【優(yōu)秀】初中數(shù)學(xué)知識點總結(jié)
總結(jié)是在一段時間內(nèi)對學(xué)習(xí)和工作生活等表現(xiàn)加以總結(jié)和概括的一種書面材料,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,因此十分有必須要寫一份總結(jié)哦。我們該怎么去寫總結(jié)呢?下面是小編收集整理的初中數(shù)學(xué)知識點總結(jié),歡迎閱讀與收藏。
初中數(shù)學(xué)知識點總結(jié)1
第一章圖形的變換
考點一、平移(3~5分)
1、定義
把一個圖形整體沿某一方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同,圖形的這種移動叫做平移變換,簡稱平移。
2、性質(zhì)
(1)平移不改變圖形的大小和形狀,但圖形上的每個點都沿同一方向進(jìn)行了移動
(2)連接各組對應(yīng)點的線段平行(或在同一直線上)且相等。
考點二、軸對稱(3~5分)
1、定義
把一個圖形沿著某條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線成軸對稱,該直線叫做對稱軸。
2、性質(zhì)
(1)關(guān)于某條直線對稱的兩個圖形是全等形。
(2)如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線。
(3)兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上。
3、判定
如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱。
4、軸對稱圖形
把一個圖形沿著某條直線折疊,如果直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線就是它的對稱軸。
考點三、旋轉(zhuǎn)(3~8分)
1、定義
把一個圖形繞某一點o轉(zhuǎn)動一個角度的圖形變換叫做旋轉(zhuǎn),其中o叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。
2、性質(zhì)
(1)對應(yīng)點到旋轉(zhuǎn)中心的距離相等。
(2)對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角。
考點四、中心對稱(3分)
1、定義
把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
2、性質(zhì)
(1)關(guān)于中心對稱的兩個圖形是全等形。
(2)關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分。
(3)關(guān)于中心對稱的兩個圖形,對應(yīng)線段平行(或在同一直線上)且相等。
3、判定
如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱。
4、中心對稱圖形
把一個圖形繞某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個店就是它的對稱中心。
考點五、坐標(biāo)系中對稱點的特征(3分)
1、關(guān)于原點對稱的點的特征
兩個點關(guān)于原點對稱時,它們的坐標(biāo)的符號相反,即點p(x,y)關(guān)于原點的對稱點為p’(-x,-y)
2、關(guān)于x軸對稱的點的特征
兩個點關(guān)于x軸對稱時,它們的.坐標(biāo)中,x相等,y的符號相反,即點p(x,y)關(guān)于x軸的對稱點為p’(x,-y)
3、關(guān)于y軸對稱的點的特征
兩個點關(guān)于y軸對稱時,它們的坐標(biāo)中,y相等,x的符號相反,即點p(x,y)關(guān)于y軸的對稱點為p’(-x,y)
第二章圖形的相似
考點一、比例線段(3分)
1、比例線段的相關(guān)概念
如果選用同一長度單位量得兩條線段a,b的長度分別為m,n,那么就說這兩條線段的比是,或?qū)懗蒩:b=m:n
在兩條線段的比a:b中,a叫做比的前項,b叫做比的后項。
在四條線段中,如果其中兩條線段的比等于另外兩條線段的比,那么這四條線段叫做成比例線段,簡稱比例線段
若四條a,b,c,d滿足或a:b=c:d,那么a,b,c,d叫做組成比例的項,線段a,d叫做比例外項,線段b,c叫做比例內(nèi)項,線段的d叫做a,b,c的第四比例項。
如果作為比例內(nèi)項的是兩條相同的線段,即或a:b=b:c,那么線段b叫做線段a,c的比例中項。
2、比例的性質(zhì)
(1)基本性質(zhì)
、賏:b=c:dad=bc
②a:b=b:c
(2)更比性質(zhì)(交換比例的內(nèi)項或外項)
(交換內(nèi)項)
(交換外項)
(同時交換內(nèi)項和外項)
(3)反比性質(zhì)(交換比的前項、后項):
(4)合比性質(zhì):
(5)等比性質(zhì):
3、黃金分割
把線段ab分成兩條線段ac,bc(ac>bc),并且使ac是ab和bc的比例中項,叫做把線段ab黃金分割,點c叫做線段ab的黃金分割點,其中ac=ab0.618ab
考點二、平行線分線段成比例定理(3~5分)
三條平行線截兩條直線,所得的對應(yīng)線段成比例。
推論:
(1)平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例。
逆定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊。
(2)平行于三角形一邊且和其他兩邊相交的直線截得的三角形的三邊與原三角形的三邊對應(yīng)成比例。
考點三、相似三角形(3~8分)
1、相似三角形的概念
對應(yīng)角相等,對應(yīng)邊成比例的三角形叫做相似三角形。相似用符號“∽”來表示,讀作“相似于”。相似三角形對應(yīng)邊的比叫做相似比(或相似系數(shù))。
2、相似三角形的基本定理
平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似。
用數(shù)學(xué)語言表述如下:
∵de∥bc,∴△ade∽△abc
相似三角形的等價關(guān)系:
(1)反身性:對于任一△abc,都有△abc∽△abc;
(2)對稱性:若△abc∽△a’b’c’,則△a’b’c’∽△abc
(3)傳遞性:若△abc∽△a’b’c’,并且△a’b’c’∽△a’’b’’c’’,則△abc∽△a’’b’’c’’。
3、三角形相似的判定
(1)三角形相似的判定方法
、俣x法:對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形相似
②平行法:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似
、叟卸ǘɡ1:如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似,可簡述為兩角對應(yīng)相等,兩三角形相似。
、芘卸ǘɡ2:如果一個三角形的兩條邊和另一個三角形的兩條邊對應(yīng)相等,并且夾角相等,那么這兩個三角形相似,可簡述為兩邊對應(yīng)成比例且夾角相等,兩三角形相似。
、菖卸ǘɡ3:如果一個三角形的三條邊與另一個三角形的三條邊對應(yīng)成比例,那么這兩個三角形相似,可簡述為三邊對應(yīng)成比例,兩三角形相似
(2)直角三角形相似的判定方法
、僖陨细鞣N判定方法均適用
、诙ɡ恚喝绻粋直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似
③垂直法:直角三角形被斜邊上的高分成的兩個直角三角形與原三角形相似。
4、相似三角形的性質(zhì)
(1)相似三角形的對應(yīng)角相等,對應(yīng)邊成比例
(2)相似三角形對應(yīng)高的比、對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比
(3)相似三角形周長的比等于相似比
(4)相似三角形面積的比等于相似比的平方。
5、相似多邊形
(1)如果兩個邊數(shù)相同的多邊形的對應(yīng)角相等,對應(yīng)邊成比例,那么這兩個多邊形叫做相似多邊形。相似多邊形對應(yīng)邊的比叫做相似比(或相似系數(shù))
(2)相似多邊形的性質(zhì)
、傧嗨贫噙呅蔚膶(yīng)角相等,對應(yīng)邊成比例
、谙嗨贫噙呅沃荛L的比、對應(yīng)對角線的比都等于相似比
、巯嗨贫噙呅沃械膶(yīng)三角形相似,相似比等于相似多邊形的相似比
④相似多邊形面積的比等于相似比的平方
6、位似圖形
如果兩個圖形不僅是相似圖形,而且每組對應(yīng)點所在直線都經(jīng)過同一個點,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心,此時的相似比叫做位似比。
性質(zhì):每一組對應(yīng)點和位似中心在同一直線上,它們到位似中心的距離之比都等于位似比。
由一個圖形得到它的位似圖形的變換叫做位似變換。利用位似變換可以把一個圖形放大或縮小。
初中數(shù)學(xué)知識點總結(jié)2
第一章圖形的認(rèn)識初步
一、知識框架
本章的主要內(nèi)容是圖形的初步認(rèn)識,從生活周圍熟悉的物體入手,對物體的形狀的認(rèn)識從感性逐步上升到抽象的幾何圖形。通過從不同方向看立體圖形和展開立體圖形,初步認(rèn)識立體圖形與平面圖形的聯(lián)系。在此基礎(chǔ)上,認(rèn)識一些簡單的平面圖形——直線、射線、線段和角。
二、本章書涉及的數(shù)學(xué)思想:
分類討論思想。在過平面上若干個點畫直線時,應(yīng)注意對這些點分情況討論;在畫圖形時,應(yīng)注意圖形的各種可能性。
方程思想。在處理有關(guān)角的大小,線段大小的計算時,常需要通過列方程來解決。
圖形變換思想。在研究角的概念時,要充分體會對射線旋轉(zhuǎn)的認(rèn)識。在處理圖形時應(yīng)注意轉(zhuǎn)化思想的應(yīng)用,如立體圖形與平面圖形的互相轉(zhuǎn)化。
化歸思想。在進(jìn)行直線、線段、角以及相關(guān)圖形的計數(shù)時,總要劃歸到公式n(n—1)/2的具體運用上來。
人教版七年級數(shù)學(xué)下冊主要包括相交線與平行線、平面直角坐標(biāo)系、三角形、二元一次方程組、不等式與不等式組和數(shù)據(jù)的收集、整理與表述六章內(nèi)容。
第二章相交線與平行線
一、知識框架
二、知識概念
鄰補角:兩條直線相交所構(gòu)成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。
對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。
垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。
平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。
