當前位置:育文網(wǎng)>初中>初中數(shù)學> 初中數(shù)學知識點總結(jié)

初中數(shù)學知識點總結(jié)

時間:2024-10-21 14:00:25 初中數(shù)學

初中數(shù)學知識點總結(jié)【必備15篇】

  總結(jié)是對過去一定時期的工作、學習或思想情況進行回顧、分析,并做出客觀評價的書面材料,它有助于我們尋找工作和事物發(fā)展的規(guī)律,從而掌握并運用這些規(guī)律,因此我們要做好歸納,寫好總結(jié)。你所見過的總結(jié)應(yīng)該是什么樣的?以下是小編為大家整理的初中數(shù)學知識點總結(jié),僅供參考,希望能夠幫助到大家。

初中數(shù)學知識點總結(jié)【必備15篇】

初中數(shù)學知識點總結(jié)1

  初中數(shù)學知識點總結(jié):中位線

  知識要點:梯形的中位線平行于兩底,并且等于兩底和的一半。

  1.中位線概念

  (1)三角形中位線定義:連接三角形兩邊中點的線段叫做三角形的中位線。

  (2)梯形中位線定義:連結(jié)梯形兩腰中點的線段叫做梯形的中位線。

  注意:

  (1)要把三角形的中位線與三角形的中線區(qū)分開。三角形中線是連結(jié)一頂點和它對邊的中點,而三角形中位線是連結(jié)三角形兩邊中點的線段。

  (2)梯形的中位線是連結(jié)兩腰中點的線段而不是連結(jié)兩底中點的線段。

  (3)兩個中位線定義間的聯(lián)系:可以把三角形看成是上底為零時的梯形,這時梯形的中位線就變成三角形的中位線。

  2.中位線定理

  (1)三角形中位線定理:三角形的中位線平行于第三邊并且等于它的一半.

  三角形兩邊中點的連線(中位線)平行于第BC邊,且等于第三邊的一半。

  知識要領(lǐng)總結(jié):三角形的中位線所構(gòu)成的小三角形(中點三角形)面積是原三角形面積的四分之一。

  初中數(shù)學知識點總結(jié):平面直角坐標系

  下面是對平面直角坐標系的內(nèi)容學習,希望同學們很好的掌握下面的內(nèi)容。

  平面直角坐標系

  平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

  平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合

  三個規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標系知識的講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們都能考試成功。

  初中數(shù)學知識點:平面直角坐標系的.構(gòu)成

  對于平面直角坐標系的構(gòu)成內(nèi)容,下面我們一起來學習哦。

  平面直角坐標系的構(gòu)成

  在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。

  通過上面對平面直角坐標系的構(gòu)成知識的講解學習,希望同學們對上面的內(nèi)容都能很好的掌握,同學們認真學習吧。

  初中數(shù)學知識點:點的坐標的性質(zhì)

  下面是對數(shù)學中點的坐標的性質(zhì)知識學習,同學們認真看看哦。

  點的坐標的性質(zhì)

  建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。

  對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標、縱坐標,有序?qū)崝?shù)對(a,b)叫做點C的坐標。

  一個點在不同的象限或坐標軸上,點的坐標不一樣。

  希望上面對點的坐標的性質(zhì)知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。

  初中數(shù)學知識點:因式分解的一般步驟

  關(guān)于數(shù)學中因式分解的一般步驟內(nèi)容學習,我們做下面的知識講解。

  因式分解的一般步驟

  如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

  通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。

  相信上面對因式分解的一般步驟知識的內(nèi)容講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們會考出好成績。

  初中數(shù)學知識點:因式分解

  下面是對數(shù)學中因式分解內(nèi)容的知識講解,希望同學們認真學習。

  因式分解

  因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

  因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

  因式分解與整式乘法的關(guān)系:m(a+b+c)

  公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

  公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

  提取公因式步驟:

 、俅_定公因式。②確定商式③公因式與商式寫成積的形式。

  分解因式注意;

 、俨粶蕘G字母

 、诓粶蕘G常數(shù)項注意查項數(shù)

 、垭p重括號化成單括號

 、芙Y(jié)果按數(shù)單字母單項式多項式順序排列

 、菹嗤蚴綄懗蓛绲男问

 、奘醉椮撎柗爬ㄌ柾

  ⑦括號內(nèi)同類項合并。

  通過上面對因式分解內(nèi)容知識的講解學習,相信同學們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學們的學習很好的幫助。

初中數(shù)學知識點總結(jié)2

  一、投影

  1、投影:一般地,用光線照射物體,在某個平面(地面、墻壁等)上得到的影子叫做物體的投影,照射光線叫做投影線,投影所在的平面叫做投影面。

  2、平行投影:由平行光線形成的投影是平行投影。(光源特別遠)

  3、中心投影:由同一點(點光源發(fā)出的光線)形成的投影叫做中心投影

  4、正投影:投影線垂直于投影面產(chǎn)生的投影叫做正投影。物體正投影的形狀、大小與它相對于投影面的位置有關(guān)。

  5、當物體的某個面平行于投影面時,這個面的正投影與這個面的形狀、大小完全相同。當物體的某個面頂斜于投影面時,這個面的正投影變小。當物體的某個面垂直于投影面時,這個面的正投影成為一條直線。

  二、三視圖

  1、三視圖:是觀測者從三個不同位置(正面、水平面、側(cè)面)觀察同一個空間幾何體而畫出的圖形。三視圖就是主視圖、俯視圖、左視圖的總稱。另外還有如剖面圖、半剖面圖等做為輔助,基本能完整的表達物體的結(jié)構(gòu)。

