖示法,思考:至少稱幾次就一定能找到這個次品呢?

  [設計意圖:學生在實際的操作中,可能會出現(xiàn)提前找到次品的情況,在這里必須引導學生在理解“至少稱幾次就一定能找到這個次品” 的含義,在此基礎上讓學生明白:當我們選用一種方法來分析的研究問題時,應注意把可能出現(xiàn)的結果考慮全面,才能得出正確的結論。同時也為下面的填表、探究優(yōu)化策略作好準備。]

五年級數(shù)學說課稿 篇7

尊敬的各位專家評委,早上好!

  今天我執(zhí)教的《真分數(shù)和假分數(shù)》是人教版五年級下冊第四單元的內容。是在分數(shù)意義的基礎上學習真假分數(shù),拓展對分數(shù)意義的理解。雖然這是一節(jié)全新的概念課?梢獙W生識記它的概念并不難,但概念的教學不應以概念獲得為目的,不能為教概念而將概念具體化——也就是說不能先有概念定義,再去尋找使之具體化的材料、實例。因此不能用機械的方法讓學生識記概念內容,而應通過具體的分數(shù)抽象出真假分數(shù)的概念,進而有效地拓展運用;谶@樣的思考和理解,本節(jié)課我確立了以下教學目標:

  1、認識真分數(shù)和假分數(shù)的意義及特征,了解假分數(shù)的產生過程。

  2、理解真分數(shù)和假分數(shù)的意義及特征。

  3、結合具體情境滲透數(shù)形結合的數(shù)學思想,培養(yǎng)學生全面思考問題的習慣。

  為了達成以上教學目標;突出重點:理解真分數(shù)與假分數(shù)的意義;突破難點:理解真假分數(shù)特征。我在教學中努力做到以下三個“一”。

  遵循一個規(guī)律:——概念形成的規(guī)律。

  本節(jié)課的設計就是在遵循學生對概念認知的發(fā)展規(guī)律基礎上,利用“數(shù)形結合”,凸顯先“過程”后“對象”的認知順序,充分理解概念。借助數(shù)軸和圖形理解真分數(shù)、假分數(shù)與1的關系,將概念深化。

  真假分數(shù)概念的形成,本節(jié)課分4步走:

  1、就是通過填四分之幾這個分數(shù)了解學生起點。用圖形表示出來,以了解學生對分數(shù)意義的理解。

  2、運用圖片建立假分數(shù)的表象:通過怎樣表示5/4?讓學生產生了認知上的矛盾:1個單位“1”不夠時,怎么辦?讓學生在辨析中明白5/4的意義。

  3、在分類活動中構建真分數(shù)與假分數(shù)模型。在概念的形成過程中,讓學生充分表達自己的想法,“4/4”到底劃到哪一類中,引導學生通過比較、分析。最后產生看書的必要性。

  4、完善概念的認知。數(shù)學概念一旦形成,既要通過練習鞏固概念,更要關注概念外延的有效拓展。因此,在教學中,我讓學生從數(shù)軸上判斷真假分數(shù)的特征.從找規(guī)律中,拓展對真分數(shù)概念的認知,借助特殊的假分數(shù),理解假分數(shù)有大于1,也有等于1的'情況。尤其是最后的題組練習。從最基礎的分類,引導發(fā)現(xiàn),再到用字母表示,引導學生從具體到抽象,將具體、繁多的分數(shù)提升到“b/a”這一個分數(shù)表示形式,把書教薄,將知識系統(tǒng)化。

  滲透一種思想:——“數(shù)形結合”的思想。

  在課的開始階段讓學生用圖形表示出相應的分數(shù),這里是第一次借助數(shù)形結合的思想,通過圖形讓學生直觀的理解5/4,感受假分數(shù)的產生過程。圖形與分數(shù)的一一對應讓學生初步感知真、假分數(shù)與1的大小關系。第二次借助數(shù)形結合的思想是利用真假分數(shù)在數(shù)軸上的位置,再一次感受真假分數(shù)與1之間的關系。同時借助數(shù)軸的讓學生感受真假分數(shù)“無限”性,這里話雖沒挑明,但學生已能感受到了真分數(shù)和假分數(shù)的個數(shù)都是無限的。