同位角、內(nèi)錯角、同旁內(nèi)角:
同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對角叫做同位角。
內(nèi)錯角:∠2與∠6像這樣的`一對角叫做內(nèi)錯角。
同旁內(nèi)角:∠2與∠5像這樣的一對角叫做同旁內(nèi)角。
命題:判斷一件事情的語句叫命題。
平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。
對應(yīng)點:平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應(yīng)點。
初中數(shù)學(xué)知識點總結(jié)3
二元一次方程(組)
1、二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。
2、二元一次方程組:含有兩個未知數(shù)的兩個一次方程所組成的一組方程,叫做二元一次方程組。
3、二元一次方程組的解:二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。
4、二元一次方程組的解法。
(1)代人消元法:解方程組的基本思路是“消元”一把“二元”變?yōu)椤耙辉,主要步驟是,將其中一個方程中的某個未知數(shù)用含有另一個未知數(shù)的代數(shù)式表示出來,并代人另一個方程中,從而消去一個未知數(shù),化二元一次方程組為一元一次方程,這種解方程組的方法稱為代人消元法,簡稱代人法。
。2)加減消元法:通過方程兩邊分別相加(減)消去其中一個未知數(shù),這種解二元一次方程組的方法叫做加減消元法,簡稱加減法。
提醒大家:二元一次方程組的解法包括代人消元法和加減消元法。
平面直角坐標(biāo)系
下面是對平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。
平面直角坐標(biāo)系的要素:
、僭谕黄矫
、趦蓷l數(shù)軸
、刍ハ啻怪
④原點重合
三個規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
平面直角坐標(biāo)系的構(gòu)成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點O稱為直角坐標(biāo)系的原點。
通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。
點的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點,我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點C的坐標(biāo)。
一個點在不同的象限或坐標(biāo)軸上,點的坐標(biāo)不一樣。
希望上面對點的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。
因式分解的`一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:
①結(jié)果必須是整式
、诮Y(jié)果必須是積的形式
、劢Y(jié)果是等式
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:
、傧禂(shù)是整數(shù)時取各項最大公約數(shù)。
、谙嗤帜溉∽畹痛蝺
、巯禂(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。
、诖_定商式
、酃蚴脚c商式寫成積的形式。
分解因式注意;
、俨粶(zhǔn)丟字母
②不準(zhǔn)丟常數(shù)項注意查項數(shù)
、垭p重括號化成單括號
、芙Y(jié)果按數(shù)單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
、奘醉椮(fù)號放括號外
、呃ㄌ杻(nèi)同類項合并。
初中數(shù)學(xué)知識點總結(jié)4
一、初中數(shù)學(xué)基本概念
1.方程:含有未知數(shù)的等式叫做方程。
2.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程。
3.二元一次方程:含有兩個未知數(shù),并且未知數(shù)的次數(shù)是1的二元一次方程。
4.二元一次方程組:由兩個二元一次方程組成的方程組。
5.一元二次方程:含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程。
6.一元二次方程的解:使一元二次方程左右兩邊相等的未知數(shù)的值。
7.一元二次方程的根:一元二次方程的解。
8.一元二次方程的判別式:當(dāng)a是正數(shù)時,如果一元二次方程左右兩邊相等時,那么這個一元二次方程有兩個不相等的實數(shù)根;當(dāng)a是負(fù)數(shù)時,如果一元二次方程左右兩邊相等時,那么這個一元二次方程沒有實數(shù)根;當(dāng)a是零時,如果一元二次方程左右兩邊相等時,那么這個一元二次方程有兩個相等的實數(shù)根。
9.函數(shù):在某變化過程中有兩個變量x、y,如果對于x在某一范圍內(nèi)的每一個確定的值,y都有唯一的值與它對應(yīng),那么稱y是x的函數(shù),x叫做自變量。
10.一次函數(shù):在某個變化過程中有兩個變量x、y,如果對于x在某一范圍內(nèi)的每一個確定的值,y都有唯一的值與它對應(yīng),那么稱y是x的.一次函數(shù)。
11.正比例函數(shù):在某個變化過程中有兩個變量x、y,如果對于x在某一范圍內(nèi)的每一個確定的值,y都有唯一的值與它對應(yīng),并且這個數(shù)值在比例上成正比,那么稱y是x的比例函數(shù)。
12.反比例函數(shù):在某個變化過程中有兩個變量x、y,如果對于x在某一范圍內(nèi)的每一個確定的值,y都有唯一的值與它對應(yīng),并且這個數(shù)值在比例上成反比,那么稱y是x的反比例函數(shù)。
13.平行四邊形:在同一個平面內(nèi)兩組對角分別平行的四邊形叫做平行四邊形。
14.矩形:有一個內(nèi)角是直角的平行四邊形叫做矩形。
15.菱形:有兩組鄰邊相等的平行四邊形叫做菱形。
16.正方形:四邊相等的矩形叫做正方形。
17.等腰梯形:兩條腰相等的梯形叫做等腰梯形。
18.三角形:在同一個平面內(nèi)由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
19.中線:連接一個頂點和它對邊的中點的線段叫做中線。
20.高線:從三角形的一個頂點向它的對邊作垂線,垂足與頂點之間的線段叫做高線。
21.角平分線:三角形的一個內(nèi)角的平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做角平分線。
22.中位線:連接三角形兩邊中點的線段叫做中位線。
23.軸對稱圖形:一條物體沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形。
24.直接開平方法:形如x2=p或者(nx+m)2=p(p≥0)的一元二次方程可采用直接開平方的方法解一元二次方程的方法。
25.配方法:把一元二次方程的常數(shù)項移到方程的右邊,兩邊加上一次項系數(shù)的一半的平方,再用右邊的式子除以左邊的式子,得到一個平方的形式,再用直接開平方的方法求解一元二次方程的方法。
26.公式法:用求根公式解一元二次方程的方法。
27.因式分解法:將一元二次方程分解成兩個一次因式的積等于0的一元二次方程,然后將各個因式分解,得到一元一次方程,再用直接開方法求解一元一次方程的方法。
二、初中數(shù)學(xué)基本運算
1.整式:單項式和多項式的統(tǒng)稱。
2.單項式:由數(shù)字和字母的積組成的代數(shù)式叫做單項式。單獨的一個數(shù)字或字母也叫做單項式。
3.多項式:幾個單項式的和叫做多項式。每個單項式叫做多項式的項。其中不含字母的項叫做常數(shù)
初中數(shù)學(xué)知識點總結(jié)5
一、重要概念
1.總體:考察對象的全體。
2.個體:總體中每一個考察對象。
3.樣本:從總體中抽出的一部分個體。
4.樣本容量:樣本中個體的數(shù)目。
5.眾數(shù):一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)。
6.中位數(shù):將一組數(shù)據(jù)按大小依次排列,處在最中間位置的一個數(shù)(或最中間位置的兩個數(shù)據(jù)的平均數(shù))
二、計算方法
1.樣本平均數(shù):⑴;⑵若,…,,則(a—常數(shù),…,接近較整的常數(shù)a);⑶加權(quán)平均數(shù):;⑷平均數(shù)是刻劃數(shù)據(jù)的集中趨勢(集中位置)的特征數(shù)。通常用樣本平均數(shù)去估計總體平均數(shù),樣本容量越大,估計越準(zhǔn)確。
2.樣本方差:⑴;⑵若,,…,,則(a—接近、、…、的平均數(shù)的較“整”的常數(shù));若、、…、較“小”較“整”,則;⑶樣本方差是刻劃數(shù)據(jù)的離散程度(波動大小)的特征數(shù),當(dāng)樣本容量較大時,樣本方差非常接近總體方差,通常用樣本方差去估計總體方差。
3.樣本標(biāo)準(zhǔn)差:
三、應(yīng)用舉例(略)
初三數(shù)學(xué)知識點:第四章直線形
★重點★相交線與平行線、三角形、四邊形的有關(guān)概念、判定、性質(zhì)。
☆內(nèi)容提要☆
一、直線、相交線、平行線
1.線段、射線、直線三者的區(qū)別與聯(lián)系
從“圖形”、“表示法”、“界限”、“端點個數(shù)”、“基本性質(zhì)”等方面加以分析。
2.線段的中點及表示
3.直線、線段的基本性質(zhì)(用“線段的基本性質(zhì)”論證“三角形兩邊之和大于第三邊”)
4.兩點間的距離(三個距離:點-點;點-線;線-線)
5.角(平角、周角、直角、銳角、鈍角)
6.互為余角、互為補角及表示方法
7.角的.平分線及其表示
8.垂線及基本性質(zhì)(利用它證明“直角三角形中斜邊大于直角邊”)
9.對頂角及性質(zhì)
10.平行線及判定與性質(zhì)(互逆)(二者的區(qū)別與聯(lián)系)
11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。
12.定義、命題、命題的組成
13.公理、定理
14.逆命題
二、三角形
分類:⑴按邊分;
、瓢唇欠
1.定義(包括內(nèi)、外角)
2.三角形的邊角關(guān)系:⑴角與角:①內(nèi)角和及推論;②外角和;③n邊形內(nèi)角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中
3.三角形的主要線段
討論:①定義②x線的交點—三角形的×心③性質(zhì)
、俑呔②中線③角平分線④中垂線⑤中位線
⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形