  2、主視圖:在正面內(nèi)得到的由前向后觀察物體的.視圖。

  3、俯視圖:在水平面內(nèi)得到的由上向下觀察物體的視圖。

  4、左視圖:在側(cè)面內(nèi)得到的由左向右觀察物體的視圖。

  5、三個視圖的位置關(guān)系:

  ①主視圖在上、俯視圖在下、左視圖在右;

 、谥饕、俯視表示物體的長,主視、左視表示物體的高,左視、俯視表示物體的寬。

 、壑饕、俯視長對正,主視、左視高平齊,左視、俯視寬相等。

  6、畫法:看得見的部分的輪廓線畫成實線,因被其它部分遮檔而看不見的部分的輪廓線畫成虛線。

  鄰補角:兩條直線相交所構(gòu)成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。

  對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。

  垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。

  平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。

  同位角、內(nèi)錯角、同旁內(nèi)角:

  同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對角叫做同位角。

  內(nèi)錯角:∠2與∠6像這樣的一對角叫做內(nèi)錯角。

  同旁內(nèi)角:∠2與∠5像這樣的一對角叫做同旁內(nèi)角。

  命題:判斷一件事情的語句叫命題。

  平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。

  對應(yīng)點:平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應(yīng)點。

初中數(shù)學知識點總結(jié)3

  整式的加減

  2、1整式

  1、單項式:由數(shù)字和字母乘積組成的式子。系數(shù),單項式的次數(shù)、單項式指的是數(shù)或字母的積的代數(shù)式、單獨一個數(shù)或一個字母也是單項式、因此,判斷代數(shù)式是否是單項式,關(guān)鍵要看代數(shù)式中數(shù)與字母是否是乘積關(guān)系,即分母中不含有字母,若式子中含有加、減運算關(guān)系,其也不是單項式、

  2、單項式的系數(shù):是指單項式中的數(shù)字因數(shù);

  3、單項數(shù)的次數(shù):是指單項式中所有字母的指數(shù)的和、

  4、多項式:幾個單項式的和。判斷代數(shù)式是否是多項式,關(guān)鍵要看代數(shù)式中的每一項是否是單項式、每個單項式稱項,常數(shù)項,多項式的次數(shù)就是多項式中次數(shù)的次數(shù)。多項式的次數(shù)是指多項式里次數(shù)項的次數(shù),這里是次數(shù)項,其次數(shù)是6;多項式的項是指在多項式中,每一個單項式、特別注意多項式的項包括它前面的性質(zhì)符號、

  5、它們都是用字母表示數(shù)或列式表示數(shù)量關(guān)系。注意單項式和多項式的每一項都包括它前面的符號。

  6、單項式和多項式統(tǒng)稱為整式。

  2、2整式的加減

  1、同類項:所含字母相同,并且相同字母的指數(shù)也相同的項。與字母前面的系數(shù)(≠0)無關(guān)。

  2、同類項必須同時滿足兩個條件:(1)所含字母相同;(2)相同字母的次數(shù)相同,二者缺一不可、同類項與系數(shù)大小、字母的排列順序無關(guān)

  3、合并同類項:把多項式中的同類項合并成一項?梢赃\用交換律,結(jié)合律和分配律。

  4、合并同類項法則:合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)的和,且字母部分不變;

  5、去括號法則:去括號,看符號:是正號,不變號;是負號,全變號。

  6、整式加減的一般步驟:

  一去、二找、三合

  (1)如果遇到括號按去括號法則先去括號、(2)結(jié)合同類項、(3)合并同類項葫蘆島

  初中數(shù)學知識點歸納

  三角和的公式

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  倍角公式

  tan2A = 2tanA/(1-tan2 A)

  Sin2A=2SinA?CosA

  Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A

  三倍角公式

  sin3A = 3sinA-4(sinA)3;

  cos3A = 4(cosA)3 -3cosA

  tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

  三角函數(shù)特殊值

  α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

  α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

  α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

  a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

  α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

  α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

  α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

  α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

  α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

  α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

  α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

  α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

  三角函數(shù)記憶順口溜

  1三角函數(shù)記憶口訣

  “奇、偶”指的是π/2的倍數(shù)的奇偶,“變與不變”指的是三角函數(shù)的名稱的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負號。

  以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區(qū)間(π/2,π)上小于零,所以右邊符號為負,所以右邊為-sinα。

  2符號判斷口訣

  全,S,T,C,正。這五個字口訣的意思就是說:第一象限內(nèi)任何一個角的四種三角函數(shù)值都是“+”;第二象限內(nèi)只有正弦是“+”,其余全部是“-”;第三象限內(nèi)只有正切是“+”,其余全部是“-”;第四象限內(nèi)只有余弦是“+”,其余全部是“-”。

  也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是對應(yīng)象限三角函數(shù)為正值的名稱?谠E中未提及的都是負值。

  “ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過來寫所占的象限對應(yīng)的三角函數(shù)為正值。

  3三角函數(shù)順口溜

  三角函數(shù)是函數(shù),象限符號坐標注。函數(shù)圖像單位圓,周期奇偶增減現(xiàn)。

  同角關(guān)系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;

  中心記上數(shù)字一,連結(jié)頂點三角形。向下三角平方和,倒數(shù)關(guān)系是對角,頂點任意一函數(shù),等于后面兩根除。誘導公式就是好,負化正后大化小,變成銳角好查表,化簡證明少不了。二的.一半整數(shù)倍,奇數(shù)化余偶不變,將其后者視銳角,符號原來函數(shù)判。兩角和的余弦值,化為單角好求值,余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。

  計算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡易變。

  逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。

  萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;

  一加余弦想余弦,一減余弦想正弦,冪升一次角減半,升冪降次它為范;

  三角函數(shù)反函數(shù),實質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;

  利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。

  初中數(shù)學知識點大全

  誘導公式的本質(zhì)