  培養(yǎng)一個習慣——全面思考的習慣。

  我們的孩子在思考問題時往往習慣于唯一答案,不會全面思考問題,更不善于分類思考問題。因此在含有字母的分數(shù)中,除了完成判斷的同時更注重分類思想的滲透,讓學生從小接觸不確定因素——a/6是真分數(shù)還是假分數(shù)?讓學生學會全面的思考問題,課堂中我充分發(fā)揮評價語的導向作用,使學生學會從不完整到完整的表述。這個環(huán)節(jié)的教學時間的比重是比較大的,為的就是將學生思維不斷提升,從形象的呈現(xiàn)分數(shù)判斷到讓學生形成抽象的符號化思想。

  總之,我認為概念教學是不可能一步到位的。因此,我力求在概念建模后層層遞進,不斷地進行延伸,拓展概念的內涵和外延,完善概念的理解認知,進一步使概念變得立體豐厚。

  以上只是我對本節(jié)課的一些想法,敬請各位專家批評指正!

五年級數(shù)學說課稿 篇8

  一、教材內容

  “視圖與投影”是“空間與圖形”領域的內容,《數(shù)學課程標準》在每一學段要求不同。第一學段是“能辨認從正面、側面、上面觀察到的簡單物體的形狀”。第二學段是“能辨認從不同方位看到的物體的形狀和相對位置”。第三學段是“正式學習投影和三視圖的知識。所以在本冊教材中沒有給出視圖的概念,而是采用“從不同方向觀察”的表述。

  二、教學目標

  1、讓學生經(jīng)歷觀察的過程,認識到從不同的位置觀察物體,所看到的形狀是不同的。

  2、通過觀察實物,能正確辨認從正面、側面、上面觀察到的兩個物體或一組立體圖形的位置關系和形狀。

  3、通過拼搭活動,培養(yǎng)學生的空間想像和推理能力。

  三、教材的編寫特點

  通過各種方式培養(yǎng)學生的空間觀念。

  本單元教材在編排上不僅設計觀察活動,而且設計了需要學生進行想像、猜測和推理的探究活動,培養(yǎng)學生的空間想像力和思維能力。例如,呈現(xiàn)從不同方位觀察一個立體圖形所得到的三個圖形,讓學生用正方體搭出相應的.立體圖形。這就要求學生要根據(jù)已有的圖形的表象,不斷在頭腦中對這些表象進行組合和調整,最后再通過拼擺進行驗證,從而使學生的空間想像力和思維能力得到充分的鍛煉。

  四、具體編排

  例1

  通過觀察小藥箱的活動,說明從不同方向觀察立體圖形看到的形狀是不同的,在任一位置,都不能同時看到所有的面;使學生能夠辨認從正面、左面和上面觀察到的簡單物體的形狀。

  教學建議:

 。1)提供相應實物,讓學生站在不同的位置進行觀察,說一說自己看到的是哪幾個面。使學生體驗到從不同方向觀察同一物體,看到的形狀是不同的;并且發(fā)現(xiàn)站在任一位置,都不能同時看到長方體所有的面,而最多只能看到它的三個面。

  (2)指導學生分別從正面、左側面和上面進行觀察,使學生能辨認從不同方向看立體圖形得到的平面圖形。

  (3)注意:①提供給學生的實物要足夠大,觀察時,視線都要垂直于被觀察物體的表面。②使學生明確,這里所說的正面、左面和上面,都是相對于觀察者而言的。③還可以讓學生從右側面和背面觀察這個物體,描述所看到的形狀。

  例2及“做一做”

  通過讓學生觀察兩個簡單立體圖形組合的活動,學會辨認從不同方向觀察到的兩個物體的形狀和相對位置。

  前面學生學習的都是從不同方向觀察一個物體,這里是進一步學習從不同方向觀察兩個物體的位置關系和形狀。

  教學建議:

  (1)讓學生根據(jù)頭腦中已有的從不同方向觀察這些立體圖形所得到的形狀的表象,結合這兩個物體的位置關系進行判斷。如果學生有困難,教師可以提供相應實物,讓學生通過觀察進行判斷。

 。2)讓學生實地進行觀察,檢驗自己的判斷是否正確。

  (3)做一做呈現(xiàn)了從正面觀察兩個物體得到的一組圖形,讓學生判斷可能是觀察哪兩個物體的組合得到的!案鶕(jù)從一個方向看到的圖形,判斷是哪兩個物體”要比“給出兩個物體,辨認從某一個方向看到的圖形”所要求的空間想像力和思維能力更高。教學時,可以將練習八中第2題作為基礎,引導學生先想一想這兩個立體圖形可能是什么,并根據(jù)這兩個平面圖形的位置進行猜測,再驗證。