4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質(zhì)
5.全等三角形
、乓话闳切稳鹊呐卸(sas、asa、aas、sss)
、铺厥馊切稳鹊呐卸ǎ孩僖话惴椒á趯S梅椒
6.三角形的面積
⑴一般計算公式⑵性質(zhì):等底等高的三角形面積相等。
7.重要輔助線
、胖悬c配中點構(gòu)成中位線;⑵加倍中線;⑶添加輔助平行線
8.證明方法
、胖苯幼C法:綜合法、分析法
、崎g接證法—反證法:①反設(shè)②歸謬③結(jié)論
、亲C線段相等、角相等常通過證三角形全等
、茸C線段倍分關(guān)系:加倍法、折半法
、勺C線段和差關(guān)系:延結(jié)法、截余法
、首C面積關(guān)系:將面積表示出來
三、四邊形
分類表:
1.一般性質(zhì)(角)
⑴內(nèi)角和:360°
⑵順次連結(jié)各邊中點得平行四邊形。
推論1:順次連結(jié)對角線相等的四邊形各邊中點得菱形。
推論2:順次連結(jié)對角線互相垂直的四邊形各邊中點得矩形。
、峭饨呛停360°
2.特殊四邊形
、叛芯克鼈兊囊话惴椒:
、破叫兴倪呅、矩形、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定
、桥卸ú襟E:四邊形→平行四邊形→矩形→正方形
┗→菱形——↑
、葘蔷的紐帶作用:
3.對稱圖形
、泡S對稱(定義及性質(zhì));⑵中心對稱(定義及性質(zhì))
4.有關(guān)定理:①平行線等分線段定理及其推論1、2
②三角形、梯形的中位線定理
、燮叫芯間的距離處處相等。(如,找下圖中面積相等的三角形)
5.重要輔助線:①常連結(jié)四邊形的對角線;②梯形中!捌揭埔谎薄ⅰ捌揭茖蔷”、“作高”、“連結(jié)頂點和對腰中點并延長與底邊相交”轉(zhuǎn)化為三角形。
6.作圖:任意等分線段。
初中數(shù)學(xué)知識點總結(jié)6
軸對稱的定義:
把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱,這條直線叫做對稱軸,折疊后重合的點是對應(yīng)點,叫做對稱點。軸對稱和軸對稱圖形的特性是相同的,對應(yīng)點到對稱軸的距離都是相等的。
軸對稱的性質(zhì):
(1)對應(yīng)點所連的線段被對稱軸垂直平分;
。2)對應(yīng)線段相等,對應(yīng)角相等;
。3)關(guān)于某直線對稱的兩個圖形是全等圖形。
軸對稱的判定:
如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱。
這樣就得到了以下性質(zhì):
如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應(yīng)點所連線段的垂直平分線。
類似地,軸對稱圖形的對稱軸,是任何一對對應(yīng)點所連線段的垂直平分線。
線段的垂直平分線上的點與這條線段的兩個端點的距離相等。
對稱軸是到線段兩端距離相等的點的集合。
軸對稱作用:
可以通過對稱軸的一邊從而畫出另一邊。
可以通過畫對稱軸得出的兩個圖形全等。
擴展到軸對稱的應(yīng)用以及函數(shù)圖像的意義。
軸對稱的應(yīng)用
關(guān)于平面直角坐標(biāo)系的`X,Y對稱意義
如果在坐標(biāo)系中,點A與點B關(guān)于直線X對稱,那么點A的橫坐標(biāo)不變,縱坐標(biāo)為相反數(shù)。
相反的,如果有兩點關(guān)于直線Y對稱,那么點A的橫坐標(biāo)為相反數(shù),縱坐標(biāo)不變。
關(guān)于二次函數(shù)圖像的對稱軸公式(也叫做軸對稱公式)
設(shè)二次函數(shù)的解析式是y=ax2+bx+c
則二次函數(shù)的對稱軸為直線x=—b/2a,頂點橫坐標(biāo)為—b/2a,頂點縱坐標(biāo)為(4ac—b2)/4a
在幾何證題、解題時,如果是軸對稱圖形,則經(jīng)常要添設(shè)對稱軸以便充分利用軸對稱圖形的性質(zhì)。
譬如,等腰三角形經(jīng)常添設(shè)頂角平分線;
矩形和等腰梯形問題經(jīng)常添設(shè)對邊中點連線和兩底中點連線;
正方形,菱形問題經(jīng)常添設(shè)對角線等等。
另外,如果遇到的圖形不是軸對稱圖形,則常選擇某直線為對稱軸,補添為軸對稱圖形,或?qū)⑤S一側(cè)的圖形通過翻折反射到另一側(cè),以實現(xiàn)條件的相對集中。
初中數(shù)學(xué)知識點總結(jié)7
一、可能性:
1. 必然事件:有些事情我們能確定他一定會發(fā)生,這些事情稱為必然事件;
2.不可能事件:有些事情我們能肯定他一定不會發(fā)生,這些事情稱為不可能事件;
3.確定事件:必然事件和不可能事件都是確定的;
4.不確定事件:有很多事情我們無法肯定他會不會發(fā)生,這些事情稱為不確定事件。
5.一般來說,不確定事件發(fā)生的可能性是有大小的。.
二、概率:
1.概率的意義:表示一個事件發(fā)生的可能性大小的這個數(shù)叫做該事件的概率。
2.必然事件發(fā)生的概率為1,記作P(必然事件)=1;不可能事件發(fā)生的概率為0,記作P(不可能事件)=0;如果A為不確定事件,那么0
3.一步試驗事件發(fā)生的概率的計算公式是P=k/n,n為該事件所有等可能出現(xiàn)的結(jié)果數(shù),k為事件包含的結(jié)果數(shù)。兩步試驗事件發(fā)生的概率的發(fā)生的概率的計算方法有兩種,一種是列表法,另一種是畫樹狀圖,利用這兩種方法計算兩步實驗時,應(yīng)用樹狀圖或列表將簡單的兩步試驗所有可能的情況表示出來,從而計算隨機事件的概率。
初中數(shù)學(xué)知識點總結(jié):平面直角坐標(biāo)系
下面是對平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的。數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識點:平面直角坐標(biāo)系的構(gòu)成
對于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點O稱為直角坐標(biāo)系的原點。
通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。
初中數(shù)學(xué)知識點:點的坐標(biāo)的性質(zhì)
下面是對數(shù)學(xué)中點的坐標(biāo)的性質(zhì)知識學(xué)習(xí),同學(xué)們認(rèn)真看看哦。
點的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點,我們可以確定它的.坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點C的坐標(biāo)。
一個點在不同的象限或坐標(biāo)軸上,點的坐標(biāo)不一樣。
希望上面對點的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。
初中數(shù)學(xué)知識點:因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。
初中數(shù)學(xué)知識點總結(jié)8
1、有理數(shù)的加法運算:
同號相加一邊倒;異號相加“大”減“小”,符號跟著大的跑;絕對值相等“零”正好、
2、合并同類項:
合并同類項,法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣、
3、去、添括號法則:
去括號、添括號,關(guān)鍵看符號,括號前面是正號,去、添括號不變號,括號前面是負(fù)號,去、添括號都變號、
4、一元一次方程:
已知未知要分離,分離方法就是移,加減移項要變號,乘除移了要顛倒、
5、平方差公式:
平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆、
1、完全平方公式:
完全平方有三項,首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;
首±尾括號帶平方,尾項符號隨中央、
2、因式分解:
一提(公因式)二套(公式)三分組,細(xì)看幾項不離譜,兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,四項仔細(xì)看清楚,若有三個平方數(shù)(項),就用一三來分組,否則二二去分組,五項、六項更多項,二三、三三試分組,以上若都行不通,拆項、添項看清楚、
3、單項式運算:
加、減、乘、除、乘(開)方,三級運算分得清,系數(shù)進(jìn)行同級(運)算,指數(shù)運算降級(進(jìn))行、
4、一元一次不等式解題的一般步驟:
去分母、去括號,移項時候要變號,同類項合并好,再把系數(shù)來除掉,兩邊除(以)負(fù)數(shù)時,不等號改向別忘了、
5、一元一次不等式組的`解集:
大大取較大,小小取較小,小大、大小取中間,大小、小大無處找、
一元二次不等式、一元一次絕對值不等式的解集:
大(魚)于(吃)取兩邊,。~)于(吃)取中間。
初中數(shù)學(xué)知識點總結(jié)9
初中數(shù)學(xué)例題的知識點梳理
有理數(shù)的加法運算:同號相加一邊倒;異號相加“大”減“小”,符號跟著大的跑;絕對值相等“零”正好!咀ⅰ俊按蟆睖p“小”是指絕對值的大小。
合并同類項:合并同類項,法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣。
去、添括號法則:去括號、添括號,關(guān)鍵看符號,括號前面是正號,去、添括號不變號,括號前面是負(fù)號,去、添括號都變號。
恒等變換:兩個數(shù)字來相減,互換位置最常見,正負(fù)只看其指數(shù),奇數(shù)變號偶不變。(a—b)2n+1=—(b—a)2n+1(a—b)2n=(b—a)2n
平方差公式:平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。
完全平方:完全平方有三項,首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;首±尾括號帶平方,尾項符號隨中央。
因式分解:一提(公因式)二套(公式)三分組,細(xì)看幾項不離譜,兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,四項仔細(xì)看清楚,若有三個平方數(shù)(項),就用一三來分組,否則二二去分組,五項、六項更多項,二三、三三試分組,以上若都行不通,拆項、添項看清楚。
“代入”口決:挖去字母換上數(shù)(式),數(shù)字、字母都保留;換上分?jǐn)?shù)或負(fù)數(shù),給它帶上小括弧,原括弧內(nèi)出(現(xiàn))括弧,逐級向下變括弧(小—中—大)
單項式運算:加、減、乘、除、乘(開)方,三級運算分得清,系數(shù)進(jìn)行同級(運)算,指數(shù)運算降級(進(jìn))行。