  所謂三角函數(shù)誘導公式,就是將角n(/2)的三角函數(shù)轉(zhuǎn)化為角的三角函數(shù)。

  常用的誘導公式

  公式一: 設(shè)為任意角,終邊相同的角的同一三角函數(shù)的值相等:

  sin(2k)=sin kz

  cos(2k)=cos kz

  tan(2k)=tan kz

  cot(2k)=cot kz

  公式二: 設(shè)為任意角,的三角函數(shù)值與的三角函數(shù)值之間的關(guān)系:

  sin( )=-sin

  cos( )=-cos

  tan( )=tan

  cot( )=cot

  公式三: 任意角與 -的三角函數(shù)值之間的關(guān)系:

  sin(-)=-sin

  cos(-)=cos

  tan(-)=-tan

  cot(-)=-cot

  公式四: 利用公式二和公式三可以得到與的三角函數(shù)值之間的關(guān)系:

  sin( )=sin

  cos( )=-cos

  tan( )=-tan

  cot( )=-cot

初中數(shù)學知識點總結(jié)4

  1.相似三角形定義:

  對應(yīng)角相等,對應(yīng)邊成比例的三角形,叫做相似三角形。

  2.相似三角形的表示方法:用符號"∽"表示,讀作"相似于"。

  3.相似三角形的相似比:

  相似三角形的對應(yīng)邊的比叫做相似比。

  4.相似三角形的預備定理:

  平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所截成的三角形與原三角形相似。

  從表中可以看出只要將全等三角形判定定理中的"對應(yīng)邊相等"的條件改為"對應(yīng)邊

  成比例"就可得到相似三角形的判定定理,這就是我們數(shù)學中的用類比的方法,在舊知識的基礎(chǔ)上找出新知識并從中探究新知識掌握的方法。

  6.直角三角形相似:

  (1)直角三角形被斜邊上的.高分成兩個直角三角形和原三角形相似。

  (2)如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似。

  7.相似三角形的性質(zhì)定理:

  (1)相似三角形的對應(yīng)角相等。

  (2)相似三角形的對應(yīng)邊成比例。

  (3)相似三角形的對應(yīng)高線的比,對應(yīng)中線的比和對應(yīng)角平分線的比都等于相似比。

  (4)相似三角形的周長比等于相似比。

  (5)相似三角形的面積比等于相似比的平方。

  8. 相似三角形的傳遞性

  如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2

初中數(shù)學知識點總結(jié)5

  本章內(nèi)容通過讓學生經(jīng)歷觀察、操作等過程了解旋轉(zhuǎn)的概念,探索旋轉(zhuǎn)的性質(zhì),進一步發(fā)展空間觀察,培養(yǎng)幾何思維和審美意識,在實際問題中體驗數(shù)學的快樂,激發(fā)對學習學習。

  一.知識框架

  二.知識概念

  1.旋轉(zhuǎn):在平面內(nèi),將一個圖形繞一個圖形按某個方向轉(zhuǎn)動一個角度,這樣的運動叫做圖形的旋轉(zhuǎn)。這個定點叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角度叫做旋轉(zhuǎn)角。(圖形的`旋轉(zhuǎn)是圖形上的每一點在平面上繞著某個固定點旋轉(zhuǎn)固定角度的位置移動,其中對應(yīng)點到旋轉(zhuǎn)中心的距離相等,對應(yīng)線段的長度、對應(yīng)角的大小相等,旋轉(zhuǎn)前后圖形的大小和形狀沒有改變。)

  2.旋轉(zhuǎn)對稱中心:把一個圖形繞著一個定點旋轉(zhuǎn)一個角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對稱圖形,這個定點叫做旋轉(zhuǎn)對稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角(旋轉(zhuǎn)角小于0°,大于360°)。

  3.中心對稱和中心對稱圖形是兩個不同而又緊密聯(lián)系的概念.區(qū)別是:中心對稱是指兩個全等圖形之間的相互位置關(guān)系,這兩個圖形關(guān)于一點對稱,這個點是對稱中心,兩個圖形關(guān)于點的對稱也叫做中心對稱.成中心對稱的兩個圖形中,其中一個上所有點關(guān)于對稱中心的對稱點都在另一個圖形上,反之,另一個圖形上所有點的對稱點,又都在這個圖形上;而中心對稱圖形是指一個圖形本身成中心對稱.中心對稱圖形上所有點關(guān)于對稱中心的對稱點都在這個圖形本身上.如果將中心對稱的兩個圖形看成一個整體(一個圖形),那么這個圖形就是中心對稱圖形;一個中心對稱圖形,如果把對稱的部分看成是兩個圖形,那么它們又是關(guān)于中心對稱.

  4.中心對稱圖形與中心對稱:

  中心對稱圖形:如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形。

  中心對稱:如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱。

  5.把一個圖形繞著某一點旋轉(zhuǎn)180°,如果它能與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點對稱或中心對稱(centralsymmetry),這個點叫做對稱中心,這兩個圖形的對應(yīng)點叫做關(guān)于中心的對稱點。

  6.中心對稱的性質(zhì):

  關(guān)于中心對稱的兩個圖形是全等形。

  關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分。關(guān)于中心對稱的兩個圖形,對應(yīng)線段平行(或者在同一直線上)且相等。

