當(dāng)前位置:育文網(wǎng)>初中>初中數(shù)學(xué)> 初中數(shù)學(xué)知識點總結(jié)歸納

初中數(shù)學(xué)知識點總結(jié)歸納

時間:2024-07-22 13:58:40 初中數(shù)學(xué) 我要投稿

初中數(shù)學(xué)知識點總結(jié)歸納6篇(精選)

  總結(jié)是把一定階段內(nèi)的有關(guān)情況分析研究,做出有指導(dǎo)性的經(jīng)驗方法以及結(jié)論的書面材料,它能幫我們理順知識結(jié)構(gòu),突出重點,突破難點,快快來寫一份總結(jié)吧。我們該怎么去寫總結(jié)呢?以下是小編為大家整理的初中數(shù)學(xué)知識點總結(jié)歸納,僅供參考,大家一起來看看吧。

初中數(shù)學(xué)知識點總結(jié)歸納6篇(精選)

初中數(shù)學(xué)知識點總結(jié)歸納1

  一、一次函數(shù)圖象y=kx+b

  一次函數(shù)的圖象可以由k、b的正負(fù)來決定:

  k大于零是一撇(由左下至右上,增函數(shù))

  k小于零是一捺(由右上至左下,減函數(shù))

  b等于零必過原點;

  b大于零交點(指圖象與y軸的交點)在上方(指x軸上方)

  b小于零交點(指圖象與y軸的交點)在下方(指x軸下方)

  其圖象經(jīng)過(0,b)和(—b/k,0)這兩點(兩點就可以決定一條直線),且(0,b)在y軸上,(—b/k,0)在x軸上。

  b的數(shù)值就是一次函數(shù)在y軸上的截距(不是距離,有正、負(fù)、零之分)。

  二、不等式組的解集

  1、步驟:去分母(后分子應(yīng)加上括號)、去括號、移項、合并同類項、系數(shù)化為1。

  2、解一元一次不等式組時,先求出各個不等式的解集,然后按不等式組解集的四種類型所反映的規(guī)律,寫出不等式組的解集:不等式組解集的確定方法,若a

  A的解集是解集小小的取小

  B的解集是解集大大的取大

  C的解集是解集大小的小大的取中間

  D的解集是空集解集大大的小小的無解

  另需注意等于的問題。

  三、零的描述

  1、零既不是正數(shù)也不是負(fù)數(shù),是介于正數(shù)和負(fù)數(shù)之間的數(shù)。零是自然數(shù),是整數(shù),是偶數(shù)。

  A、零是表示具有相反意義的量的基準(zhǔn)數(shù)。

  B、零是判定正、負(fù)數(shù)的界限。

  C、在一切非負(fù)數(shù)中有一個最小值是0;在一切非正數(shù)中有一個最大值是0。

  2、零的運算性質(zhì)

  A、乘方:零的正整數(shù)次冪都是零。

  B、除法:零除以任何不等于零的數(shù)都得零;零不能作除數(shù);0沒有倒數(shù)。

  C、乘法:零乘以任何數(shù)都得零。ab=0a、b中至少有一個是0。

  D、加法a、b互為相反數(shù)a+b=0

  E、減法(比較大小用)a—b=0a=b;a—b0ab;a—b0a

  3、在近似數(shù)中,當(dāng)0作為有效數(shù)字時,它表示不同的精確度,不能省略。

  四、因式分解分解方法

  首先提取公因式,然后依次用公式,十字相乘,分組分解法,若都不行,再拆項添項試一試。必須進(jìn)行到每一個多項式因式不能再分解為止

  1、提公因式法

  首先觀察多項式的結(jié)構(gòu)特點,確定多項式的公因式。當(dāng)多項式各項的公因式是一個多項式時,可以用設(shè)輔助元的`方法把它轉(zhuǎn)化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當(dāng)多項式各項的公因式是隱含的時候,要把多項式進(jìn)行適當(dāng)?shù)淖冃危蚋淖兎,直到可確定多項式的公因式。

  2、公式

  a2—b2=(a+b)(a—b)

  a2+2ab+b2=(a+b)2

  a2—2ab+b2=(a—b)2,還立方差和及其他公式

  3、十字相乘

  運用公式x2+(p+q)x+pq=(x+q)(x+p)進(jìn)行因式分解。

  將常數(shù)項分解成滿足要求的兩個因數(shù)積的多次嘗試,一般步驟:

  ①列出常數(shù)項分解成兩個因數(shù)的積各種可能情況;

