三角形的內(nèi)角和說課稿
作為一位杰出的老師,通常需要用到說課稿來輔助教學,說課稿有利于教學水平的提高,有助于教研活動的開展。那么問題來了,說課稿應(yīng)該怎么寫?以下是小編精心整理的三角形的內(nèi)角和說課稿,歡迎大家分享。
三角形的內(nèi)角和說課稿1
★教材與學情分析
《三角形的內(nèi)角和》是人教版四年級下冊的教學內(nèi)容,這一內(nèi)容是三角形的一個重要性質(zhì)。它有助于學生理解三角形的三個內(nèi)角之間的關(guān)系,也是進一步學習的基礎(chǔ)。經(jīng)過第一學段以及本單元的學習,學生已具備了一些相應(yīng)的三角形知識和技能,初步的動手操作能力、主動探究能力以及合作學習的習慣,這為感受、理解、抽象“三角形的內(nèi)角和”的概念,打下了堅實的基礎(chǔ)。
★教學目標、重難點
以建構(gòu)主義理論以及有效教學的理念為指導,結(jié)合對教材的認識以及學生的情況分析我將本節(jié)課的教學目標定為下列幾點:
1、知識與技能目標:通過量、剪、拼等活動發(fā)現(xiàn)、驗證三角形的內(nèi)角和是180°,并會應(yīng)用這一知識解決生活中簡單的實際問題。
2、過程與方法目標:通過對三角形的內(nèi)角和轉(zhuǎn)化為平角的探究與體驗,滲透“轉(zhuǎn)化”、“變中找不變”的數(shù)學思想。
3、情感與態(tài)度目標:體驗成功的喜悅,激發(fā)主動學習數(shù)學的興趣。
教學重點:經(jīng)歷“三角形的內(nèi)角和是180°”這一知識的形成、發(fā)展和應(yīng)用的全過程。
教學難點:驗證“三角形的內(nèi)角和是180°”以及對這一知識規(guī)律的靈活運用。
學具準備:量角器、三角尺、剪刀和準備一個喜歡的三角形(可以畫在紙上,也可以剪下來)
★教學環(huán)節(jié)
下面向大家重點介紹我對這節(jié)課教學環(huán)節(jié)的設(shè)計:
建構(gòu)主義理論學習觀提倡以學生為中心,強調(diào)學習者對知識意義的主動建構(gòu)。本節(jié)課我設(shè)計采用支架式教學方法,以猜想→驗證→應(yīng)用→評價四個活動環(huán)節(jié)為主線,引導學生通過自主探究學習實現(xiàn)對“三角形內(nèi)角和是180°”這一知識規(guī)律的數(shù)學理解。同時,每一個活動環(huán)節(jié)都讓學生嘗試扮演一種角色,激發(fā)他們投入課堂活動的興趣。
一.大膽設(shè)疑,提出猜想(猜想家)
在這節(jié)課之前,有不少學生通過各種渠道了解了三角形的內(nèi)角和是180°。因此,第一個環(huán)節(jié)我就讓學生根據(jù)已有的知識經(jīng)驗進行大膽設(shè)疑,提出猜想,做一個猜想家。
首先,我向?qū)W生出示一個長方形,向?qū)W生講解長方形的四個內(nèi)角,從長方形的角的特征可知它的四個內(nèi)角都是直角,將這四個內(nèi)角的度數(shù)相加就算出長方形的內(nèi)角和是360°。接著,我把長方形拆成兩個三角形,讓學生指出其中一個三角形的三個內(nèi)角,設(shè)問:這個三角形的三個內(nèi)角和是多少?讓學生說說各自的看法和理由,并提出“三角形的內(nèi)角和是180°”的猜想。通過這一環(huán)節(jié),學生首先獲得對“三角形內(nèi)角和是什么”這一陳述性知識的數(shù)學理解。
二、科學驗證,探索規(guī)律(科學家)
有了大膽的猜想,就要進行科學的驗證,第二個角色就是扮演科學家,對剛才的猜想進行科學驗證,自主探索規(guī)律,這也就是本節(jié)課的第二個環(huán)節(jié)。
第二個環(huán)節(jié)的活動步驟如下:
。1)提供實驗活動需要操作的工具,如:量角器、三角尺、剪刀等,讓學生說說:“要知道三角形的內(nèi)角和,怎樣利用好這些工具?”
。2)明確提出操作要求:先在自己準備的三角形上作好內(nèi)角的符號,選擇合適的工具開展實驗,遇到操作困難可以與同伴商量或請老師幫助解決。
(3)學生操作后在小組內(nèi)交流,出示交流提綱:
A、通過實驗操作,你發(fā)現(xiàn)三角形的內(nèi)角和有什么特點?你是怎樣發(fā)現(xiàn)的?
B、你認為三角形的內(nèi)角和與三角形的大小、形狀有關(guān)嗎?為什么?