初中數(shù)學知識點總結(jié)6

  1、初中數(shù)學知識點口訣

  人說幾何很困難,難點就在輔助線。

  輔助線,如何添?把握定理和概念。

  還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗。

  圖中有角平分線,可向兩邊作垂線。

  角平分線平行線,等腰三角形來添。

  線段垂直平分線,常向兩端把線連。

  要證線段倍與半,延長縮短可試驗。

  三角形中兩中點,連接則成中位線。

  三角形中有中線,延長中線加一倍。

  梯形里面作高線,平移一腰試試看。

  等積式子比例換,尋找相似很關(guān)鍵。

  直接證明有困難,等量代換少麻煩。

  斜邊上面作高線,弦高公式是關(guān)鍵。

  半徑與弦長計算,弦心距來中間站。

  圓上若有一切線,切點圓心半徑連。

  要想證明是切線,半徑垂線仔細辨。

  是直徑,成半圓,想成直角徑連弦。

  弧有中點圓心連,垂徑定理要記全。

  圓周角邊兩條弦,直徑和弦端點連。

  要想作個外接圓,各邊作出中垂線。

  還要作個內(nèi)切圓,內(nèi)角平分線夢園。

  如果遇到相交圓,不要忘作公共弦。

  若是添上連心線,切點肯定在上面。

  輔助線,是虛線,畫圖注意勿改變。

  假如圖形較分散,對稱旋轉(zhuǎn)去實驗。

  基本作圖很關(guān)鍵,平時掌握要熟練。

  解題還要多心眼,經(jīng)常總結(jié)方法顯。

  切勿盲目亂添線,方法靈活應(yīng)多變。

  分析綜合方法選,困難再多也會減。

  虛心勤學加苦練,成績上升成直線。

  2、初中數(shù)學知識點口訣

  學習幾何體會深,成敗也許一線牽。

  分散條件要集中,常要添加輔助線。

  畏懼心理不要有,其次要把觀念變。

  熟能生巧有規(guī)律,真知灼見靠實踐。

  圖中已知有中線,倍長中線把線連。

  旋轉(zhuǎn)構(gòu)造全等形,等線段角可代換。

  多條中線連中點,便可得到中位線。

  倘若知角平分線,既可兩邊作垂線。

  也可沿線去翻折,全等圖形立呈現(xiàn)。

  角分線若加垂線,等腰三角形可見。

  角分線加平行線,等線段角位置變。

  已知線段中垂線,連接兩端等線段。

  輔助線必畫虛線,便與原圖聯(lián)系看。

  3、有理數(shù)的加法運算

  同號兩數(shù)來相加,絕對值加不變號。

  異號相加大減小,大數(shù)決定和符號。

  互為相反數(shù)求和,結(jié)果是零須記好。

  【注】“大”減“小”是指絕對值的大小。

  4、有理數(shù)的減法運算

  減正等于加負,減負等于加正。

  有理數(shù)的乘法運算符號法則

  同號得正異號負,一項為零積是零。

  5、合并同類項

  說起合并同類項,法則千萬不能忘。

  只求系數(shù)代數(shù)和,字母指數(shù)留原樣。

  6、去、添括號法則

  去括號或添括號,關(guān)鍵要看連接號。

  擴號前面是正號,去添括號不變號。

  括號前面是負號,去添括號都變號。

  7、解方程

  已知未知鬧分離,分離要靠移完成。

  移加變減減變加,移乘變除除變乘。

  8、平方差公式

  兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差。

  積化和差變兩項,完全平方不是它。

  9、完全平方公式

  二數(shù)和或差平方,展開式它共三項。

  首平方與末平方,首末二倍中間放。

  和的平方加聯(lián)結(jié),先減后加差平方。

  10、完全平方公式

  首平方又末平方,二倍首末在中央。

  和的平方加再加,先減后加差平方。

  11、解一元一次方程

  先去分母再括號,移項變號要記牢。

  同類各項去合并,系數(shù)化“1”還沒好。

  求得未知須檢驗,回代值等才上算。

  12、解一元一次方程

  先去分母再括號,移項合并同類項。

  系數(shù)化1還沒好,準確無誤不白忙。

  13、因式分解與乘法

  和差化積是乘法,乘法本身是運算。

  積化和差是分解,因式分解非運算。

  14、因式分解

  兩式平方符號異,因式分解你別怕。

  兩底和乘兩底差,分解結(jié)果就是它。

  兩式平方符號同,底積2倍坐中央。

  因式分解能與否,符號上面有文章。

  同和異差先平方,還要加上正負號。

  同正則正負就負,異則需添冪符號。

  15、因式分解

  一提二套三分組,十字相乘也上數(shù)。

  四種方法都不行,拆項添項去重組。

  重組無望試求根,換元或者算余數(shù)。

  多種方法靈活選,連乘結(jié)果是基礎(chǔ)。

  同式相乘若出現(xiàn),乘方表示要記住。

  【注】一提(提公因式)二套(套公式)