 、趪L試其中的哪兩個因數(shù)的和恰好等于一次項系數(shù)。

  4、分組分解法

  多項式am+an+bm+bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式、十字相乘法分解因式。如果把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式。

  原式=(am+an)+(bm+bn)

  =a(m+n)+b(m+n)

  再提公因式(m+n)

  a(m+n)+b(m+n)

  =(m+n)?(a+b)。

  可見如把一個多項式的項分組并提取公因式后它們的另一個因式正好相同,那么這個多項式就可以用分組分解法來分解因式。

初中數(shù)學(xué)知識點總結(jié)歸納2

  一元一次方程定義

  通過化簡,只含有一個未知數(shù),且含有未知數(shù)的最高次項的次數(shù)是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b為常數(shù),且a≠0)。一元一次方程屬于整式方程,即方程兩邊都是整式。

  一元指方程僅含有一個未知數(shù),一次指未知數(shù)的次數(shù)為1,且未知數(shù)的系數(shù)不為0。我們將ax+b=0(其中x是未知數(shù),a、b是已知數(shù),并且a≠0)叫一元一次方程的標(biāo)準(zhǔn)形式。這里a是未知數(shù)的系數(shù),b是常數(shù),x的次數(shù)必須是1。

  即一元一次方程必須同時滿足4個條件:⑴它是等式;⑵分母中不含有未知數(shù);⑶未知數(shù)最高次項為1;⑷含未知數(shù)的項的系數(shù)不為0。

  一元一次方程的五個核心問題

  一、什么是等式?1+1=1是等式嗎?

  表示相等關(guān)系的式子叫做等式,等式可分三類:第一類是恒等式,就是用任何允許的數(shù)值代替等式中的字母,等式的兩邊總是相等,由數(shù)字組成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二類是條件等式,也就是方程,這類等式只能取某些數(shù)值代替等式中的字母時,等式才成立,如x+y=-5,x+4=7等都是條件等式;第三類是矛盾等式,就是無論用任何值代替等式中的字母,等式總不成立,如x2=-2,|a|+5=0等。

  一個等式中,如果等號多于一個,叫做連等式,連等式可以化為一組只含有一個等號的.等式。

  等式與代數(shù)式不同,等式中含有等號,代數(shù)式中不含等號。

  等式有兩個重要性質(zhì)1)等式的兩邊都加上或減去同一個數(shù)或同一個整式,所得結(jié)果仍然是一個等式;(2)等式的兩邊都乘以或除以同一個數(shù)除數(shù)不為零,所得結(jié)果仍然是一個等式。

  二、什么是方程,什么是一元一次方程?

  含有未知數(shù)的等式叫做方程,如2x-3=8,x+y=7等。判斷一個式子是否是方程,只需看兩點:一是不是等式;二是否含有未知數(shù),兩者缺一不可。

  只含有一個未知數(shù),并且含未知數(shù)的式子都是整式,未知數(shù)的次數(shù)是1,系數(shù)不是0的方程叫做一元一次方程。其標(biāo)準(zhǔn)形式是ax+b=0(a不為0,a,b是已知數(shù)),值得注意的是1)一個整式方程的"元"和"次"是將這個方程化成最簡形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化簡后,它實際上是一個一元一次方程。(2)整式方程分母中不含有未知數(shù)。判斷是否為整式方程,是不能先將它化簡的如方程x+1/x=2+1/x,因為它的分母中含有未知數(shù)x,所以,它不是整式方程。如果將上面的方程進(jìn)行化簡,則為x=2,這時再去作判斷,將得到錯誤的結(jié)論。

  凡是談到次數(shù)的方程,都是指整式方程,即方程的兩邊都是整式。一元一次方程是整式方程中元數(shù)最少且次數(shù)最低的方程。

  三、等式有什么牛掰的基本性質(zhì)嗎?

  將方程中的某些項改變符號后,從方程的一邊移到另一邊的變形叫做移項,移項的依據(jù)是等式的基本性質(zhì)1。

  移項時不一定要把含未知數(shù)的項移到等式的左邊。如解方程3x-2=4x-5時就可以把含未知數(shù)的項移到右邊,而把常數(shù)項移到左邊,這樣會顯得簡便些。

  去分母,將未知數(shù)的系數(shù)化為1,則是依據(jù)等式的基本性質(zhì)2進(jìn)行的。

  四、等式一定是方程嗎?方程一定是等式嗎?