一元一次不等式解題的一般步驟:去分母、去括號,移項時候要變號,同類項、合并好,再把系數(shù)來除掉,兩邊除(以)負(fù)數(shù)時,不等號改向別忘了。
一元一次不等式組的解集:大大取較大,小小取較小,小大,大小取中間,大小,小大無處找。
一元二次不等式、一元一次絕對值不等式的解集:大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。
分式混合運算法則:分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);乘法進(jìn)行化簡,因式分解在先,分子分母相約,然后再行運算;加減分母需同,分母化積關(guān)鍵;找出最簡公分母,通分不是很難;變號必須兩處,結(jié)果要求最簡。
分式方程的解法步驟:同乘最簡公分母,化成整式寫清楚,求得解后須驗根,原(根)留、增(根)舍別含糊。
最簡根式的條件:最簡根式三條件,號內(nèi)不把分母含,冪指(數(shù))根指(數(shù))要互質(zhì),冪指比根指小一點。
特殊點坐標(biāo)特征:坐標(biāo)平面點(x,y),橫在前來縱在后;(+,+),(—,+),(—,—)和(+,—),四個象限分前后;X軸上y為0,x為0在Y軸。
象限角的'平分線:象限角的平分線,坐標(biāo)特征有特點,一、三橫縱都相等,二、四橫縱確相反。
平行某軸的直線:平行某軸的直線,點的坐標(biāo)有講究,直線平行X軸,縱坐標(biāo)相等橫不同;直線平行于Y軸,點的橫坐標(biāo)仍照舊。
對稱點坐標(biāo):對稱點坐標(biāo)要記牢,相反數(shù)位置莫混淆,X軸對稱y相反,Y軸對稱,x前面添負(fù)號;原點對稱最好記,橫縱坐標(biāo)變符號。
自變量的取值范圍:分式分母不為零,偶次根下負(fù)不行;零次冪底數(shù)不為零,整式、奇次根全能行。
函數(shù)圖像的移動規(guī)律:若把一次函數(shù)解析式寫成y=k(x+0)+b、二次函數(shù)的解析式寫成y=a(x+h)2+k的形式,則用下面后的口訣“左右平移在括號,上下平移在末稍,左正右負(fù)須牢記,上正下負(fù)錯不了”。
一次函數(shù)圖像與性質(zhì)口訣:一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠(yuǎn)。
二次函數(shù)圖像與性質(zhì)口訣:二次函數(shù)拋物線,圖象對稱是關(guān)鍵;開口、頂點和交點,它們確定圖象現(xiàn);開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關(guān)聯(lián);頂點位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點坐標(biāo)最重要,一般式配方它就現(xiàn),橫標(biāo)即為對稱軸,縱標(biāo)函數(shù)最值見。若求對稱軸位置,符號反,一般、頂點、交點式,不同表達(dá)能互換。
反比例函數(shù)圖像與性質(zhì)口訣:反比例函數(shù)有特點,雙曲線相背離的遠(yuǎn);k為正,圖在一、三(象)限,k為負(fù),圖在二、四(象)限;圖在一、三函數(shù)減,兩個分支分別減。圖在二、四正相反,兩個分支分別添;線越長越近軸,永遠(yuǎn)與軸不沾邊。
巧記三角函數(shù)定義:初中所學(xué)的三角函數(shù)有正弦、余弦、正切、余切,它們實際是三角形邊的比值,可以把兩個字用/隔開,再用下面的一句話記定義:一位不高明的廚子教徒弟殺魚,說了這么一句話:正對魚磷(余鄰)直刀切。正:
正弦或正切,對:對邊即正是對;余:余弦或余弦,鄰:鄰邊即余是鄰;切是直角邊。
三角函數(shù)的增減性:正增余減。
特殊三角函數(shù)值記憶:首先記住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子記口訣“123,321,三九二十七”既可。
數(shù)字巧記:=1.414(意思意思而已)=1.7321(三人一起商量)=2.236(吾量量山路)=2.449(糧食是酒)=2.645(二流是我)=2.828(二爸二爸)=3.16(山藥,六兩)
平行四邊形的判定:要證平行四邊形,兩個條件才能行,一證對邊都相等,或證對邊都平行,一組對邊也可以,必須相等且平行。對角線,是個寶,互相平分“跑不了”,對角相等也有用,“兩組對角”才能成。
梯形問題的輔助線:移動梯形對角線,兩腰之和成一線;平行移動一條腰,兩腰同在“△”現(xiàn);延長兩腰交一點,“△”中有平行線;作出梯形兩高線,矩形顯示在眼前;已知腰上一中線,莫忘作出中位線。
添加輔助線歌:輔助線,怎么添?找出規(guī)律是關(guān)鍵,題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連,三角形邊兩中點,連接則成中位線;三角形中有中線,延長中線翻一番。
圓的證明歌:圓的證明不算難,常把半徑直徑連;有弦可作弦心距,它定垂直平分弦;直徑是圓最大弦,直圓周角立上邊,它若垂直平分弦,垂徑、射影響耳邊;還有與圓有關(guān)角,勿忘相互有關(guān)聯(lián),圓周、圓心、弦切角,細(xì)找關(guān)系把線連。同弧圓周角相等,證題用它最多見,圓中若有弦切角,夾弧找到就好辦;圓有內(nèi)接四邊形,對角互補記心間,外角等于內(nèi)對角,四邊形定內(nèi)接圓;直角相對或共弦,試試加個輔助圓;若是證題打轉(zhuǎn)轉(zhuǎn),四點共圓可解難;要想證明圓切線,垂直半徑過外端,直線與圓有共點,證垂直來半徑連,直線與圓未給點,需證半徑作垂線;四邊形有內(nèi)切圓,對邊和等是條件;如果遇到圓與圓,弄清位置很關(guān)鍵,兩圓相切作公切,兩圓相交連公弦。
學(xué)霸分享的數(shù)學(xué)復(fù)習(xí)技巧
1、把答案蓋住看例題
例題不能帶著答案去看,不然會認(rèn)為自己就是這么,其實自己并沒有理解透徹。
所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看。這時要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。
經(jīng)過上面的訓(xùn)練,自己的思維空間擴展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個批注,說明此題的“題眼”及巧妙之處,收獲會更大。
2、研究每題都考什么
數(shù)學(xué)能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),而是要通過一題聯(lián)想到很多題。
3、錯一次反思一次
每次業(yè)及考試或多或少會發(fā)生些錯誤,這并不可怕,要緊的是避免類似的錯誤再次重現(xiàn)。因此平時注意把錯題記下來。
學(xué)生若能將每次考試或練習(xí)中出現(xiàn)的錯誤記錄下來分析,并盡力保證在下次考試時不發(fā)生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了。
4、分析試卷總結(jié)經(jīng)驗
每次考試結(jié)束試卷發(fā)下來,要認(rèn)真分析得失,總結(jié)經(jīng)驗教訓(xùn)。特別是將試卷中出現(xiàn)的錯誤進(jìn)行分類。
數(shù)學(xué)解題方法分別有哪些
1、配方法
所謂的公式是使用變換解析方程的同構(gòu)方法,并將其中的一些分配給一個或多個多項式正整數(shù)冪的和形式。通過配方解決數(shù)學(xué)問題的公式。其中,用的最多的是配成完全平方式。匹配方法是數(shù)學(xué)中不斷變形的重要方法,其應(yīng)用非常廣泛,在分解,簡化根,它通常用于求解方程,證明方程和不等式,找到函數(shù)的'極值和解析表達(dá)式。
2、因式分解法
因式分解是將多項式轉(zhuǎn)換為幾個積分產(chǎn)品的乘積。分解是恒定變形的基礎(chǔ)。除了引入中學(xué)教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進(jìn)行因式分解。還有一些項目,如拆除物品的使用,根分解,替換,未確定的系數(shù)等等。
3、換元法
替代方法是數(shù)學(xué)中一個非常重要和廣泛使用的解決問題的方法。我們通常稱未知或變元。用新的參數(shù)替換原始公式的一部分或重新構(gòu)建原始公式可以更簡單,更容易解決。
4、判別式法與韋達(dá)定理
一元二次方程ax2+ bx+ c=0(a、 b、 c屬于R,a≠0)根的判別,= b2—4 ac,不僅用來確定根的性質(zhì),還作為一個問題解決方法,代數(shù)變形,求解方程(組),求解不等式,研究函數(shù),甚至幾何以及三角函數(shù)都有非常廣泛的應(yīng)用。
韋達(dá)定理除了知道二次方程的根外,還找到另一根;考慮到兩個數(shù)的和和乘積的簡單應(yīng)用并尋找這兩個數(shù),也可以找到根的對稱函數(shù)并量化二次方程根的符號。求解對稱方程并解決一些與二次曲線有關(guān)的問題等,具有非常廣泛的應(yīng)用。
5、待定系數(shù)法
在解決數(shù)學(xué)問題時,如果我們首先判斷我們所尋找的結(jié)果具有一定的形式,其中包含某些未決的系數(shù),然后根據(jù)問題的條件列出未確定系數(shù)的方程,最后找到未確定系數(shù)的值或這些待定系數(shù)之間的關(guān)系。為了解決數(shù)學(xué)問題,這種問題解決方法被稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法
在解決問題時,我們通常通過分析條件和結(jié)論來使用這些方法來構(gòu)建輔助元素。它可以是一個圖表,一個方程(組),一個方程,一個函數(shù),一個等價的命題等,架起連接條件和結(jié)論的橋梁。為了解決這個問題,這種解決問題的數(shù)學(xué)方法,我們稱之為構(gòu)造方法。運用結(jié)構(gòu)方法解決問題可以使代數(shù),三角形,幾何等數(shù)學(xué)知識相互滲透,有助于解決問題。
數(shù)學(xué)經(jīng)常遇到的問題解答
1、要提高數(shù)學(xué)成績首先要做什么?
這一點,是很多學(xué)生所關(guān)注的,要提高數(shù)學(xué)成績,首先就應(yīng)該從基礎(chǔ)知識學(xué)起。不少同學(xué)覺得基礎(chǔ)知識過于簡單,看兩遍基本上就都會了。這種“自我感覺良好”其實是一種錯覺,而真正考試時又覺得無從下手,這還是基礎(chǔ)不牢的表現(xiàn),因此要提高數(shù)學(xué)成績先要把基礎(chǔ)夯實。
2、基礎(chǔ)不好怎么學(xué)好數(shù)學(xué)?
對于基礎(chǔ)差的同學(xué)來說,課本是就是學(xué)好數(shù)學(xué)的秘籍,把課本上的定義、公式、定理全部弄懂,力爭在理解的基礎(chǔ)上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學(xué)活用,把課本的知識學(xué)透有兩個好處,第一,強化基礎(chǔ);第二,提高得分能力。
3、是否要采用題海戰(zhàn)術(shù)?