。4)集體交流,小結(jié)規(guī)律:
在組織學生交流實驗的過程與成果時,我會挑選出研究不同形狀或不同大小的三角形的學生進行實驗匯報,并在學生提出疑問時進行合理的解釋與調(diào)控,最后與學生一起小結(jié)歸納出:“三角形的內(nèi)角和是180°,而且與它的大小、形狀無關(guān)”這一數(shù)學規(guī)律,從中感悟由特殊到一般的證明方法。
建構(gòu)主義心理學認為,學習的過程是學習者用自己的觀點去解讀教材的內(nèi)容,從而在自己頭腦中建構(gòu)出一個新的概念。在第二個環(huán)節(jié),學生通過動手實驗,用自己適用的方式將“三角形內(nèi)角和是180°”這一知識規(guī)律建構(gòu)起來,也就是獲得了對“三角形內(nèi)角和是多少、為什么”這些程序性知識的數(shù)學理解。
三、聯(lián)系生活,實踐應(yīng)用(實踐家)
俗話說的好:“熟能生巧”。數(shù)學離不開練習,要掌握知識,形成技能技巧,一定要通過練習。有效教學理論指出練習要考慮它的實效性。在這個環(huán)節(jié),我設(shè)計讓學生扮演實踐家,通過三個有層次有針對性的練習實踐把探索得出的知識應(yīng)用于生活問題之中。
第一,基本運用。即書本中的.“做一做”這個練習,通過這個練習讓學生形成運用三角形內(nèi)角和的知識求出未知角度數(shù)的基本技能。我設(shè)計讓學生先嘗試獨立完成,在匯報交流時,鼓勵學生注意傾聽、領(lǐng)會同伴的解法,從而反思自己解法。
第二,綜合運用。即書本中練習十四的第9題,這道題目的是讓學生在求特殊三角形的未知角的度數(shù)的過程中,綜合運用之前所學的各種三角形的特征與三角形內(nèi)角和的知識,對知識的運用提高了一個層次。因此做這道題時,我會先引導學生說說自己的看法,找出特殊三角形中隱藏的已知條件。我估計學生可能會混淆了等腰三角形的頂角和底角,因此在匯報交流時重點放在等腰三角形這個圖形的求解,讓學生首先明確已知的是頂角的度數(shù),因此從180°中減去頂角的度數(shù),再平分成兩份,才能得出一個底角的度數(shù)。這時,我再提出一個反例,如果知道的是底角的度數(shù),你能求出頂角是多少度嗎?以此引出練習十四的第10題。
第三,拓展延伸。我設(shè)計了將一個大三角形拆分成兩個小三角形,其中一個三角形的內(nèi)角和是不是用180°除以2得到?然后再出示兩個三角形拼成一個大三角形,這個大三角形的內(nèi)角和是不是用180°乘2得到?以這樣的一個變式練習讓學生進一步感悟“三角形的內(nèi)角和與它的形狀、大小沒有關(guān)系”的知識規(guī)律。
通過三個層次的練習,學生應(yīng)用“三角形內(nèi)角和是180°”這個知識規(guī)律回到現(xiàn)實問題中,用自己的思維方式對各種現(xiàn)實問題進行解釋,這是學生不斷完善對三角形內(nèi)角和知識的內(nèi)涵與外延的數(shù)學理解,實現(xiàn)了對數(shù)學理解的提升。
四、自我反思,評價延伸
在這個環(huán)節(jié),我會讓學生自己說說:“這節(jié)課你有什么收獲?”“在扮演三個角色時,哪一個角色完成得最好,為什么?”“在今后的課堂活動中哪方面可以做得更好?”對學生的各種自我評價,同伴和老師都可以發(fā)表自己的看法,讓學生發(fā)現(xiàn)、總結(jié)開展本次課堂活動的經(jīng)驗與不足,明確今后努力的方向。
★教學特色
一、滲透數(shù)學思想
通過探究活動,學生將三個內(nèi)角和轉(zhuǎn)化為一個平角,得出三角形的內(nèi)角和是180°,滲透了“轉(zhuǎn)化”的數(shù)學思想;通過實驗小結(jié),學生發(fā)現(xiàn)無論三角形的形狀、大小怎樣變,三角形的內(nèi)角和不變,都是180°,滲透了“變中找不變”的數(shù)學思想。
二、利用課程資源
1、挖掘?qū)W生資源
有效教學有時需要教師保持“無為而教”的自我克制,不過多地干擾學生的自由學習空間。在設(shè)計這節(jié)課時,我利用學生已有的知識經(jīng)驗,對三角形的內(nèi)角和進行猜想,然后通過大膽的實驗激起同伴之間的互相影響,作為教師,我更多的是為學生提供大量的課程資源,喚醒和激勵學生親自去接觸、體驗知識和規(guī)律的產(chǎn)生過程。
2、善用教材資源
新課標數(shù)學實驗教材倡導人人學“有用”的數(shù)學,它把原教材繁、難、雜、偏的內(nèi)容刪去。因此,我在設(shè)計練習鞏固時,不作無謂的浪費,直接使用教材中習題,作為基礎(chǔ)性練習和綜合性練習?紤]學生學習基礎(chǔ)、能力的差異,在練習的最后一層拓展性練習,我利用三角形的拆分與組合為學生提供多層次的思考,以滿足不同層次學生均發(fā)展的需要,讓人人都獲得不同程度的提高,得到成功的體驗。