  16、因式分解

  一提二套三分組,叉乘求根也上數(shù)。

  五種方法都不行,拆項添項去重組。

  對癥下藥穩(wěn)又準,連乘結(jié)果是基礎(chǔ)。

  17、二次三項式的因式分解

  先想完全平方式,十字相乘是其次。

  兩種方法行不通,求根分解去嘗試。

  18、比和比例

  兩數(shù)相除也叫比,兩比相等叫比例。

  外項積等內(nèi)項積,等積可化八比例。

  分別交換內(nèi)外項,統(tǒng)統(tǒng)都要叫更比。

  同時交換內(nèi)外項,便要稱其為反比。

  前后項和比后項,比值不變叫合比。

  前后項差比后項,組成比例是分比。

  兩項和比兩項差,比值相等合分比。

  前項和比后項和,比值不變叫等比。

  19、解比例

  外項積等內(nèi)項積,列出方程并解之。

  20、求比值

  由已知去求比值,多種途徑可利用。

  活用比例七性質(zhì),變量替換也走紅。

  消元也是好辦法,殊途同歸會變通。

  21、正比例與反比例

  商定變量成正比,積定變量成反比。

  22、正比例與反比例

  變化過程商一定,兩個變量成正比。

  變化過程積一定,兩個變量成反比。

  23、判斷四數(shù)成比例

  四數(shù)是否成比例,遞增遞減先排序。

  兩端積等中間積,四數(shù)一定成比例。

  24、判斷四式成比例

  四式是否成比例,生或降冪先排序。

  兩端積等中間積,四式便可成比例。

  25、比例中項

  成比例的.四項中,外項相同會遇到。

  有時內(nèi)項會相同,比例中項少不了。

  比例中項很重要,多種場合會碰到。

  成比例的四項中,外項相同有不少。

  有時內(nèi)項會相同,比例中項出現(xiàn)了。

  同數(shù)平方等異積,比例中項無處逃。

  26、根式與無理式

  表示方根代數(shù)式,都可稱其為根式。

  根式異于無理式,被開方式無限制。

  被開方式有字母,才能稱為無理式。

  無理式都是根式,區(qū)分它們有標志。

  被開方式有字母,又可稱為無理式。

  27、求定義域

  求定義域有講究,四項原則須留意。

  負數(shù)不能開平方,分母為零無意義。

  指是分數(shù)底正數(shù),數(shù)零沒有零次冪。

  限制條件不唯一,滿足多個不等式。

  求定義域要過關(guān),四項原則須注意。

  負數(shù)不能開平方,分母為零無意義。

  分數(shù)指數(shù)底正數(shù),數(shù)零沒有零次冪。

  限制條件不唯一,不等式組求解集。

  28、解一元一次不等式

  先去分母再括號,移項合并同類項。

  系數(shù)化“1”有講究,同乘除負要變向。

  先去分母再括號,移項別忘要變號。

  同類各項去合并,系數(shù)化“1”注意了。

  同乘除正無防礙,同乘除負也變號。

  29、解一元一次不等式組

  大于頭來小于尾,大小不一中間找。

  大大小小沒有解,四種情況全來了。

  同向取兩邊,異向取中間。

  中間無元素,無解便出現(xiàn)。

  幼兒園小鬼當家,(同小相對取較。

  敬老院以老為榮,(同大就要取較大)

  軍營里沒老沒少。(大小小大就是它)

  大大小小解集空。(小小大大哪有哇)

  30、解一元二次不等式

  首先化成一般式,構(gòu)造函數(shù)第二站。

  判別式值若非負,曲線橫軸有交點。

  A正開口它向上,大于零則取兩邊。

  代數(shù)式若小于零,解集交點數(shù)之間。

  方程若無實數(shù)根,口上大零解為全。

  小于零將沒有解,開口向下正相反。

  31、用平方差公式因式分解

  異號兩個平方項,因式分解有辦法。

  兩底和乘兩底差,分解結(jié)果就是它。

  32、用完全平方公式因式分解

  兩平方項在兩端,底積2倍在中部。

  同正兩底和平方,全負和方相反數(shù)。

  分成兩底差平方,方正倍積要為負。

  兩邊為負中間正,底差平方相反數(shù)。

  一平方又一平方,底積2倍在中路。

  三正兩底和平方,全負和方相反數(shù)。

  分成兩底差平方,兩端為正倍積負。

  兩邊若負中間正,底差平方相反數(shù)。

  33、用公式法解一元二次方程

  要用公式解方程,首先化成一般式。

  調(diào)整系數(shù)隨其后,使其成為最簡比。

  確定參數(shù)abc,計算方程判別式。

  判別式值與零比,有無實根便得知。

  有實根可套公式,沒有實根要告之。

  34、用常規(guī)配方法解一元二次方程

  左未右已先分離,二系化“1”是其次。

  一系折半再平方,兩邊同加沒問題。

  左邊分解右合并,直接開方去解題。

  該種解法叫配方,解方程時多練習。

  35、用間接配方法解一元二次方程

  已知未知先分離,因式分解是其次。

  調(diào)整系數(shù)等互反,和差積套恒等式。

  完全平方等常數(shù),間接配方顯優(yōu)勢。

  【注】恒等式

  36、解一元二次方程

  方程沒有一次項,直接開方最理想。

  如果缺少常數(shù)項,因式分解沒商量。

 。、c相等都為零,等根是零不要忘。

  b、c同時不為零,因式分解或配方,也可直接套公式,因題而異擇良方。

  37、正比例函數(shù)的鑒別

  判斷正比例函數(shù),檢驗當分兩步走。

  一量表示另一量,是與否。

  若有還要看取值,全體實數(shù)都要有。

  正比例函數(shù)是否,辨別需分兩步走。

  一量表示另一量,有沒有。

  若有再去看取值,全體實數(shù)都需要。

  區(qū)分正比例函數(shù),衡量可分兩步走。

  一量表示另一量,是與否。

  若有還要看取值,全體實數(shù)都要有。

  38、正比例函數(shù)的圖象與性質(zhì)

  正比函數(shù)圖直線,經(jīng)過和原點。

  K正一三負二四,變化趨勢記心間。

  K正左低右邊高,同大同小向爬山。

  K負左高右邊低,一大另小下山巒。

  39、一次函數(shù)

  一次函數(shù)圖直線,經(jīng)過點。

  K正左低右邊高,越走越高向爬山。

  K負左高右邊低,越來越低很明顯。

  K稱斜率b截距,截距為零變正函。

  40、反比例函數(shù)

  反比函數(shù)雙曲線,經(jīng)過點。

  K正一三負二四,兩軸是它漸近線。

  K正左高右邊低,一三象限滑下山。

  K負左低右邊高,二四象限如爬山。

  41、二次函數(shù)