方法君曾不止一次提到了“題海戰(zhàn)術(shù)”,題海戰(zhàn)術(shù)究竟可不可取呢?“題海戰(zhàn)術(shù)”其實也是一種學(xué)習(xí)方法,但很多學(xué)生只知道做題,不懂得總結(jié),體現(xiàn)不出任何的學(xué)習(xí)效果。因此在做題后要總結(jié)至關(guān)重要,只有認(rèn)真總結(jié)才能不斷積累做題經(jīng)驗,這樣才能取得理想成績。
4、做題總是粗心怎么辦?
很多學(xué)生成績不好,會說自己是因為粗心導(dǎo)致的,其實“粗心”只是借口,真正的原因就是題做得少、基礎(chǔ)知識不牢、沒有清晰的解題思路、計算能力不強。因此在平時的學(xué)習(xí)中,一定要注重熟練度和精準(zhǔn)度的練習(xí)。如果總是給自己找“粗心”的借口,也就變相否定了自己的學(xué)習(xí)弱點,所以,要告訴自己,高中數(shù)學(xué)沒有“粗心”只有“不用心”。
初中數(shù)學(xué)知識點總結(jié)10
關(guān)鍵詞:初一數(shù)學(xué);基礎(chǔ)知識;教學(xué)策略
初中數(shù)學(xué)是一個整體,相對而言,初一數(shù)學(xué)知識點很多,注重基礎(chǔ),初一數(shù)學(xué)是對學(xué)數(shù)學(xué)的適當(dāng)深入,也為后續(xù)的學(xué)習(xí)打下良好的基礎(chǔ)。在初一數(shù)學(xué)的教學(xué)中,注重學(xué)生基礎(chǔ)知識的掌握是非常必要的。如今的現(xiàn)狀是,剛?cè)氤踔械膶W(xué)生并沒有對打好數(shù)學(xué)基礎(chǔ)有足夠的重視。一些學(xué)生剛進(jìn)入初中,在數(shù)學(xué)學(xué)習(xí)中感受不到壓力,沒有投入足夠的精力,因而漸漸地就積累了很多關(guān)于基礎(chǔ)知識的小問題,這些小問題在學(xué)生進(jìn)入后續(xù)的學(xué)習(xí)中,慢慢就越來越多,形成大問題,大問題漸漸就會凸顯出來,學(xué)生漸漸就會感到力不從心。下面就針對初一學(xué)生學(xué)習(xí)中的問題,具體談?wù)勅绾未蚝贸跻粩?shù)學(xué)的基礎(chǔ)。
一、打好初一數(shù)學(xué)基礎(chǔ)的重要性
進(jìn)入中學(xué),學(xué)生的科目增加,內(nèi)容拓展,知識深入,數(shù)學(xué)這門學(xué)科由具體到抽象,從文字發(fā)展成了符號,從靜態(tài)逐漸發(fā)展成了動態(tài)。初一數(shù)學(xué)學(xué)習(xí)是很重要的一年,能夠讓學(xué)生感受到初中數(shù)學(xué)與小學(xué)的不同,并能感受到數(shù)學(xué)學(xué)習(xí)帶來的快樂,然而,一些學(xué)生對數(shù)學(xué)產(chǎn)生厭惡情緒也大都是從初中開始的,由于基礎(chǔ)沒打好對數(shù)學(xué)產(chǎn)生厭惡是很多學(xué)生的通病。基礎(chǔ)知識是進(jìn)行深入學(xué)習(xí)的根基,它為數(shù)學(xué)學(xué)習(xí)的深入做鋪墊,然而基礎(chǔ)知識卻并沒有得到初一學(xué)生應(yīng)有的足夠重視。初中的數(shù)學(xué)知識相對小學(xué)來說,已有了很大的深入,如果初一的基礎(chǔ)知識沒有打好,學(xué)生會漸漸感到吃力,從而跟不上教學(xué)步伐,導(dǎo)致產(chǎn)生厭學(xué)情緒。不利于學(xué)生的發(fā)展。因此,教師在教學(xué)中必須注重初一學(xué)生基礎(chǔ)知識的培養(yǎng),并使學(xué)生認(rèn)識到打好基礎(chǔ)知識的重要性。
二、初一數(shù)學(xué)學(xué)習(xí)中常出現(xiàn)的問題
1、知識點理解不透徹
初一學(xué)生剛?cè)氤踔,依然保留著小學(xué)生的一些習(xí)慣,愛玩并且厭煩課本上的基礎(chǔ)知識點。對知識點的理解停留在一知半解的層次上。并且,學(xué)生并沒有對基礎(chǔ)知識有足夠的重視,沒有認(rèn)識到基礎(chǔ)知識的重要性,從而導(dǎo)致基礎(chǔ)知識越來越差,產(chǎn)生對數(shù)學(xué)的厭煩,進(jìn)入惡性循環(huán)。
2、解答題目小錯誤多,無法完整地解決問題
學(xué)生由于不重視基礎(chǔ),導(dǎo)致一些題目無法完整地進(jìn)行解決,無論簡單的題型還是難的題型,都是建立在基礎(chǔ)知識點上的。學(xué)生的問題是無法把握其中的基礎(chǔ)技巧,忽視基礎(chǔ)知識,始終不能完整地解決問題。
3、沒有養(yǎng)成歸納總結(jié)的好習(xí)慣
學(xué)生在平時的練習(xí)中會有許多解錯的題型和忽視了的知識點,然而大都都是錯了就錯了,并沒有進(jìn)行歸納總結(jié),導(dǎo)致對錯誤的題型沒有進(jìn)行反思,從而一錯再錯。對一些基礎(chǔ)知識點,也沒有進(jìn)行很好的.歸納,腦海里沒有一個系統(tǒng)的基礎(chǔ)知識網(wǎng)。
三、打好學(xué)生數(shù)學(xué)基礎(chǔ)的策略
1、明確教學(xué)目標(biāo),突出重點
每一堂課的教學(xué),都有它的重點內(nèi)容,每一堂課,作為教師,首先都需要明確這堂課的教學(xué)目標(biāo),并要突出重點,讓學(xué)生對這堂課所學(xué)的知識點有一個清晰的輪廓。教師可以在黑板的一角把重點內(nèi)容簡短地寫出來,并保持一節(jié)課,引起學(xué)生的關(guān)注和重視。教師要通過不斷強調(diào)和引用,使學(xué)生對重點知識點留下深刻的印象,并可以出一個引用了重點知識的題目讓學(xué)生解答。例如,學(xué)習(xí)《數(shù)軸》這一節(jié)時,教師可先對重點基礎(chǔ)知識點進(jìn)行講解,讓學(xué)生了解數(shù)軸的基本定義,在腦海里留下一個概念,再讓學(xué)生上講臺到黑板上按要求畫下來。畫完后,讓學(xué)生自己做必要的講解,比如畫數(shù)軸的三要素原點、正方向、單位長度。這樣,學(xué)生對數(shù)軸的基礎(chǔ)知識點就會有一個深刻的印象。
2、精講例題,多做課堂練習(xí)
針對基礎(chǔ)知識,教師可在課堂上多設(shè)置一些例題,使學(xué)生能夠把基礎(chǔ)知識應(yīng)用到題目中去解答,從而認(rèn)識到基礎(chǔ)知識的重要性。教師要精選例題,按照這節(jié)課的重點基礎(chǔ)內(nèi)容進(jìn)行選題,從結(jié)構(gòu)特征、思維方式等各個方面進(jìn)行對題型的剖析,從而讓學(xué)生在解題的基礎(chǔ)之上掌握基礎(chǔ)知識的關(guān)鍵。知識點講得再多也是抽象空洞的,只有與題目進(jìn)行結(jié)合,讓學(xué)生靈活運用,才能夠使學(xué)生對知識點有一個深刻的理解。課堂上需根據(jù)實際情況布置課堂練習(xí),練習(xí)量針對知識點的難易程度可多可少,重要的是要讓學(xué)生有一個思考解答的過程。教師可讓學(xué)生自主進(jìn)行解答,若解答不出教師則做必要的指點進(jìn)行幫助,并且要鼓勵學(xué)生不懂就要問。還可以讓學(xué)生共同討論一些難點問題,促進(jìn)學(xué)生勤學(xué)好問的習(xí)慣培養(yǎng)。
3、形象教學(xué),變抽象為具體
教師在實際課堂教學(xué)中,可以運用很多種教學(xué)方式,每一堂課都有其教學(xué)目標(biāo),教學(xué)需根據(jù)教學(xué)內(nèi)容的變化選擇適當(dāng)?shù)慕虒W(xué)方式,形象教學(xué)是很重要并且很有效的教學(xué)方式。例如,進(jìn)行幾何的教學(xué),教師可以進(jìn)行具體演示,向?qū)W生展示幾何模型,運用幾何模型來驗證幾何結(jié)論。
4、讓學(xué)生收集題目,制作錯題集
基礎(chǔ)是在無數(shù)次練習(xí)的基礎(chǔ)之上總結(jié)出來的,做題如同挖金礦,對待錯題就如同對待發(fā)掘冶煉金礦一樣。學(xué)生在做題時,會遇到很多難題和易錯題,對于做錯了的題目,學(xué)生看看就丟到一邊,是沒有起到練習(xí)應(yīng)有的效果的。教師要促使學(xué)生制作一個錯題集,專門收集自己做錯或者不會做的題目,讓學(xué)生自己分析做錯的原因,為什么會做錯,下次如何避免,學(xué)生在總結(jié)反思的過程中,自然而然就對知識進(jìn)行了一次梳理。例如,用科學(xué)計數(shù)法計數(shù)是學(xué)生經(jīng)常容易犯錯的知識點,學(xué)生的粗心導(dǎo)致很簡單的問題經(jīng)常犯錯,通過錯題集,學(xué)生收集表示錯的科學(xué)計數(shù)法,不斷總結(jié)、強化,從而做到更細(xì)心。
初一數(shù)學(xué)學(xué)習(xí)對剛進(jìn)入初中的學(xué)生來說是非常重要的,其既是對小學(xué)數(shù)學(xué)知識的必要深入,也為后續(xù)更深層次的學(xué)習(xí)打下關(guān)鍵的基礎(chǔ)。然而,初一學(xué)生往往并沒有認(rèn)識到進(jìn)入初中打好數(shù)學(xué)基礎(chǔ)的重要性。本文針對學(xué)好初一數(shù)學(xué)的重要性和初一數(shù)學(xué)學(xué)習(xí)面臨的一些問題進(jìn)行了具體討論,最后總結(jié)出提高學(xué)生數(shù)學(xué)基礎(chǔ)知識的幾條教學(xué)策略,給以后的數(shù)學(xué)教學(xué)提供參考。
參考文獻(xiàn):
[1]吳遠(yuǎn),學(xué)生數(shù)學(xué)自主能力的培養(yǎng)[J]。巨人教學(xué)資源,20xx。
初中數(shù)學(xué)知識點總結(jié)11
定義
對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形
比值與比的概念
比值是一個具體的數(shù)字如:AB/EF=2
而比不是一個具體的數(shù)字如:AB/EF=2:1判定方法
證兩個相似三角形應(yīng)該把表示對應(yīng)頂點的字母寫在對應(yīng)的位置上。如果是文字語言的“△ABC與△DEF相似”,那么就說明這兩個三角形的對應(yīng)頂點可能沒有寫在對應(yīng)的位置上,而如果是符號語言的“△ABC∽△DEF”,那么就說明這兩個三角形的對應(yīng)頂點寫在了對應(yīng)的位置上。
方法一(預(yù)備定理)
平行于三角形一邊的直線截其它兩邊所在的直線,截得的三角形與原三角形相似。(這是相似三角形判定的定理,是以下判定方法證明的基礎(chǔ)。這個引理的證明方法需要平行線與線段成比例的`證明)
方法二
如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似。