三角形的內(nèi)角和說課稿2
各位評委、老師大家好:
我說課的題目是《三角形內(nèi)角和》,內(nèi)容選自人教版九年義務(wù)教育七年級下冊第七章第二節(jié)第一課時。
一、本節(jié)課在新一輪課程改革下的設(shè)計理念:
數(shù)學是人與人之間精神層面上進行的交往。課堂教學中的交往主要是教師與學生、學生與學生之間的交往。它需要運用“對話式”的學習方式,采取多種教學策略,使學生在合作、探索、交流中發(fā)展能力。新課程中對學生的情感、體驗、價值觀,以及獲取知識的渠道都有悖于傳統(tǒng)的教學模式,這正是教師在新課程中尋找新的教學方式的著眼點。應(yīng)該說,新的教學方式將伴隨著教師對新課程的逐漸透視而形成新的路徑。要破除原有教學活動的框架,建立適應(yīng)師生相互交流的教學活動體系;滿足學生的心理需求,實現(xiàn)教者與學者感情上的融洽和情感上的共鳴;給學生體驗成功的機會,把“要我學”變成“我要學”。我認為教師角色的轉(zhuǎn)變一定會促進學生的發(fā)展、促進教育的長足發(fā)展,在未來的教學過程里,教師要做的是:幫助學生決定適當?shù)膶W習目標,并確認和協(xié)調(diào)達到目標的最佳途徑;指導學生形成良好的學習習慣,掌握學習策略;創(chuàng)造豐富的教學情境,培養(yǎng)學生的學習興趣,充分調(diào)動學生的學習積極性;為學生提供各種便利,為學生的學習服務(wù);建立一個接納的、支持性的、寬容的課堂氣氛;作為學習的參與者,與學生分享自己的感情和想法;和學生一道尋找真理,能夠承認自己的過失和錯誤。教學情境的營造是教師走進新課程中所面臨的挑戰(zhàn),適應(yīng)新一輪基礎(chǔ)教育課程改革的教學情境不是文本中的約定,也不是現(xiàn)成的拿來就能用的,需要我們在教學活動的.全過程中去探索、研究、發(fā)現(xiàn)、形成。
二、教材分析與處理:
三角形的內(nèi)角和定理揭示了組成三角形的三個角的數(shù)量關(guān)系,此外,它的證明中引入了輔助線,這些都為后繼學習奠定了基礎(chǔ),三角形的內(nèi)角和定理也是幾何問題代數(shù)化的體現(xiàn)。
三、學生分析
處于這個年齡階段的學生有能力自己動手,在自己的視野范圍內(nèi)因地制宜地收集、編制、改造適合自身使用,貼近生活實際的數(shù)學建模問題,他們樂于嘗試、探索、思考、交流與合作,具有分析、歸納、總結(jié)的能力,他們渴望體驗成功感和自豪感。因而老師有必要給學生充分的自由和空間,同時注意問題的開放性與可擴展性。
四、教學目標:
1.知識目標:在情境教學中,通過探索與交流,逐步發(fā)現(xiàn)“三角形內(nèi)角和定理”,使學生親身經(jīng)歷知識的發(fā)生過程,并能進行簡單應(yīng)用。能夠探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,體會方程的思想。通過開放式命題,嘗試從不同角度尋求解決問題的方法。教學中,通過有效措施讓學生在對解決問題過程的反思中,獲得解決問題的經(jīng)驗,進行富有個性的學習。
2.能力目標:通過拼圖實踐、問題思考、合作探索、組內(nèi)及組間交流,培養(yǎng)學生的的邏輯推理、大膽猜想、動手實踐等能力。
3.德育目標:通過添置輔助線教學,滲透美的思想和方法教育。
4.情感、態(tài)度、價值觀:在良好的師生關(guān)系下,建立輕松的學習氛圍,使學生樂于學數(shù)學,遇到困難不避讓,在數(shù)學活動中獲得成功的體驗,增強自信心,在合作學習中增強集體責任感。
五、重難點的確立:
1.重點:三角形的內(nèi)角和定理探究與證明。
2.難點:三角形的內(nèi)角和定理的證明方法(添加輔助線)的討論
六、教法、學法和教學手段:
采用“問題情境-建立模型-解釋、應(yīng)用與拓展”的模式展開教學。
采用對話式、嘗試教學、問題教學、分層教學等多種教學方法,以達到教學目的。
三角形的內(nèi)角和說課稿3
一、教學目標
課程標準這樣描述:通過觀察、操作了解三角形內(nèi)角和是180。
分析教材內(nèi)容,在上學期的學習中學生已經(jīng)掌握了角的分類及度量的知識。在本課之前,學生又研究了三角形的特性、三邊間的關(guān)系及三角形的分類等知識。積累了一些有關(guān)三角形的知識和經(jīng)驗,形成了一定的空間觀念,可以在比較抽象的水平上進一步認識三角形,探索新知。教材中安排了學生對不同形狀的、大小的三角形進行度量,再運用拼、折、剪等方法發(fā)現(xiàn)三角形的內(nèi)角和是180°,學好它有助于學生理解三角形的三個內(nèi)角之間的關(guān)系,也是進一步學習其他圖形內(nèi)角和的基礎(chǔ),同時為初中進一步論證做好準備。
課前我對學情進行了分析:
1、學生在學習本課前已經(jīng)掌握了銳角、直角、鈍角、平角和周角的度數(shù),認識了三角形的基本特征及其分類,由于學生的數(shù)學知識、能力和思考問題的角度有一定的差異,因此比較容易出現(xiàn)解決問題策略的多樣化。
。、已經(jīng)有不少學生知道了三角形內(nèi)角和是180度的結(jié)論,但是很可能都知其然不知其所以然。
通過對課程標準的認識,以及內(nèi)容分析和學情分析,我制定了這樣的學習目標:
1、通過量、拼、折、剪等方法探索和發(fā)現(xiàn)三角形的內(nèi)角和等于180°并會應(yīng)用這一規(guī)律解決實際的問題。
2、通過研究直角三角形進而研究銳角三角形、鈍角三角形,初步認識、理解由特殊到一般的邏輯思辨方法。
二、評價設(shè)計
針對這一目標的完成,我設(shè)計了一下評價方式:
1、交流式評價:通過師生、生生對話交流,在交流中對學生進行評價。
2、表現(xiàn)性評價:通過小組討論表現(xiàn)、學生回答問題情況,適當對學生進行點撥。
3、操作反應(yīng)評價:通過學生在研究三角形內(nèi)角和過程中的測量、簡拼、折等活動對學生進行評價
評價題目
1、通過3個練習題(1、做一做。2、說一說3、拼一拼、想一想)
檢測學習目標1的掌握情況。
2、通過小組、同桌合作、匯報,教師引導學生理解本節(jié)課所蘊含的學習方法,檢測學習目標2的掌握情況
三、教具學具準備
教具準備:課件、3個直角三角形,2個銳角三角形、2個鈍角三角形、一張表格
學具準備:三角板、量角器.
四、教學過程
這節(jié)課的教學我通過一下四個環(huán)節(jié)完成。
1、觀察猜測,引入新知;
2、動手操作,探索新知;
3、鞏固新知,拓展應(yīng)用;
4、總結(jié)評價、延伸知識。
第一環(huán)節(jié),觀察猜測,引入新知。
由圖形引入,讓學生指出銳角三角形,直角三角形,鈍角三角形的三個內(nèi)角,發(fā)現(xiàn)在這些三角形中最大的內(nèi)角是鈍角。問:想看鈍角三角形72變嗎?我們一起來看一看。課件演示:
。1)鈍角變小,另外兩個角怎樣變?
(2)鈍角變大,另外兩個角怎樣變?
。3)鈍角變大、變大、變大再變大,還能再大嗎?發(fā)現(xiàn)再大就成平角了。平角多少度?這時把三角形三個內(nèi)角的加起來,和可能多少呢?猜測:180度。
這只是我們的猜測,(板書:猜測)數(shù)學是要用事實說話的,這節(jié)課我們就來學習三角形的內(nèi)角和。(板書課題)這樣由三種變化的三角形引入新課,激發(fā)學生興趣的同時為后面的學習做準備
第二環(huán)節(jié),動手操作,探索新知。
1、直角三角形的內(nèi)角和。
(一)直角三角形內(nèi)角和
先讓學生觀察一副三角板的內(nèi)角和,發(fā)現(xiàn)都是180度,和猜測是一樣的,是不是所有的直角三角形內(nèi)角和都是180度呢?課件出示一些直角三角形,讓學生用手中的工具驗證你的猜測。
四人小組合作,拿出學具袋里三個紅色的直角三角形和表格,用不同的方法驗證猜測。學生可以“量一量”,也可以“剪一剪”,還可以“折一折”。匯報時要讓學生說一說方法,同時在課件上展示。
這個環(huán)節(jié)引導學生通過量、拼、推理等實踐操作活動,自主探究直角三角形的內(nèi)角和是180度,體驗解決問題策略的多樣化。通過這些過程使學生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結(jié)論的統(tǒng)一,從而使學生明白獲得探究問題的方法比獲得結(jié)論更為重要。
。ǘ、銳角三角形、鈍角三角形的內(nèi)角和
課件出示將銳角三角形、鈍角三角形,問:你能利用我們剛才學到的知識來研究它們的`內(nèi)角和嗎?動手試一試,可以同桌討論。(學生操作,匯報,課件演示)讓學生模仿老師操作說理。由此得到了銳角三角形和鈍角三角形的內(nèi)角和也是180度。我們就可以說所有三角形的內(nèi)角和都是180度。這是三角形的一個特性。
這樣引導學生通過直角三角形的內(nèi)角和是180度來推導出銳角和鈍角三角形的內(nèi)角和是180度,使學生初步掌握由特殊到一般的邏輯思辨方法。
第三環(huán)節(jié)、鞏固新知,拓展應(yīng)用
用三角形的這一特性來解決一些問題
1、基本練習
通過做一做和說一說這兩個練習來強化學生認知。
2、拓展練習
拼一拼、想一想
。1)兩個三角形拼成大三角形,說出大三角形的內(nèi)角和
。2)一個三角形去掉一部分
引導學生發(fā)現(xiàn),無論三角形的形狀或大小如何改變,內(nèi)角和都是180度,看來三角形的內(nèi)角和度數(shù)和他的大小形狀都無關(guān)。
。3)再把這個三角形剪去一部分剪成一個四邊形,它的內(nèi)角和是多少度?