  例3及“做一做”

  呈現(xiàn)觀察4個小正方體搭成的一個簡單立體圖形的活動,使學生進一步學習從不同的方向觀察立體圖形。

  教學建議:

 。1)讓學生辨認從不同方向觀察立體圖形得到的平面圖形。

 。2)讓學生用4個小正方體在小組中擺出不同的立體圖形,再指導學生從不同的方向進行觀察。對觀察的結果進行比較,并認識到從同一角度觀察不同形狀的立體圖形,得到的平面圖形可能是相同的,也可能是不同的。

  (3)也可以逐步提出要求讓學生進行拼擺,例如:用4個小正方體拼擺,先使從正面觀察這個立體圖形得到的圖形與例題中的相同(會有無數(shù)種可能);再使從左面觀察到的圖形與例題相同(也有無數(shù)種可能);最后,使從上面觀察到的圖形與例題相同(只有一種可能)。在這個過程中教師可以不斷提問“能確定立體圖形的形狀了嗎”,使學生認識到僅僅依據(jù)從一個或兩個方向看到的圖形不能確定立體圖形的形狀。教師還可以增加小正方體的數(shù)量,進行類似的活動,但注意數(shù)量不宜過多。

 。4)做一做呈現(xiàn)觀察4個小正方體搭成的兩個簡單立體圖形的組合的活動,使學生進一步學習辨認從不同方位觀察到的兩個物體的形狀和相對位置?梢宰寣W生直接判斷,如果學生有困難,教師可以提供相應的實物幫助學生判斷。

 。ㄎ澹┙虒W建議

  1、準備好必要的教具和學具。

  由于本單元有大量的觀察和拼搭等活動,所以除教具外,最好每個學生都準備一套相應的學具。可以結合實際,指導學生自制學具。

  2、注意讓學生真正地、充分地進行活動和交流。

  只有在活動的過程中,學生才能真正經(jīng)歷觀察、想像、猜測、分析和推理等過程,學生的空間想像力和思維能力才能得以鍛煉,空間觀念才能得到發(fā)展。因此,教師要切實組織好學生的課堂活動,要讓所有的學生都真正地、實實在在地進行觀察和操作。注意不要讓教師的演示或少數(shù)學生的活動和回答來代替每一位學生的親自動手、親自體驗和親自思考。并應鼓勵學生敢于發(fā)表自己的意見,與同伴交流自己的想法,在交流中理清思路,互相啟發(fā)。

五年級數(shù)學說課稿 篇9

  一、說教材

  異分母分數(shù)加減法是北師大版小學數(shù)學第九冊第四單元的一個學習內容。在這個內容之前,學生已掌握了分數(shù)的基本性質,學會了約分、通分、分數(shù)的大小比較等知識,懂得了同分母分數(shù)加減法的算理,其中同分母分數(shù)加減法的計算方法是本節(jié)課最直接的知識起點。本節(jié)課的內容又是進一步學習分數(shù)加減法混合運算的基礎,同時又是本單元的重點。五年級學生已經(jīng)能理解只有分數(shù)單位相同的分數(shù)才能相加減的算理,并且已經(jīng)初步具有用舊知識解決新問題的能力,也就是具有了一定的知識遷移能力。

  據(jù)此,我把本課的教學目標制定為:

  1、知識技能目標:復習同分母分數(shù)的相加減,讓學生自主探索異分母分數(shù)加減法,能正確的計算異分母分數(shù)加減法。

  2、過程與方法:通過讓學生經(jīng)歷探索加減法的計算過程,感受到單位相同的數(shù)才能相加的道理,體會到數(shù)學的內在聯(lián)系。

  3、情感態(tài)度與價值觀:培養(yǎng)學生的合作、探索的精神及遷移推理和概括的能力。

  教學重點:異分母分數(shù)加減法的計算法則

  教學難點:運用通分解決異分母分數(shù)不能直接相加減的問題。

  教學準備:多媒體課件

  二、說教法

  異分母分數(shù)加減法的法則是:先通分,再按分母分數(shù)加減法的.法則進行計算,學生在前一個單元里已經(jīng)熟練掌握了通分的技能,又在前幾節(jié)課里學習了同分母分數(shù)加減法,明確了分-數(shù)單位相同可以直接相加減。因此,對學生而言,作為構成計算法則的兩個重要成分都已學過,在這節(jié)課,無非是引導學生想到“化異為同”,把異分母分數(shù)轉化為同分母分數(shù)來溝通新舊知識,好在學生已從“異分母分數(shù)大小比較”里學會了這一招“化異為同”所以在這節(jié)課里要求學生再用“化異為同”來解決問題并不難。