  二次方程零換y,二次函數(shù)便出現(xiàn)。

  全體實數(shù)定義域,圖像叫做拋物線。

  拋物線有對稱軸,兩邊單調(diào)正相反。

  A定開口及大小,線軸交點叫頂點。

  頂點非高即最低。上低下高很顯眼。

  如果要畫拋物線,平移也可去描點,提取配方定頂點,兩條途徑再挑選。

  列表描點后連線,平移規(guī)律記心間。

  左加右減括號內(nèi),號外上加下要減。

  二次方程零換y,就得到二次函數(shù)。

  圖像叫做拋物線,定義域全體實數(shù)。

  A定開口及大小,開口向上是正數(shù)。

  絕對值大開口小,開口向下A負數(shù)。

  拋物線有對稱軸,增減特性可看圖。

  線軸交點叫頂點,頂點縱標最值出。

  如果要畫拋物線,描點平移兩條路。

  提取配方定頂點,平移描點皆成圖。

  列表描點后連線,三點大致定全圖。

  若要平移也不難,先畫基礎(chǔ)拋物線,頂點移到新位置,開口大小隨基礎(chǔ)。

  【注】基礎(chǔ)拋物線

  42、直線、射線與線段

  直線射線與線段,形狀相似有關(guān)聯(lián)。

  直線長短不確定,可向兩方無限延。

  射線僅有一端點,反向延長成直線。

  線段定長兩端點,雙向延伸變直線。

  兩點定線是共性,組成圖形最常見。

  43、角

  一點出發(fā)兩射線,組成圖形叫做角。

  共線反向是平角,平角之半叫直角。

  平角兩倍成周角,小于直角叫銳角。

  直平之間是鈍角,平周之間叫優(yōu)角。

  互余兩角和直角,和是平角互補角。

  一點出發(fā)兩射線,組成圖形叫做角。

  平角反向且共線,平角之半叫直角。

  平角兩倍成周角,小于直角叫銳角。

  鈍角界于直平間,平周之間叫優(yōu)角。

  和為直角叫互余,互為補角和平角。

  44、證等積或比例線段

  等積或比例線段,多種途徑可以證。

  證等積要改等比,對照圖形看特征。

  共點共線線相交,平行截比把題證。

  三點定型十分像,想法來把相似證。

  圖形明顯不相似,等線段比替換證。

  換后結(jié)論能成立,原來命題即得證。

  實在不行用面積,射影角分線也成。

  只要學習肯登攀,手腦并用無不勝。

  45、解無理方程

  一無一有各一邊,兩無也要放兩邊。

  乘方根號無蹤跡,方程可解無負擔。

  兩無一有相對難,兩次乘方也好辦。

  特殊情況去換元,得解驗根是必然。

  46、解分式方程

  先約后乘公分母,整式方程轉(zhuǎn)化出。

  特殊情況可換元,去掉分母是出路。

  求得解后要驗根,原留增舍別含糊。

  47、列方程解應(yīng)用題

  列方程解應(yīng)用題,審設(shè)列解雙檢答。

  審題弄清已未知,設(shè)元直間兩辦法。

  列表畫圖造方程,解方程時守章法。

  檢驗準且合題意,問求同一才作答。

  48、兩點間距離公式

  同軸兩點求距離,大減小數(shù)就為之。

  與軸等距兩個點,間距求法亦如此。

  平面任意兩個點,橫縱標差先求值。

  差方相加開平方,距離公式要牢記。

  49、矩形的判定

  任意一個四邊形,三個直角成矩形;

  對角線等互平分,四邊形它是矩形。

  已知平行四邊形,一個直角叫矩形;

  兩對角線若相等,理所當然為矩形。

  50、菱形的判定

  任意一個四邊形,四邊相等成菱形;

  四邊形的對角線,垂直互分是菱形。

  已知平行四邊形,鄰邊相等叫菱形;

  兩對角線若垂直,順理成章為菱形。

初中數(shù)學知識點總結(jié)7

  代數(shù)部分:有理數(shù)、無理數(shù)、實數(shù)整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程組、二元二次方程組、分式方程、一元一次不等式函數(shù)(一次函數(shù)、二次函數(shù)、反比例函數(shù))

  幾何部分:線段、角相交線、平行線三角形、四邊形、相似形、圓。

  1、實數(shù)的分類

  有理數(shù):整數(shù)(包括:正整數(shù)、0、負整數(shù))和分數(shù)(包括:有限小數(shù)和無限環(huán)循小數(shù))都是有理數(shù)。如:—3,0.231,0.737373......

  無理數(shù):無限不環(huán)循小數(shù)叫做無理數(shù)如:π,—,0.1010010001......(兩個1之間依次多1個0)。

  實數(shù):有理數(shù)和無理數(shù)統(tǒng)稱為實數(shù)。

  2、無理數(shù)

  在理解無理數(shù)時,要抓住"無限不循環(huán)"這一時之,它包含兩層意思:一是無限小數(shù);二是不循環(huán)。二者缺一不可。歸納起來有四類:

 。1)開方開不盡的數(shù),如等;

 。2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如+8等;

 。3)有特定結(jié)構(gòu)的數(shù),如0.1010010001......等;

 。4)某些三角函數(shù),如sin60o等。

  注意:判斷一個實數(shù)的屬性(如有理數(shù)、無理數(shù)),應(yīng)遵循:一化簡,二辨析,三判斷。要注意:"神似"或"形似"都不能作為判斷的標準。

  3、非負數(shù):正實數(shù)與零的.統(tǒng)稱。(表為:x≥0)

  常見的非負數(shù)有:

  性質(zhì):若干個非負數(shù)的和為0,則每個非負擔數(shù)均為0。

  4、數(shù)軸:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。

  解題時要真正掌握數(shù)形結(jié)合的思想,理解實數(shù)與數(shù)軸的點是一一對應(yīng)的,并能靈活運用。

 、佼嬕粭l水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸("三要素")。

  ②任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。

 、廴绻麅蓚數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。

  作用:A、直觀地比較實數(shù)的大;B、明確體現(xiàn)絕對值意義;C、建立點與實數(shù)的一一對應(yīng)關(guān)系。

  5、相反數(shù)

  實數(shù)與它的相反數(shù)時一對數(shù)(只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個數(shù)所對應(yīng)的點關(guān)于原點對稱,如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。

  即:(1)實數(shù)的相反數(shù)是。

初中數(shù)學知識點總結(jié)8

  1有理數(shù)加法法則

  1、同號兩數(shù)相加,取相同的符號,并把絕對值相加;

  2、異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

  3、一個數(shù)與0相加,仍得這個數(shù)。

  2有理數(shù)加法的運算律

  1、加法的交換律:a+b=b+a;

  2、加法的結(jié)合律:(a+b)+c=a+(b+c)

  3有理數(shù)減法法則

  減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a—b=a+(—b)

  4有理數(shù)乘法法則

  1、兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;

  2、任何數(shù)同零相乘都得零;

  3、幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的'個數(shù)決定。

  5有理數(shù)乘法的運算律

  1、乘法的交換律:ab=ba;

  2、乘法的結(jié)合律:(ab)c=a(bc);

  3、乘法的分配律:a(b+c)=ab+ac

  6單項式

  只含有數(shù)字與字母的積的代數(shù)式叫做單項式。

  注意:單項式是由系數(shù)、字母、字母的指數(shù)構(gòu)成的。

  7多項式

  1、幾個單項式的和叫做多項式。其中每個單項式叫做這個多項式的項。多項式中不含字母的項叫做常數(shù)項。多項式中次數(shù)最高的項的次數(shù),叫做這個多項式的次數(shù)。

  2、同類項所有字母相同,并且相同字母的指數(shù)也分別相同的項叫做同類項。幾個常數(shù)項也是同類項。

  8中心對稱

  1、定義:把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點對稱或中心對稱,這個點叫做對稱中心。這兩個圖形中的對應(yīng)點叫做關(guān)于中心的對稱點。

  2、心對稱的兩條基本性質(zhì):

 。1)關(guān)于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分。

  (2)關(guān)于中心對稱的兩個圖形是全等圖形。

  3、中心對稱圖形

  把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。

初中數(shù)學知識點總結(jié)9

  一元一次方程定義

  通過化簡,只含有一個未知數(shù),且含有未知數(shù)的最高次項的次數(shù)是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b為常數(shù),且a≠0)。一元一次方程屬于整式方程,即方程兩邊都是整式。

  一元指方程僅含有一個未知數(shù),一次指未知數(shù)的次數(shù)為1,且未知數(shù)的系數(shù)不為0。我們將ax+b=0(其中x是未知數(shù),a、b是已知數(shù),并且a≠0)叫一元一次方程的標準形式。這里a是未知數(shù)的系數(shù),b是常數(shù),x的次數(shù)必須是1。

  即一元一次方程必須同時滿足4個條件:⑴它是等式;⑵分母中不含有未知數(shù);⑶未知數(shù)最高次項為1;⑷含未知數(shù)的項的系數(shù)不為0。

  一元一次方程的五個核心問題

  一、什么是等式?1+1=1是等式嗎?

  表示相等關(guān)系的式子叫做等式,等式可分三類:第一類是恒等式,就是用任何允許的數(shù)值代替等式中的字母,等式的兩邊總是相等,由數(shù)字組成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二類是條件等式,也就是方程,這類等式只能取某些數(shù)值代替等式中的字母時,等式才成立,如x+y=-5,x+4=7等都是條件等式;第三類是矛盾等式,就是無論用任何值代替等式中的字母,等式總不成立,如x2=-2,|a|+5=0等。

  一個等式中,如果等號多于一個,叫做連等式,連等式可以化為一組只含有一個等號的等式。

  等式與代數(shù)式不同,等式中含有等號,代數(shù)式中不含等號。

  等式有兩個重要性質(zhì)1)等式的兩邊都加上或減去同一個數(shù)或同一個整式,所得結(jié)果仍然是一個等式;(2)等式的兩邊都乘以或除以同一個數(shù)除數(shù)不為零,所得結(jié)果仍然是一個等式。

  二、什么是方程,什么是一元一次方程?

  含有未知數(shù)的等式叫做方程,如2x-3=8,x+y=7等。判斷一個式子是否是方程,只需看兩點:一是不是等式;二是否含有未知數(shù),兩者缺一不可。

  只含有一個未知數(shù),并且含未知數(shù)的式子都是整式,未知數(shù)的次數(shù)是1,系數(shù)不是0的方程叫做一元一次方程。其標準形式是ax+b=0(a不為0,a,b是已知數(shù)),值得注意的是1)一個整式方程的"元"和"次"是將這個方程化成最簡形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化簡后,它實際上是一個一元一次方程。(2)整式方程分母中不含有未知數(shù)。判斷是否為整式方程,是不能先將它化簡的如方程x+1/x=2+1/x,因為它的分母中含有未知數(shù)x,所以,它不是整式方程。如果將上面的方程進行化簡,則為x=2,這時再去作判斷,將得到錯誤的結(jié)論。

  凡是談到次數(shù)的方程,都是指整式方程,即方程的兩邊都是整式。一元一次方程是整式方程中元數(shù)最少且次數(shù)最低的'方程。

  三、等式有什么牛掰的基本性質(zhì)嗎?