方法三
如果兩個三角形的兩組對應(yīng)邊成比例,并且相應(yīng)的夾角相等,
那么這兩個三角形相似
方法四
如果兩個三角形的三組對應(yīng)邊成比例,那么這兩個三角形相似
方法五(定義)
對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形
三個基本型
Z型A型反A型
方法六
兩個直角三角形中,斜邊與直角邊對應(yīng)成比例,那么兩三角形相似。一定相似的三角形
1、兩個全等的三角形
(全等三角形是特殊的相似三角形,相似比為1:1)
2、兩個等腰三角形
(兩個等腰三角形,如果其中的任意一個頂角或底角相等,那么這兩個等腰三角形相似。)
3、兩個等邊三角形
(兩個等邊三角形,三角都是60度,且邊邊相等,所以相似)
4、直角三角形中由斜邊的高形成的三個三角形(母子三角形)
圖形的學(xué)習(xí)需要大家對于知識的詳細(xì)了解和滲透,而不是一帶而過。
初中數(shù)學(xué)知識點總結(jié)12
第一章:勾股定理
1.如果直角三角形的兩條直角邊長分別是a和b,斜邊長為c,那么a的平方加上b的平方等于c的平方。
2.如果直角三角形的兩條直角邊長分別是a和b,斜邊長為c,那么a的平方加上b的平方等于c的平方。
3.如果直角三角形的兩條直角邊長分別是a和b,斜邊長為c,那么兩條直角邊長的平方和等于斜邊長的平方。
4.如果直角三角形的兩條直角邊長分別是a和b,斜邊長為c,那么a、b、c三者之間的關(guān)系是a的平方加上b的平方等于c的平方。
第二章:四邊形
1.平行四邊形:兩組對邊分別平行的四邊形叫做平行四邊形。
2.菱形:有一組鄰邊相等的平行四邊形叫做菱形。
3.矩形:有一個角是直角的.平行四邊形叫做矩形。
4.正方形:有一組鄰邊相等的矩形叫做正方形。
5.平行四邊形的性質(zhì):對邊平行且相等;對角相等,且互補;對角線互相平分。
6.菱形的性質(zhì):四邊相等;對角線互相垂直,且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半。
7.矩形的性質(zhì):矩形的四個角都是直角;矩形的對角線相等。
8.正方形的性質(zhì):四個角都是直角,四條邊都相等;對角線相等,且互相垂直平分,每條對角線平分一組對角;正方形被兩條對角線分成四個全等的直角三角形;正方形是特殊的長方形,所以正方形具有矩形的一切性質(zhì)。
第三章:一次函數(shù)
1.一次函數(shù):如果所給函數(shù)表達(dá)式是正比例函數(shù),那么它經(jīng)過原點(0,0);如果所給函數(shù)表達(dá)式是一次函數(shù)(斜截式),那么它經(jīng)過原點(0,0)。
2.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。
3.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過第一、二、三象限。
4.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過第一、二、三象限。
5.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。
6.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過第一、二、三象限。
7.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。
8.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過第一、二、三象限。
9.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。
10.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過第一、二、三象限。
初中數(shù)學(xué)知識點總結(jié)13
一、在創(chuàng)新中培養(yǎng)學(xué)生的歸納意?R
在初中數(shù)學(xué)教學(xué)中,重點是對學(xué)生的創(chuàng)新精神和實踐能力的培養(yǎng),體現(xiàn)出現(xiàn)代素質(zhì)教育。學(xué)生創(chuàng)新能力的培養(yǎng)在學(xué)習(xí)中占據(jù)非常重要的作用,在創(chuàng)新中學(xué)生可以鞏固自身所學(xué)的知識,使數(shù)學(xué)知識在自己的頭腦中根深蒂固,各類知識點在學(xué)生的頭腦中形成清晰的框架,有助于學(xué)生歸納意識的培養(yǎng)。歸納意識的培養(yǎng),可以減輕學(xué)生的學(xué)習(xí)負(fù)擔(dān),提升學(xué)生對知識的理解能力。
初中生在學(xué)習(xí)數(shù)學(xué)的環(huán)節(jié)中,常常會接觸到大量的圖像,在數(shù)學(xué)學(xué)習(xí)中,老師應(yīng)該鼓勵學(xué)生大膽創(chuàng)新,在創(chuàng)新環(huán)節(jié)中完成對知識點的歸納。數(shù)學(xué)學(xué)習(xí)并不死板,不僅僅學(xué)習(xí)教科書上的知識,還應(yīng)該學(xué)習(xí)書本以外的知識,從而創(chuàng)新自己的思維。例如在進(jìn)行函數(shù)的學(xué)習(xí)中,老師可以讓學(xué)生繪制函數(shù)圖像,對函數(shù)進(jìn)行分類討論,從而掌握遞增函數(shù)和遞減函數(shù)的定義,在分類討論后,學(xué)生結(jié)合圖像進(jìn)行歸納。在數(shù)學(xué)教學(xué)中,老師不僅僅要重視書本上的邏輯內(nèi)容,而且在把握邏輯內(nèi)容的基礎(chǔ)上,將圖像和數(shù)學(xué)知識有機結(jié)合起來,使學(xué)生可以大膽創(chuàng)新。
很多學(xué)生在數(shù)學(xué)學(xué)習(xí)中存在困難,認(rèn)為數(shù)學(xué)的學(xué)習(xí)就是解答大量的難題,他們在大量的題海戰(zhàn)術(shù)后不善于歸納,導(dǎo)致數(shù)學(xué)學(xué)習(xí)的效率不高。
二、在交流中歸納知識點
在數(shù)學(xué)學(xué)習(xí)中,如果學(xué)生只是自己探究,那么在學(xué)習(xí)中不會得到靈感。數(shù)學(xué)學(xué)習(xí)不僅僅要求學(xué)生具有認(rèn)真的鉆研態(tài)度,而且也需要老師幫助學(xué)生養(yǎng)成歸納的意識。溝通和交流不僅僅在語言的學(xué)習(xí)中發(fā)揮非常重要的作用,而且在數(shù)學(xué)學(xué)習(xí)中同樣非常重要。學(xué)生在解答數(shù)學(xué)問題中,常常會遇到一些問題,學(xué)生自己探究會陷入到死胡同中,需要老師和同學(xué)的幫助才能進(jìn)一步完成。
為了切實在初中數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的歸納意識,老師可以將班級內(nèi)的學(xué)生分成幾個不同的小組,組內(nèi)的同學(xué)可以通過合作的方式,對知識點進(jìn)行歸納,在數(shù)學(xué)的學(xué)習(xí)中更加變通,將數(shù)學(xué)這門學(xué)科應(yīng)用到生活中。
例如,在進(jìn)行二次函數(shù)的學(xué)習(xí)中,老師可以將學(xué)生分成不同的小組,留給學(xué)生充足的時間,讓他們互相幫助,在溝通中對知識點進(jìn)行歸納。學(xué)生很快就能得到結(jié)論,如果函數(shù)有兩個解,那么函數(shù)與數(shù)軸會有兩個交點,如果方程只有一個解,那么函數(shù)與數(shù)軸只有一個交點,如果方程沒有解,那么函數(shù)與數(shù)軸沒有交點。學(xué)生通過分組討論的方式得到結(jié)論,通過歸納,學(xué)生對二次函數(shù)知識點的.印象非常深刻。
三、學(xué)會正確歸納
在數(shù)學(xué)學(xué)習(xí)中,歸納思想非常重要,數(shù)學(xué)這門學(xué)科的知識非常細(xì)碎,是一門系統(tǒng)性很強的學(xué)科。數(shù)學(xué)知識錯綜復(fù)雜,很多學(xué)生在學(xué)習(xí)數(shù)學(xué)中力不從心,掌握合理的歸納方式,可以切實提升學(xué)生的數(shù)學(xué)成績。初中生的思維還不是特別完善,在進(jìn)行數(shù)學(xué)學(xué)習(xí)環(huán)節(jié)中,對知識點進(jìn)行合理的歸納,是每位老師應(yīng)該采取的方法。如果學(xué)生不懂得歸納,那么在數(shù)學(xué)考試中,學(xué)生會將知識點混淆。為了提升學(xué)生的歸納能力,老師在課堂上應(yīng)該將一些容易混淆和容易出現(xiàn)錯誤的習(xí)題讓學(xué)生總結(jié)。
例如,在學(xué)習(xí)圓和直線這部分內(nèi)容中,老師都會將重點內(nèi)容,圓和圓的位置關(guān)系,直線和圓的位置關(guān)系進(jìn)行重點分析。老師可以借助一些參考書目和資料,總結(jié)一些相似的題目,讓學(xué)生在課堂上解答這些題目,使學(xué)生對這部分知識點進(jìn)行總結(jié),從而加深對這部分知識的理解。歸納思想在數(shù)學(xué)學(xué)習(xí)中應(yīng)用非常多,在進(jìn)行初中數(shù)學(xué)教學(xué)環(huán)節(jié)中,學(xué)生應(yīng)該花更多的時間進(jìn)行歸納。
在進(jìn)行初中數(shù)學(xué)的學(xué)習(xí)中,學(xué)生歸納意識的養(yǎng)成可以完善學(xué)生的數(shù)學(xué)思維,學(xué)生學(xué)會歸納,在學(xué)習(xí)中就會如魚得水,在考試中取得好成績。
四、在反思中完成知識點的歸納
初中數(shù)學(xué)知識點總結(jié)14
第一章 豐富的圖形世界
1、幾何圖形
從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。
2、點、線、面、體
(1)幾何圖形的組成
點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。
線:面和面相交的地方是線,分為直線和曲線。
面:包圍著體的是面,分為平面和曲面。
體:幾何體也簡稱體。
(2)點動成線,線動成面,面動成體。
3、生活中的立體圖形
生活中的立體圖形
柱:棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、……
正有理數(shù) 整數(shù)
有理數(shù) 零 有理數(shù)