(4)如果變成五邊形,你還能求出他的度數(shù)嗎?
充分利用多媒體資源幫助學生理解、消化、新的知識,能夠靈活的運用三角形的內(nèi)角和等于180度。在此基礎(chǔ)上滲透數(shù)學的“轉(zhuǎn)化”思想和“分割”思想提高學生靈活運用和推理等各方面的能力。
第四環(huán)節(jié)、總結(jié)評價、延伸知識
通過這個環(huán)節(jié)讓學生談一談自己的收獲或感受,對本節(jié)課的知識進行拓展升華。
五、板書設(shè)計:
三角形的內(nèi)角和
猜測(180度)
驗證:測量、撕拼、折疊結(jié)論
三角形的內(nèi)角和是180度
我的板書簡明扼要,體現(xiàn)了本節(jié)課的重點,而且是對本節(jié)課學習方法的一個回顧。
三角形的內(nèi)角和說課稿4
各位老師:
你們好,我是來應(yīng)聘XX數(shù)學老師的X號考生,我今天抽到的試講題目是《三角形的內(nèi)角和》,下面開始我的試講。
同學們,上節(jié)課我們已經(jīng)學習了三角形的基本形狀,那么同學們一起告訴老師我們都學了什么形狀的三角形啊?對,非常好,有鈍角三角形、直角三角形和銳角三角形。大家回答的很好,說明上節(jié)課掌握的很好,那今天老師想讓大家畫個特殊點的三角形,好不好?今天我請同學們在紙上畫一個有兩個直角的'三角形,畫好了請舉手哦。有沒有畫好呀?沒有,大家看黑板上老師畫的,是不是和你們畫出來的一樣?為什么我們沒辦法畫出有兩個直角的三角形呢?肯定里面有秘密,大家跟著老師一起來研究一下好不好?
大家拿出事先準備好的三角板和量角器吧,同學們,你們現(xiàn)在用量角器來測量一下每一個三角形的角的度數(shù),待會老師會進行統(tǒng)計。(轉(zhuǎn)身畫兩個三角板模型),測好了吧,下面請靠窗的同學告訴老師你的測量答案。30度60度90度,非常好,那另一個呢?45度45度和90度,非常精確,請坐,相信咱們其他同學也一定能夠測量出來。那么大家仔細觀察一下,這兩組數(shù)據(jù)有沒有什么相似點。有的同學說都有個九十度,很好,還有呢,很好!有的同學發(fā)現(xiàn)了,說這三個角加起來是180度,非常棒。也就是這兩個三角形內(nèi)角和是180度。
可是是不是所有內(nèi)角和都是180度啊,同學們,你們自己分別畫一個不同的銳角、鈍角、直角三角形,并且測量每個內(nèi)角度數(shù),并報給老師內(nèi)角和。好,請第一排的女生起來回答,你的三個內(nèi)角和是多少?179,180,180很好,大家知道為什么第一個不是嗎?對,是因為畢竟有誤差的存在,很棒。
下面大家按以前的安排分成六個組,交給你們一個任務(wù),你們討論一下,怎么來驗證我們剛剛得出的這個結(jié)論呢?給大家十分鐘時間來討論。
好,討論結(jié)束,來,哪個組派個代表來回答一下?請,哦,你說用量角器測量,恩不錯,可是用量角器的話,有可能存在誤差對不對?那還有沒有更好的方法呢?
老師看到很多同學都皺起了眉頭,那老師來給大家一點小提示, 我們試著把三角形的三個角剪下來拼拼看。啊,很棒我看到前排的同學把三個角拼成了一個平角,大家知道平角多少度?180。那下面,大家可以動動手,任意再畫幾個三角形,用剛剛的方法看看能不能拼成一個平角?好,大家都非常積極,通過剛剛的驗證,我們可以肯定:三角形的內(nèi)角和是180度。
那接下來我們回到咱們剛開始上課的問題:為什么不能畫一個有兩個直角的三角形?誰愿意給大家說說?好,你舉手最快,請你來說說。嗯,很好,因為有兩個九十度的角加起來就是180度了, 不可能畫出一個三角形,太棒了。請坐。
大家看大屏幕,這里有兩個三角形,老師給分別給大家標出了其中兩個角的度數(shù),有沒有同學告訴我剩下的度數(shù)?趕緊開動腦筋算算看。好,算好的同學大聲告訴老師,第一個是30度,很棒。第二個50度,很棒,算的非常準確,看來大家上課都非常認真。
這堂課我們就上到這里,請大家回去完成課后習題1到3。好,下課!