  等式與方程有很多相同之處。如都是用等號連接的,等號左、右兩邊都是代數(shù)式,但它們還是有區(qū)別的。方程僅是含有未知數(shù)的等式,是等式中的特例。就是說,等式包含方程;反過來,方程并不包含所有的等式。如,13+5=18,18-13=5都屬于等式,但它們并不是方程。因此,等式一定是方程的說法是不對的。

  五、"解方程"與"方程的解"是一回事兒嗎?

  方程的解是使方程左、右兩邊相等的未知數(shù)的取值。而解方程是求方程的解或判斷方程無解的過程。即方程的解是結(jié)果,而解方程是一個過程。方程的解中的"解"是名詞,而解方程中的"解"是動詞,二者不能混淆。

初中數(shù)學(xué)知識點總結(jié)歸納3

  1有理數(shù)加法法則

  1、同號兩數(shù)相加,取相同的符號,并把絕對值相加;

  2、異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

  3、一個數(shù)與0相加,仍得這個數(shù)。

  2有理數(shù)加法的運算律

  1、加法的交換律:a+b=b+a;

  2、加法的`結(jié)合律:(a+b)+c=a+(b+c)

  3有理數(shù)減法法則

  減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a—b=a+(—b)

  4有理數(shù)乘法法則

  1、兩數(shù)相乘,同號為正,異號為負(fù),并把絕對值相乘;

  2、任何數(shù)同零相乘都得零;

  3、幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負(fù)因式的個數(shù)決定。

  5有理數(shù)乘法的運算律

  1、乘法的交換律:ab=ba;

  2、乘法的結(jié)合律:(ab)c=a(bc);

  3、乘法的分配律:a(b+c)=ab+ac

  6單項式

  只含有數(shù)字與字母的積的代數(shù)式叫做單項式。

  注意:單項式是由系數(shù)、字母、字母的指數(shù)構(gòu)成的。

  7多項式

  1、幾個單項式的和叫做多項式。其中每個單項式叫做這個多項式的項。多項式中不含字母的項叫做常數(shù)項。多項式中次數(shù)最高的項的次數(shù),叫做這個多項式的次數(shù)。

  2、同類項所有字母相同,并且相同字母的指數(shù)也分別相同的項叫做同類項。幾個常數(shù)項也是同類項。

  8中心對稱

  1、定義:把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點對稱或中心對稱,這個點叫做對稱中心。這兩個圖形中的對應(yīng)點叫做關(guān)于中心的對稱點。

  2、心對稱的兩條基本性質(zhì):

  (1)關(guān)于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分。

  (2)關(guān)于中心對稱的兩個圖形是全等圖形。

  3、中心對稱圖形

  把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。

初中數(shù)學(xué)知識點總結(jié)歸納4

  1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。

  2、菱形的性質(zhì):

  ⑴矩形具有平行四邊形的一切性質(zhì);

 、屏庑蔚乃臈l邊都相等;

 、橇庑蔚膬蓷l對角線互相垂直,并且每一條對角線平分一組對角。

  ⑷菱形是軸對稱圖形。

  提示:利用菱形的性質(zhì)可證得線段相等、角相等,它的對角線互相垂直且把菱形分成四個全等的直角三角形,由此又可與勾股定理聯(lián)系,可得對角線與邊之間的關(guān)系,即邊長的平方等于對角線一半的平方和。

  3、因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

  4、因式分解要素:

  ①結(jié)果必須是整式

 、诮Y(jié)果必須是積的形式

  ③結(jié)果是等式

 、芤蚴椒纸馀c整式乘法的關(guān)系:m(a+b+c)

  5、公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

  6、公因式確定方法:

  ①系數(shù)是整數(shù)時取各項最大公約數(shù)。

 、谙嗤帜溉∽畹痛蝺

  ③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

  7、提取公因式步驟:

  ①確定公因式。

  ②確定商式

 、酃蚴脚c商式寫成積的形式。

  8、平方根表示法:一個非負(fù)數(shù)a的平方根記作,讀作正負(fù)根號a。a叫被開方數(shù)。

  9、中被開方數(shù)的取值范圍:被開方數(shù)a≥0

  10、平方根性質(zhì):

 、僖粋正數(shù)的平方根有兩個,它們互為相反數(shù)。

 、0的平方根是它本身0。

 、圬(fù)數(shù)沒有平方根開平方;求一個數(shù)的平方根的運算,叫做開平方。

  11、平方根與算術(shù)平方根區(qū)別:定義不同、表示方法不同、個數(shù)不同、取值范圍不同。

  12、聯(lián)系:二者之間存在著從屬關(guān)系;存在條件相同;0的算術(shù)平方根與平方根都是0

  13、含根號式子的意義:表示a的平方根,表示a的.算術(shù)平方根,表示a的負(fù)的平方根。

  14、求正數(shù)a的算術(shù)平方根的方法;