負(fù)有理數(shù) 分?jǐn)?shù)
2、相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零
3、數(shù)軸:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,三要素缺一不可)。任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。
4、倒數(shù):如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。
5、絕對值:在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離,叫做該數(shù)的絕對值,(|a|≥0)。若|a|=a,則a≥0;若|a|=-a,則a≤0。
正數(shù)的絕對值是它本身;負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0;橄喾磾(shù)的兩個數(shù)的絕對值相等。
6、有理數(shù)比較大小:正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù);數(shù)軸上的兩個點所表示的數(shù),右邊的總比左邊的大;兩個負(fù)數(shù),絕對值大的反而小。
7、有理數(shù)的運算:
(1)五種運算:加、減、乘、除、乘方
多個數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個時,積的符號為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個時,積的符號為正。只要有一個數(shù)為零,積就為零。
有理數(shù)加法法則:
同號兩數(shù)相加,取相同的符號,并把絕對值相加。
異號兩數(shù)相加,絕對值值相等時和為0;絕對值不相等時,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。
一個數(shù)同0相加,仍得這個數(shù)。
互為相反數(shù)的兩個數(shù)相加和為0。
有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)!
有理數(shù)乘法法則:
兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘。
任何數(shù)與0相乘,積仍為0。
有理數(shù)除法法則:
兩個有理數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。
0除以任何非0的數(shù)都得0。
注意:0不能作除數(shù)。
有理數(shù)的乘方:求n個相同因數(shù)a的積的運算叫做乘方。
正數(shù)的任何次冪都是正數(shù),負(fù)數(shù)的偶次冪是正數(shù),負(fù)數(shù)的奇次冪是負(fù)數(shù)。
(2)有理數(shù)的運算順序
先算乘方,再算乘除,最后算加減,如果有括號,先算括號里面的。
(3)運算律
加法交換律 加法結(jié)合律
乘法交換律 乘法結(jié)合律
乘法對加法的分配律
8、科學(xué)記數(shù)法
一般地,一個大于10的數(shù)可以表示成的形式,其中,n是正整數(shù),這種記數(shù)方法叫做科學(xué)記數(shù)法。(n=整數(shù)位數(shù)-1)
第三章 整式及其加減
1、代數(shù)式
用運算符號(加、減、乘、除、乘方、開方等)把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨的一個數(shù)或一個字母也是代數(shù)式。
注意:①代數(shù)式中除了含有數(shù)、字母和運算符號外,還可以有括號;
②代數(shù)式中不含有“=、>、<、≠”等符號。等式和不等式都不是代數(shù)式,但等號和不等號兩邊的式子一般都是代數(shù)式;
、鄞鷶(shù)式中的字母所表示的數(shù)必須要使這個代數(shù)式有意義,是實際問題的要符合實際問題的意義。
※代數(shù)式的書寫格式:
、俅鷶(shù)式中出現(xiàn)乘號,通常省略不寫,如vt;
、跀(shù)字與字母相乘時,數(shù)字應(yīng)寫在字母前面,如4a;
、蹘Х?jǐn)?shù)與字母相乘時,應(yīng)先把帶分?jǐn)?shù)化成假分?jǐn)?shù),如應(yīng)寫作;
、軘(shù)字與數(shù)字相乘,一般仍用“×”號,即“×”號不省略;
⑤在代數(shù)式中出現(xiàn)除法運算時,一般寫成分?jǐn)?shù)的形式,如4÷(a-4)應(yīng)寫作;注意:分?jǐn)?shù)線具有“÷”號和括號的雙重作用。
⑥在表示和(或)差的代數(shù)式后有單位名稱的,則必須把代數(shù)式括起來,再將單位名稱寫在式子的后面,如平方米。
2、整式:單項式和多項式統(tǒng)稱為整式。
、賳雾検剑憾际菙(shù)字和字母乘積的形式的代數(shù)式叫做單項式。單項式中,所有字母的指數(shù)之和叫做這個單項式的次數(shù);數(shù)字因數(shù)叫做這個單項式的系數(shù)。
注意:1.單獨的一個數(shù)或一個字母也是單項式;2.單獨一個非零數(shù)的次數(shù)是0;3.當(dāng)單項式的系數(shù)為1或-1時,這個“1”應(yīng)省略不寫,如-ab的系數(shù)是-1,a3b的系數(shù)是1。
、诙囗検剑簬讉單項式的和叫做多項式。多項式中,每個單項式叫做多項式的項;次數(shù)最高的項的次數(shù)叫做多項式的次數(shù)。
3、同類項:所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。
注意:①同類項有兩個條件:a.所含字母相同;b.相同字母的指數(shù)也相同。
、谕愴椗c系數(shù)無關(guān),與字母的排列順序無關(guān);
、蹘讉常數(shù)項也是同類項。
4、合并同類項法則:把同類項的系數(shù)相加,字母和字母的指數(shù)不變。
5、去括號法則
、俑鶕(jù)去括號法則去括號:
括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項都不改變符號;括號前面是“-”號,把括號和它前面的“-”號去掉,括號里各項都改變符號。
、诟鶕(jù)分配律去括號:
括號前面是“+”號看成+1,括號前面是“-”號看成-1,根據(jù)乘法的分配律用+1或-1去乘括號里的每一項以達(dá)到去括號的目的。
6、添括號法則
添“+”號和括號,添到括號里的各項符號都不改變;添“-”號和括號,添到括號里的各項符號都要改變。
7、整式的運算:
整式的加減法:(1)去括號;(2)合并同類項。
第四章 基本平面圖形
2、直線的性質(zhì)
(1)直線公理:經(jīng)過兩個點有且只有一條直線。(兩點確定一條直線。)
(2)過一點的直線有無數(shù)條。
(3)直線是是向兩方面無限延伸的.,無端點,不可度量,不能比較大小。
3、線段的性質(zhì)
(1)線段公理:兩點之間的所有連線中,線段最短。(兩點之間線段最短。)
(2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。
(3)線段的大小關(guān)系和它們的長度的大小關(guān)系是一致的。
4、線段的中點:
點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。AM = BM =1/2AB (或AB=2AM=2BM)。
5、角:
有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊;颍航且部梢钥闯墒且粭l射線繞著它的端點旋轉(zhuǎn)而成的。
6、角的表示
角的表示方法有以下四種:
、儆脭(shù)字表示單獨的角,如∠1,∠2,∠3等。
、谟眯懙南ED字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。
、塾靡粋大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。
、苡萌齻大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。
注意:用三個大寫字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側(cè)。
7、角的度量
角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。
把1°的角60等分,每一份叫做1分的角,1分記作“1’”。
把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。
1°=60’,1’=60”
8、角的平分線
從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
9、角的性質(zhì)
(1)角的大小與邊的長短無關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。
(2)角的大小可以度量,可以比較,角可以參與運算。
10、平角和周角:一條射線繞著它的端點旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續(xù)旋轉(zhuǎn),當(dāng)它又和始邊重合時,所形成的角叫做周角。
11、多邊形:由若干條不在同一條直線上的線段首尾順次相連組成的封閉平面圖形叫做多邊形。連接不相鄰兩個頂點的線段叫做多邊形的對角線。
從一個n邊形的同一個頂點出發(fā),分別連接這個頂點與其余各頂點,可以畫(n-3)條對角線,把這個n邊形分割成(n-2)個三角形。
12、圓:平面上,一條線段繞著一個端點旋轉(zhuǎn)一周,另一個端點形成的圖形叫做圓。固定的端點O稱為圓心,線段OA的長稱為半徑的長(通常簡稱為半徑)。
圓上任意兩點A、B間的部分叫做圓弧,簡稱弧,讀作“圓弧AB”或“弧AB”;由一條弧AB和經(jīng)過這條弧的端點的兩條半徑OA、OB所組成的圖形叫做扇形。頂點在圓心的角叫做圓心角。
第五章 一元一次方程
1、方程
含有未知數(shù)的等式叫做方程。
2、方程的解
能使方程左右兩邊相等的未知數(shù)的值叫做方程的解。
3、等式的性質(zhì)
(1)等式的兩邊同時加上(或減去)同一個代數(shù)式,所得結(jié)果仍是等式。
(2)等式的兩邊同時乘以同一個數(shù)((或除以同一個不為0的數(shù)),所得結(jié)果仍是等式。
4、一元一次方程
只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫做一元一次方程。
5、移項:把方程中的某一項,改變符號后,從方程的一邊移到另一邊,這種變形叫做移項.