三角形的內(nèi)角和說課稿5
各位評委:
我說課的主題是“角色扮演,引導學生猜想驗證”,說課的內(nèi)容是《三角形的內(nèi)角和》。
一、說說我對教材與學情的分析
《三角形的內(nèi)角和》是北師大版四年級下冊第二單元的教學內(nèi)容,是在學生學習了三角形的概念及特征、分類之后進行的,它是三角形的一個重要特征,也是掌握多邊形內(nèi)角和及解決其他實際問題的基礎(chǔ)。教材的小標題為“探索與發(fā)現(xiàn)”,強調(diào)說明這一部分的內(nèi)容要求學生通過自主探索來發(fā)現(xiàn)有關(guān)三角形的性質(zhì)。學生已經(jīng)掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數(shù)學生已經(jīng)在課前通過不同的途徑知道“三角形的內(nèi)角和是180度”的結(jié)論,但不一定清楚道理,所以本課的設(shè)計意圖不在于了解,而在于驗證,讓學生在課堂上經(jīng)歷研究問題的過程是本節(jié)課的重點。
二、聊聊我對教學目標及重難點的確定
以建構(gòu)主義理論以及有效教學的理念為指導,結(jié)合對教材和學情的分析,我將本節(jié)課的教學目標定為下列幾點:
1、通過量、剪、拼等活動發(fā)現(xiàn)、驗證三角形的內(nèi)角和是180°,并會應(yīng)用這一知識解決生活中簡單的實際問題。
2、經(jīng)歷親自動手實踐、探索三角形內(nèi)角和的過程,體會運用“量一量”、“算一算”、“拼一拼”、“折一折”進行驗證的數(shù)學思想方法。
3、在探究中體驗成功的喜悅,激發(fā)主動學習數(shù)學的興趣。
教學重點:經(jīng)歷“三角形的內(nèi)角和是180°”的形成、發(fā)展和應(yīng)用的全過程。
教學難點:驗證“三角形的內(nèi)角和是180°”以及對這一規(guī)律的靈活運用。
學具準備:量角器、三角尺、剪刀和準備一個喜歡的三角形。
三、談?wù)勎业闹饕虒W流程
本節(jié)課我設(shè)計采用支架式教學方法,以猜想→驗證→應(yīng)用→評價四個活動環(huán)節(jié)為主線,引導學生通過自主探究學習實現(xiàn)對“三角形內(nèi)角和是180°”這一知識規(guī)律的數(shù)學理解。同時,每一個活動環(huán)節(jié)都讓學生嘗試扮演一種角色,激發(fā)他們投入課堂活動的興趣。
1.大膽設(shè)疑,提出猜想(猜想家)
在這節(jié)課之前,有不少學生通過各種渠道了解了三角形的內(nèi)角和是180°。因此,第一個環(huán)節(jié)我就讓學生根據(jù)已有的知識經(jīng)驗進行大膽設(shè)疑,提出猜想,做一個猜想家。
首先,我向?qū)W生出示一個長方形,向?qū)W生講解長方形的四個內(nèi)角,引導學生將這四個內(nèi)角的度數(shù)相加算出長方形的內(nèi)角和是360°。
接著,我把長方形拆成兩個三角形,讓學生指出其中一個三角形的三個內(nèi)角,設(shè)問:這個三角形的三個內(nèi)角和是多少?讓學生說說各自的看法和理由,并引導提出“是不是所有的三角形的內(nèi)角和是180°”的猜想。通過這一環(huán)節(jié),學生首先獲得對“三角形內(nèi)角和是什么”這一陳述性知識的數(shù)學理解。
2.科學驗證,探索規(guī)律(科學家)
有了大膽的'猜想,就要進行科學的驗證,第二個角色就是扮演科學家,對剛才的猜想進行科學驗證,自主探索。
第二個環(huán)節(jié)的活動步驟如下:
。1)提供實驗活動需要操作的工具,如:量角器、三角尺、剪刀等,讓學生說說:“要知道三角形的內(nèi)角和,怎樣利用好這些工具?”
。2)明確提出操作要求:先在自己準備的三角形上作好內(nèi)角的符號,選擇合適的工具開展實驗,遇到操作困難可以與同伴商量或請老師幫助解決。
。3)學生操作后在小組內(nèi)交流,出示交流提綱:
A、通過實驗操作,你發(fā)現(xiàn)三角形的內(nèi)角和有什么特點?你是怎樣發(fā)現(xiàn)的?
B、你認為三角形的內(nèi)角和與三角形的大小、形狀有關(guān)嗎?為什么?
。4)集體交流,小結(jié)規(guī)律:
在組織學生交流實驗的過程與成果時,我會挑選出研究不同形狀或不同大小的三角形的學生進行實驗匯報,并在學生提出疑問時進行合理的解釋與調(diào)控,尤其是要對一些通過量一量得出180度左右的結(jié)論進行“誤差解釋”。最后與學生一起小結(jié)歸納出:“三角形的內(nèi)角和是180°,而且與它的大小、形狀無關(guān)”這一數(shù)學規(guī)律,從中感悟由特殊到一般的證明方法。
3.聯(lián)系生活,實踐應(yīng)用(實踐家)
有效教學理論指出練習要考慮它的實效性。在這個環(huán)節(jié),我設(shè)計讓學生扮演實踐家,通過三個有層次有針對性的練習實踐把探索得出的知識應(yīng)用于生活問題之中。
第一,基本運用。即書本中“試一試”的第3題和“練一練”的第1、第2題。通過這個3練習讓學生形成運用三角形內(nèi)角和的知識求出未知角度數(shù)的基本技能。
第二,綜合運用。即書本中“做一做”的第3題,這道題在讓學生知道其中一個角等于60度的情況下,綜合運用三角形內(nèi)角和是180度和三角形分類知識來進行解決。
第三,拓展延伸。我設(shè)計了讓學生求四邊形和五邊形等多邊形的內(nèi)角和的問題,讓學生通過量、拼、分等辦法嘗試求多邊形內(nèi)角和,并找出其中的規(guī)律。
4.自我反思,評價延伸
在這個環(huán)節(jié),我會讓學生自己說說:“這節(jié)課你有什么收獲?”“在扮演三個角色時,哪一個角色完成得最好,為什么?”