  完全平方數(shù)類型:

 、傧胝l的平方是數(shù)a。

  ②所以a的平方根是多少。

  ③用式子表示。

  求正數(shù)a的算術(shù)平方根,只需找出平方后等于a的正數(shù)。

初中數(shù)學(xué)知識點總結(jié)歸納5

  首先你要有一個好的態(tài)度,有些人學(xué)習(xí)數(shù)學(xué),可能有的階段會喜歡學(xué)習(xí),但是某一階段,對數(shù)學(xué)就沒有什么興趣了,可能每個人都會有這樣一個階段,但是如果發(fā)現(xiàn)自己不喜歡學(xué)習(xí)數(shù)學(xué)了,一定要克制自己,在學(xué)習(xí)數(shù)學(xué)上,保持一個良好的學(xué)習(xí)態(tài)度,這是你學(xué)好數(shù)學(xué)的第一步。

  充分的利用好上課的時間,上課時間你所掌握的知識,會比你在課下學(xué)很長時間都有用,所以珍惜課堂老師所講的內(nèi)容,老師的`某些話對我們以后做數(shù)學(xué)題都很有幫助,如果你上課走神,這些話沒有聽到,你在做題的時候,可能會走很多彎路,做題的效率也會降低,一旦有這樣的情況,可能你就會不喜歡數(shù)學(xué)了。

  學(xué)習(xí)最重要的是思考,會思考數(shù)學(xué)才能學(xué)好,數(shù)學(xué)中的題都是需要我們?nèi)ヅe一反三的,沒做一道題,都要思考一下,圍繞著這道題的知識點,還會有什么樣的題型出現(xiàn),哪怕是遇到不會的題,也要勤加的思考,如果你把知識點自認(rèn)為學(xué)習(xí)透徹,那么就用做題檢驗吧,數(shù)學(xué)中多做題是必須的,成績都是用題堆積出來的,很少會有人不做題數(shù)學(xué)成績很高的。

初中數(shù)學(xué)知識點總結(jié)歸納6

  1.不在同一直線上的三點確定一個圓。

  2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1: ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2 :圓的兩條平行弦所夾的弧相等

  3.圓是以圓心為對稱中心的中心對稱圖形。

  4.圓是定點的距離等于定長的點的集合。

  5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合。

  6.圓的外部可以看作是圓心的距離大于半徑的點的集合。

  7.同圓或等圓的半徑相等。

  8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。

  9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等。

  10.推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。

  11定理 圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它 的內(nèi)對角。

  12.①直線L和⊙O相交 d  ②直線L和⊙O相切 d=r 、壑本L和⊙O相離 d>r

  13.切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。

  14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑。

  15.推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點。

  16.推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心。

  17.切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角。

  18.圓的外切四邊形的兩組對邊的和相等 外角等于內(nèi)對角。

  19.如果兩個圓相切,那么切點一定在連心線上。

  20.①兩圓外離 d>R+r ②兩圓外切 d=R+r 、.兩圓相交 R-rr) 、.兩圓內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含dr)

  21.定理 相交兩圓的連心線垂直平分兩圓的公共弦。

  22.定理 把圓分成n(n≥3): 、乓来芜B結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形 、平(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形。

  23.定理 任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓。

  24.正n邊形的每個內(nèi)角都等于(n-2)×180°/n。

  25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形。

  26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長。

  27.正三角形面積√3a/4 a表示邊長。

  28.如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4。

  29.弧長計算公式:L=n兀R/180。

  30.扇形面積公式:S扇形=n兀R^2/360=LR/2。

  31.內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)。

  32.定理 一條弧所對的圓周角等于它所對的圓心角的一半。

  33.推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

  34.推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑。

  35.弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r。

  1.直接法:根據(jù)選擇題的題設(shè)條件,通過計算、推理或判斷,最后得到題目的所求。

  2.特殊值法:(特殊值淘汰法)有些選擇題所涉及的數(shù)學(xué)命題與字母的取值范圍有關(guān);

  在解這類選擇題時,可以考慮從取值范圍內(nèi)選取某幾個特殊值,代入原命題進(jìn)行驗證,然后淘汰錯誤的,保留正確的。

  3.淘汰法:把題目所給的四個結(jié)論逐一代回原題的題干中進(jìn)行驗證,把錯誤的淘汰掉,直至找到正確的答案。

  4.逐步淘汰法:如果我們在計算或推導(dǎo)的過程中不是一步到位,而是逐步進(jìn)行,既采用“走一走、瞧一瞧”的策略;