6、解一元一次方程的一般步驟:
(1)去分母(2)去括號(3)移項(把方程中的某一項改變符號后,從方程的一邊移到另一邊,這種變形叫移項。)(4)合并同類項(5)將未知數(shù)的系數(shù)化為1
第六章 數(shù)據(jù)的收集與整理
1、普查與抽樣調(diào)查
為了特定目的對全部考察對象進(jìn)行的全面調(diào)查,叫做普查。其中被考察對象的全體叫做總體,組成總體的每一個被考察對象稱為個體。
從總體中抽取部分個體進(jìn)行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體抽取的一部分個體叫做總體的一個樣本。
2、扇形統(tǒng)計圖
扇形統(tǒng)計圖:利用圓與扇形來表示總體與部分的關(guān)系,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計圖叫做扇形統(tǒng)計圖。(各個扇形所占的百分比之和為1)
圓心角度數(shù)=360°×該項所占的百分比。(各個部分的圓心角度數(shù)之和為360°)
3、頻數(shù)直方圖
頻數(shù)直方圖是一種特殊的條形統(tǒng)計圖,它將統(tǒng)計對象的數(shù)據(jù)進(jìn)行了分組畫在橫軸上,縱軸表示各組數(shù)據(jù)的頻數(shù)。
4、各種統(tǒng)計圖的特點
條形統(tǒng)計圖:能清楚地表示出每個項目的具體數(shù)目。
折線統(tǒng)計圖:能清楚地反映事物的變化情況。
扇形統(tǒng)計圖:能清楚地表示出各部分在總體中所占的百分比。
初中數(shù)學(xué)知識點總結(jié)15
1、乘法與因式分解
a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)
2、三角不等式
|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
3、一元二次方程的解
-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a
4、根與系數(shù)的關(guān)系
X1+X2=-b/a X1*X2=c/a注:韋達(dá)定理
5、判別式
①b2-4a=0注:方程有相等的兩實根
、赽2-4ac>0注:方程有一個實根
、踒2-4ac<0注:方程有共軛復(fù)數(shù)根
6、三角函數(shù)公式
①兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
、诒督枪
tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
③半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
、芎筒罨e
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
、菽承⿺(shù)列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
、拚叶ɡ
a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑
、哂嘞叶ɡ
b2=a2+c2-2accosB注:角B是邊a和邊c的夾角
、鄨A的方程
圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)
圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
⑨立體體積與側(cè)面積
直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c'*h
正棱錐側(cè)面積S=1/2c*h'正棱臺側(cè)面積S=1/2(c+c')h'
圓臺側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi*r2
圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l
弧長公式l=a*r a是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r
錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h
斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長
柱體體積公式V=s*h圓柱體V=pi*r2h
二、初中幾何公式
1、平行線證明
、俳(jīng)過直線外一點,有且只有一條直線與這條直線平行
②如果兩條直線都和第三條直線平行,這兩條直線也互相平行
、弁唤窍嗟,兩直線平行
、軆(nèi)錯角相等,兩直線平行
、萃詢(nèi)角互補,兩直線平行
、迌芍本平行,同位角相等
⑦兩直線平行,內(nèi)錯角相等
、鄡芍本平行,同旁內(nèi)角互補
2、全等三角形證明
、龠吔沁吂(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等
②角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等
、弁普(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等
、苓呥呥吂(SSS)有三邊對應(yīng)相等的兩個三角形全等
⑤斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等
3、三角形基本定理
、俣ɡ1在角的平分線上的點到這個角的兩邊的距離相等
、诙ɡ2到一個角的兩邊的距離相同的點,在這個角的平分線上
、劢堑钠椒志是到角的兩邊距離相等的所有點的集合
④等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)
、萃普1等腰三角形頂角的平分線平分底邊并且垂直于底邊
、薜妊切蔚捻斀瞧椒志、底邊上的中線和底邊上的高互相重合
、咄普3等邊三角形的各角都相等,并且每一個角都等于60°
、嗟妊切蔚呐卸ǘɡ砣绻粋三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
⑨直角三角形
4、多邊形定理
、俣ɡ硭倪呅蔚膬(nèi)角和等于360°
、谒倪呅蔚耐饨呛偷扔360°
、鄱噙呅蝺(nèi)角和定理n邊形的內(nèi)角的.和等于(n-2)×180°
、芡普撊我舛噙叺耐饨呛偷扔360°
5、平行四邊形證明與等腰梯形證明
①平行四邊形性質(zhì)定理1平行四邊形的對角相等
、谄叫兴倪呅涡再|(zhì)定理2平行四邊形的對邊相等
③平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分
……
④矩形性質(zhì)定理1矩形的四個角都是直角
、菥匦涡再|(zhì)定理2矩形的對角線相等
……
⑥等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個角相等
、叩妊菪闻卸ǘɡ碓谕坏咨系膬蓚角相等的梯形是等腰梯形
、嗤普1經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰
、嵬普2經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊
7、相似三角形證明
、傧嗨迫切闻卸ǘɡ1兩角對應(yīng)相等,兩三角形相似(ASA)
、谂卸ǘɡ2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)
、叟卸ǘɡ3三邊對應(yīng)成比例,兩三角形相似(SSS)
、芏ɡ砣绻粋直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似
、菪再|(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比
、扌再|(zhì)定理2相似三角形周長的比等于相似比
、咝再|(zhì)定理3相似三角形面積的比等于相似比的平方
8、弦和圓的證明
、俣ɡ聿辉谕恢本上的三點確定一個圓。
、诖箯蕉ɡ泶怪庇谙业闹睆狡椒诌@條弦并且平分弦所對的兩條弧
、弁普1
平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
、芡普2圓的兩條平行弦所夾的弧相等
、輬A是以圓心為對稱中心的中心對稱圖形
⑥定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦
相等,所對的弦的弦心距相等
⑦線與圓的位置關(guān)系
直線L和⊙O相交d 直線L和⊙O相切d=r 直線L和⊙O相離d>r 、鄨A與圓之間的位置關(guān)系 兩圓外離d>R+r②兩圓外切d=R+r 兩圓相交R-r 兩圓內(nèi)切d=R-r(R>r) 兩圓內(nèi)含dr) QQ截圖20150129173906.jpg 三、數(shù)學(xué)學(xué)習(xí)方法 1、突出一個“勤”字(克服一個“惰”字) 數(shù)學(xué)家華羅庚曾經(jīng)說過:“聰明在于學(xué)習(xí),天才在于勤奮”,“勤能補拙是良訓(xùn),一分辛勞一分才“:我們在學(xué)習(xí)的時候要突出一個勤字,克服一個“懶”字,怎么突出“勤”字,從這個字面上來看,要做到五勤:“耳勤”“眼勤”(耳朵聽,眼睛看,接受信息) “口勤”(討論,回答問題,而不是講話,消化信息)“腦勤”(善于思考問題,積極思考問題——吸收、儲存信息)那是不是做到以上四點就行了呢?不是。這個字還有缺陷,在聰下面加上“手” “手勤”(動手多實踐,不僅光做題,做課件,做模型) 這樣的人聰明不聰明? 最大的提高學(xué)習(xí)效率,首先要做到——上課認(rèn)真聽講(這是根本)回家先復(fù)習(xí)再做題如果課聽不好,就別想消化知識 2、學(xué)好初中數(shù)學(xué)還有兩個要點,要狠抓兩個要點: 學(xué)好數(shù)學(xué),一要(動手),二要(動腦)。動腦就是要學(xué)會觀察分析問題,學(xué)會思考,不要拿到題就做,找到已知和未知想象之間有什么聯(lián)系,多問幾個為什么。動手就是多實踐,多做題,要“拳不離手”(武術(shù))“曲不離口”(唱歌)。同學(xué)就是“題不離手”,這兩個要點大家要記住!皠幽X又動手,才能最大地發(fā)揮大腦的效率” 3、做到“三個一遍” 大家聽過“失敗是成功之母”聽過“重復(fù)是學(xué)習(xí)之母”嗎?培根(18-19世紀(jì)英國的哲學(xué)家)——“知識就是力量”,“重復(fù)是學(xué)習(xí)之母”。如何重復(fù),我給你們解釋一下: “上課要認(rèn)真聽一遍,動手推一遍,想一遍” “下課看” “考試前” 4、重視“四個依據(jù)” 讀好一本教科書——它是教學(xué)、中考的主要依據(jù); 記好一本筆記——它是教師多年經(jīng)驗的結(jié)晶; 做好做凈一本習(xí)題集——它是使知識拓寬; 記好一本心得筆記,最好每人自己準(zhǔn)備一本錯題集 【初中數(shù)學(xué)知識點總結(jié)】相關(guān)文章: 初中數(shù)學(xué)幾何知識點總結(jié)11-05 初中數(shù)學(xué)函數(shù)知識點總結(jié)11-24 初中數(shù)學(xué)圓的知識點總結(jié)12-05 初中數(shù)學(xué)函數(shù)知識點總結(jié)06-14 【經(jīng)典】數(shù)學(xué)初中知識點總結(jié)07-16