  三、說學法

  通過學習新課標,使我明白:數(shù)學教學活動必須建立在學生的認知發(fā)展水平和已有的知識經(jīng)驗基礎上,教學應激發(fā)學生的學習積極性,向學生提供充分從事數(shù)學活動的機會,幫助他們在自主探究和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能,數(shù)學思想與方法,獲得廣泛的數(shù)學活動經(jīng)驗。學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者、引導者和合作者;谛抡n標的上述理念,我把本節(jié)課的教學流程預設為:

  (一)導入

  1、復習同分母分數(shù)的相加減及其運算規(guī)則

  2、課題的引入

 。ǘ┙虒W新課

  1、新授

  2、鞏固和復習

  3、課堂總結

 。ㄈ┚毩

  1、做一做

  2、判斷計算是否正確并說明理由

  四、說教學過程

  (一)導入

  1、復習同分母分數(shù)的相加減及其運算規(guī)則

  首先我給出一組題目,讓同學們回顧同分母的加減法及其運算規(guī)則,為后面?zhèn)魇诋惙帜阜謹?shù)的加減法起了很好的引導。(2/95/9=1/83/8=5/6–3/6=4/5–3/5=)其中還有復習了約分的知識,檢驗同學們課后的學習。

  2、課題的引入

  根據(jù)課本的知識,我提出了一個問題,用學生的慣性思維讓他們自己提出“1/43/10=”式子,這就與我們以前所學的內容不同,讓他們發(fā)現(xiàn)其中的問題。然后同學們互相討論,找出解決問題的辦法。

 。ǘ┙虒W新課

  1、新授

  這一環(huán)節(jié)是探究異分母分數(shù)加減法的計算法則,是本節(jié)課的中心環(huán)節(jié),為了突出重點,突破難點,我采用讓小組合作的形式,讓學生自主探索,提出“通分化為同分母”這個關鍵點,然后讓同學們動手做一做。

  2、鞏固和復習

  首先我在其中穿插異分母分數(shù)的大小比較,然后再鞏固異分母分數(shù)的加減法,這其實都貫徹著“只有相同的單位才能相加”

  3、課堂總結

  讓同學自我總結異分母分數(shù)加減法法則:首先通分化為同分母,然后分子相加減,分母不變。

 。ㄈ┚毩

  學生學習新的知識方法后,還必須通過多種形式的練習加以鞏固、提高、拓展、創(chuàng)新,形成技能,發(fā)展智力。

  1、做一做

  讓同學了解異分母分數(shù)加減法最關鍵是通過通分把異分母轉化為同分母

  2、判斷計算是否正確并說明理由

  讓學生找出解題過程中的錯誤,學生會仔細查看每一道題的每一步,并運用所學知識進行改正,有助于鞏固正確的解題方法。題中的錯()誤是學生在計算過程中最容易出現(xiàn)的,通達改正練習,引以為戒。學生指出錯誤后,可要求完整地寫出正確的解題過程,以形成正確的概念

  五、教學效果分析

  回顧本節(jié)課的授課過程,本次對課堂評價實效性的探索還是收到了可喜的效果,各教學環(huán)節(jié)都較好地體現(xiàn)了評價的服務性、導向性和激勵性等功能。

  復習引入環(huán)節(jié)中,在收集信息并提出數(shù)學問題階段,針對學生提出的數(shù)學問題,教師根據(jù)學生渴求贊揚和鼓勵的心理特點,給予合理的,積極的,肯定的課堂即時評價。教師主要應用準確、巧妙、富有感染力、充滿真情的激勵性語言,對學生的課堂表現(xiàn),從知識、能力、情感態(tài)度價值觀等方面熱情地給予褒獎。

【五年級數(shù)學說課稿】相關文章:

五年級下數(shù)學說課稿04-26

五年級數(shù)學說課稿03-11

五年級數(shù)學說課稿11-08

蘇教版數(shù)學五年級上冊說課稿12-07

“用數(shù)學”數(shù)學說課稿03-09

數(shù)學樂園說課稿11-12

《數(shù)學廣角》說課稿06-27

數(shù)學說課稿03-25

數(shù)學廣角說課稿11-07

數(shù)學統(tǒng)計說課稿07-02