為了突出本課的重點,我設(shè)計了簡潔明了的板書:
三角形的內(nèi)角和
量角撕拼折角拼圖
三角形的內(nèi)角和是180度。
三角形的內(nèi)角和說課稿6
一、 說教材
“三角形的內(nèi)角和”是九年義務(wù)教育六年制小學四年級下冊第六單元第3節(jié)的內(nèi)容!叭切蔚膬(nèi)角和”是三角形的一個重要性質(zhì),是“空間與圖形”領(lǐng)域的重要內(nèi)容之一,學好它有助于學生理解三角形內(nèi)角之間的關(guān)系,也是進一步學習幾何的基礎(chǔ)。經(jīng)過第一學段以及本單元的學習,學生已經(jīng)具備一定的關(guān)于三角形的認識的直接經(jīng)驗,已具備了一些相應(yīng)的三角形知識和技能,這為感受、理解、抽象“三角形的內(nèi)角和”的概念,打下了堅實的基礎(chǔ)。
為方便教師領(lǐng)會教材編寫的意圖與理念,開展有效的教學,更好的發(fā)展學生的空間觀念,培養(yǎng)學生的各種能力,教材在呈現(xiàn)教學內(nèi)容時,不但重視體現(xiàn)知識形成的過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活的組織教學提供了清晰的思路。主要體現(xiàn)在:概念的形成不直接給出結(jié)論,而是提供豐富的動手實踐的素材,設(shè)計思考性較強的問題,讓學生通過探索、實驗、發(fā)現(xiàn)、討論、交流獲得。從而讓學生在動手操作,積極探索的活動過程中掌握知識,積累數(shù)學活動經(jīng)驗,發(fā)展空間觀念和推理能力,不斷提高自己的思維水平;趯滩囊陨系恼J識及課程標準的要求,我擬定本節(jié)課的教學目標為:
1、知識目標:知道三角形內(nèi)角和是180°。
2、 能力目標:①通過學生猜、測、拼、折、觀察等活動,培養(yǎng)學生探索、發(fā)現(xiàn)能力、觀察能力和動手操作能力。②能運用三角形內(nèi)角和是180°這一規(guī)律解決實際問題。
3、情感目標:①讓學生在探索活動中產(chǎn)生對數(shù)學的好奇心,發(fā)展學生的空間觀念;②體驗探索的樂趣和成功的快樂,增強學好數(shù)學的信心。
教學重點:三角形內(nèi)角和是180°的實際應(yīng)用。
教學難點:探索三角形的內(nèi)角和是180°
二、說教法
新課程標準的基本理念就是要讓學生“人人學有價值的數(shù)學”。強調(diào)“教學要從學生已有的經(jīng)驗出發(fā),讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋與應(yīng)用的過程。要激發(fā)學生的學習積極性,向?qū)W生提供充分從事數(shù)學活動的機會,讓他們積極主動地探索,解決數(shù)學問題,發(fā)現(xiàn)數(shù)學規(guī)律,獲得數(shù)學經(jīng)驗;而教師只是學生學習的組織者、引導者和合作者,在全面參與和了解學生的學習過程中起著對學生進行積極的評價,關(guān)注他們的學習方法、學習水平和情感態(tài)度,促使學生向著預(yù)定的目標發(fā)展的作用”。因此,我運用“猜一猜——量一量——拼—拼——折一折——看一看……”的教學法,讓學生知道身邊的數(shù)學問題隨處可見,能用自己所學的知識解決生活當中的事情,培養(yǎng)學生的發(fā)散思維,進一步激發(fā)學生學習數(shù)學的熱情。
三、說學法
學法是學生再生知識的法寶。為了使在整節(jié)課的探索活動中,我的設(shè)計有獨立活動、二人活動及分小組活動。在具體活動中,我讓學生大膽猜想,自主探索三角形的內(nèi)角和是多少度?再通過測量、拼折、驗證等方式讓學生確定三角形內(nèi)角的度數(shù)和。這樣,既培養(yǎng)了學生的觀察能力和歸納概括能力,又體現(xiàn)了學生動手實踐、合作交流,自主探索的學習方式,同時也培養(yǎng)了學生探索能力和創(chuàng)新精神。
“將課堂還給學生,讓課堂煥發(fā)生命的活力”,“努力營造學生在教學活動中獨立自主學習的時間和空間,使他們成為課堂教學中重要的參與者與創(chuàng)造者,落實學生的主體地位,促進學生的自主學習和探究!北@樣的指導思想,在整個教學設(shè)計上力求充分體現(xiàn)“以學生發(fā)展為本”教育理念,將教學思路擬定為“談話激趣設(shè)疑導入—— 猜想——驗證{自主探究}——鞏固內(nèi)化——拓展延伸”,努力構(gòu)建探索型的課堂教學模式。