  每走一步都與四個結(jié)論比較一次,淘汰掉不可能的,這樣也許走不到最后一步,三個錯誤的結(jié)論就被全部淘汰掉了。

  5.數(shù)形結(jié)合法:根據(jù)數(shù)學(xué)問題的條件和結(jié)論之間的內(nèi)在聯(lián)系,既分析其代數(shù)含義,又揭示其幾何意義;

  使數(shù)量關(guān)系和圖形巧妙和諧地結(jié)合起來,并充分利用這種結(jié)合,尋求解題思路,使問題得到解決。

  常用的數(shù)學(xué)思想方法

  1.數(shù)形結(jié)合思想:就是根據(jù)數(shù)學(xué)問題的`條件和結(jié)論之間的內(nèi)在聯(lián)系,既分析其代數(shù)含義,又揭示其幾何意義;

  使數(shù)量關(guān)系和圖形巧妙和諧地結(jié)合起來,并充分利用這種結(jié)合,尋求解體思路,使問題得到解決。

  2.聯(lián)系與轉(zhuǎn)化的思想:事物之間是相互聯(lián)系、相互制約的,是可以相互轉(zhuǎn)化的。數(shù)學(xué)學(xué)科的各部分之間也是相互聯(lián)系,可以相互轉(zhuǎn)化的。

  在解題時,如果能恰當(dāng)處理它們之間的相互轉(zhuǎn)化,往往可以化難為易,化繁為簡。

  如:代換轉(zhuǎn)化、已知與未知的轉(zhuǎn)化、特殊與一般的轉(zhuǎn)化、具體與抽象的轉(zhuǎn)化、部分與整體的轉(zhuǎn)化、動與靜的轉(zhuǎn)化等等。

  3.分類討論的思想:在數(shù)學(xué)中,我們常常需要根據(jù)研究對象性質(zhì)的差異,分各種不同情況予以考查;

  這種分類思考的方法,是一種重要的數(shù)學(xué)思想方法,同時也是一種重要的解題策略。

  4.待定系數(shù)法:當(dāng)我們所研究的數(shù)學(xué)式子具有某種特定形式時,要確定它,只要求出式子中待確定的字母得值就可以了。

  為此,把已知條件代入這個待定形式的式子中,往往會得到含待定字母的方程或方程組,然后解這個方程或方程組就使問題得到解決。

  5.配方法:就是把一個代數(shù)式設(shè)法構(gòu)造成平方式,然后再進(jìn)行所需要的變化。

  配方法是初中代數(shù)中重要的變形技巧,配方法在分解因式、解方程、討論二次函數(shù)等問題,都有重要的作用。

  6.換元法:在解題過程中,把某個或某些字母的式子作為一個整體,用一個新的字母表示,以便進(jìn)一步解決問題的一種方法。

  換元法可以把一個較為復(fù)雜的式子化簡,把問題歸結(jié)為比原來更為基本的問題,從而達(dá)到化繁為簡,化難為易的目的。

  7.分析法:在研究或證明一個命題時,又結(jié)論向已知條件追溯,既從結(jié)論開始,推求它成立的充分條件,這個條件的成立還不顯然;

  則再把它當(dāng)作結(jié)論,進(jìn)一步研究它成立的充分條件,直至達(dá)到已知條件為止,從而使命題得到證明。這種思維過程通常稱為“執(zhí)果尋因”

  8.綜合法:在研究或證明命題時,如果推理的方向是從已知條件開始,逐步推導(dǎo)得到結(jié)論,這種思維過程通常稱為“由因?qū)Ч?/p>

  9.演繹法:由一般到特殊的推理方法。

  10.歸納法:由一般到特殊的推理方法。

【初中數(shù)學(xué)知識點總結(jié)歸納】相關(guān)文章:

初中數(shù)學(xué)知識點歸納總結(jié)12-02

初中數(shù)學(xué)知識點總結(jié)歸納03-05

初中數(shù)學(xué)幾何知識點歸納03-26

初中數(shù)學(xué)知識點歸納01-24

(優(yōu))初中數(shù)學(xué)知識點歸納02-09

初中數(shù)學(xué)知識點歸納.(通用)07-20

[熱]初中數(shù)學(xué)知識點歸納.07-20

(熱門)初中數(shù)學(xué)知識點總結(jié)歸納2篇06-06

初中化學(xué)知識點總結(jié)歸納04-10

初中數(shù)學(xué)知識點歸納關(guān)于點的坐標(biāo)05-22