四、說教學程序
1、 談話激趣設(shè)疑導入:教學的藝術(shù)不在于傳授知識,而在于喚醒、激發(fā)和鼓勵。剛開始上課,我就以兩個三角形的爭論為的知識“三為切入點,讓學生來評理,當一回公正的法官{激趣},你認為哪一個三角形的內(nèi)角和大呢?用什么方法知道誰大誰小呢{設(shè)疑}?這樣,我在很短的時間內(nèi)最大限度的激發(fā)學生探究數(shù)學的愿望和興趣,為學生進一步學習打好基礎(chǔ)。
2、 猜想:學生有了探索的愿望和興趣,可是不能沒有目標的去探索,那樣只會事倍功半,甚至沒有結(jié)果,這時我讓學生大膽猜想,形成統(tǒng)一的認識,使后邊的探索和驗證活動有了明確的目標。
3、 驗證{自主探索}:學生形成統(tǒng)一的'猜想{即三角形的內(nèi)角和等于180度}后,我就把課堂大量的時間和空間留給學生,讓他們開展有針對性的數(shù)學探究活動{既驗證三角形的內(nèi)角和是否是180度?},在活動中,我既不像過去那樣告訴學生怎么動手去驗證,讓學生做機械的操作員,不是隨意放開讓學生盲目的操作,而是把放和引有機的結(jié)合,鼓勵學生積極開動腦筋,從不同的途徑探索解決問題的方法。不但讓每個學生自主參與驗證活動,而且使學生在經(jīng)歷觀察、操作、分析、推理和想象活動過程中解決問題,發(fā)展空間觀念和論證推理能力。具體過程為:量一量——拼一拼——折一折——看一看。
4、 鞏固內(nèi)化:俗話說的好:“熟能生巧”。數(shù)學離不開練習,要掌握知識,形成技能技巧,一定要通過練習。養(yǎng)成良好的思維品質(zhì)也要通過一定的思考練習,課程標準提倡練習的有效性。對此,我非常注意將數(shù)學的思考融入不同層次的練習之中,很好的發(fā)揮練習的作用,如:設(shè)計讓學生用所學的知識說一說三角形內(nèi)角和與三角形的大小有關(guān)系嗎,又如:師說兩個角度,學生求第三個角,從中培養(yǎng)學生應(yīng)用意識和解決問題的能力;讓學生判斷有兩個直角三角形拼成的三角形的內(nèi)角和的度數(shù),使學生在圖形變化的過程中掌握知識,培養(yǎng)思維的靈活性,從中發(fā)展學生的空間觀念和空間想象能力。這些練習設(shè)計目的明確,針對性強,使學生不但鞏固了知識,更重要的是數(shù)學思維得到不斷的發(fā)展。
5、 拓展創(chuàng)新:數(shù)學具有嚴密的邏輯性和抽象性。而學生學習內(nèi)容的呈現(xiàn)是從簡單到復(fù)雜,思維方式是從具體到抽象的一個循序漸進的過程,前面學習的知識往往是后面進一步學習的基礎(chǔ)。要培養(yǎng)學生思維的靈活性,可以先讓學生學會對知識的遷移。本課最后,我設(shè)計了這樣一道題目:學了三角形的內(nèi)角和后,你知道五邊形、六邊形的內(nèi)角和是多少度嗎?請小組合作選擇一個圖形求內(nèi)角和。這道題通過對本節(jié)課所學知識的遷移就可以完成,既能對學生進行思維訓練,又能培養(yǎng)學生應(yīng)用知識的能力,更能培養(yǎng)學生的創(chuàng)新意識和創(chuàng)新精神。
總之,本節(jié)課教學活動中我力求充分體現(xiàn)以下特點:以學生發(fā)展為本,以學生為主體,思維為主線的思想;充分關(guān)注學生的自主探究與合作交流;練習體現(xiàn)了層次性,知識技能得于落實和發(fā)展。教師是學生學習的組織者、引導者、合作者,而非知識的灌輸者,因而對一個問題的解決不是要教師將現(xiàn)成的方法傳授給學生,而是教給學生解決問題的策略,給學生一把在知識的海洋中行舟的槳,讓學生在積極思考,大膽嘗試,主動探索中,獲取成功并體驗成功的喜悅。
【三角形的內(nèi)角和說課稿】相關(guān)文章:
《三角形的內(nèi)角和》說課稿11-05
三角形內(nèi)角和說課稿06-27
《三角形內(nèi)角和》說課稿07-12
三角形的內(nèi)角和說課稿02-09
三角形的內(nèi)角和說課稿14篇07-29
《三角形內(nèi)角和》說課稿15篇07-13
三角形內(nèi)角和說課稿15篇07-13