  將方程中的某些項改變符號后,從方程的一邊移到另一邊的變形叫做移項,移項的依據(jù)是等式的基本性質(zhì)1。

  移項時不一定要把含未知數(shù)的項移到等式的左邊。如解方程3x-2=4x-5時就可以把含未知數(shù)的項移到右邊,而把常數(shù)項移到左邊,這樣會顯得簡便些。

  去分母,將未知數(shù)的系數(shù)化為1,則是依據(jù)等式的基本性質(zhì)2進行的。

  四、等式一定是方程嗎?方程一定是等式嗎?

  等式與方程有很多相同之處。如都是用等號連接的,等號左、右兩邊都是代數(shù)式,但它們還是有區(qū)別的。方程僅是含有未知數(shù)的等式,是等式中的特例。就是說,等式包含方程;反過來,方程并不包含所有的等式。如,13+5=18,18-13=5都屬于等式,但它們并不是方程。因此,等式一定是方程的說法是不對的。

  五、"解方程"與"方程的解"是一回事兒嗎?

  方程的解是使方程左、右兩邊相等的未知數(shù)的取值。而解方程是求方程的解或判斷方程無解的過程。即方程的解是結(jié)果,而解方程是一個過程。方程的解中的"解"是名詞,而解方程中的"解"是動詞,二者不能混淆。

初中數(shù)學知識點總結(jié)10

  一、數(shù)與代數(shù)

  1.有理數(shù)

  有理數(shù):包括正整數(shù)、0和負整數(shù)。

  數(shù)軸:包括原點、正方向和單位長度。

  相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù)。

  絕對值:正數(shù)的絕對值是其本身,負數(shù)的絕對值是它的相反數(shù),0的絕對值是0。

  2.整式與分式

  整式:包括單項式和多項式。

  分式:包括一般形式和特殊形式。

  代數(shù)式:包括單字母、單項式和多項式。

  二、空間與圖形

  1.點、線、面

  點:沒有大小,沒有長度。

  線:沒有寬度,只有長度。

  面:有長度和寬度,沒有高度。

  2.基本圖形

  直線:包括直線、射線、線段。

  角:包括平角、周角和一般的'角。

  三角形:包括等邊三角形、等腰三角形和一般三角形。

  四邊形:包括矩形、正方形、梯形和平行四邊形。

  圓:包括圓的性質(zhì)和圓的定理。

  三、統(tǒng)計與概率

  1.統(tǒng)計

  統(tǒng)計圖:包括扇形統(tǒng)計圖、折線統(tǒng)計圖和條形統(tǒng)計圖。

  統(tǒng)計表:包括簡單統(tǒng)計表和復合統(tǒng)計表。

  數(shù)據(jù)的收集與整理:包括抽樣調(diào)查、全面調(diào)查和自主調(diào)查。

  2.概率

  隨機事件:包括必然事件、不可能事件和隨機事件。

  概率:包括計算事件發(fā)生的概率和隨機事件的概率。

  以上是初中數(shù)學知識點總結(jié)的主要內(nèi)容,這些知識點是數(shù)學學習的基礎(chǔ),需要學生熟練掌握和應(yīng)用。

初中數(shù)學知識點總結(jié)11

  20xx年的工作臨近尾聲,回首本年度真是忙碌而充實,本年度我即擔任教導處主任一職又擔任班主任工作,經(jīng)常是忙的喝口水的時間都沒有。雖然在教導處主任的崗位上我只有不到一年的工作經(jīng)驗,但是在李校長的關(guān)心和培養(yǎng)下,在全體領(lǐng)導、老師、家長的熱情支持和幫助下,各項工作得以順利開展并在一些方面有了較為明顯的進步。現(xiàn)對自己一年來所做工作加以梳理和反思,力求在總結(jié)中發(fā)現(xiàn)不足,在反思中縮中差距,在創(chuàng)新中不斷提升。

  一、思想品德方面

  我熱愛教育事業(yè),始初不忘人民教師職責,愛學校、愛學生。作為一名名師,我從自身嚴格要求自己,通過政治思想、學識水平、教育教學能力等方面的不斷提高來塑造自己的行為,使自己在教育行業(yè)中不斷成長,為社會培養(yǎng)出優(yōu)秀的人才,打下堅實的基礎(chǔ)。

  二、主要成績

  今年是我到工作的第五個年頭,幾年來我一直擔任班主任和年級的組長,同時又負責學校教導處工作,一直以來,我始初牢記"踏實工作、真心待人"的原則,在工作中嚴格要求自己,刻苦鉆研業(yè)務(wù),不斷提高業(yè)務(wù)水平,不斷學習新知識,探索教育教學規(guī)律,改進教育教學方法,努力使自己成為專家型教師。

  1、在班主任工作方面:我投入了極強的責任心,關(guān)注每一名學生,及時發(fā)現(xiàn)他們的各種心理或行為動態(tài),還有學習的心態(tài)與學習情況,用愛心與耐心澆灌每一個孩子,并且及時與家長、科任老師進行溝通,使孩子在各個方面得到發(fā)展,幾年來,與學生形成了亦師亦友的和諧師生關(guān)系,在18年被評為省級師德先進個人,19年被評為省級優(yōu)秀教師。加強學習,努力提升自身修為。

  2、在教學方面:我嚴格要求自己,用心備課上課,每一節(jié)課都精心準備課件,仔細研究每一道習題,真正做到講練結(jié)合,學以致用,形成了趣實活新的教學風格,同時,在教研方面,我積極去聽課評課,認真學習別人上課的長處,為己所用。在17年被評為市級名師工作室主持人,18年被評為省級學科帶頭人。

  3、在教導方面:在做好班主任工作的同時,我作為校長助理、教導主任,我能正確定位,努力做好校長的助手,協(xié)調(diào)各種工作。

  一直以來我總是以飽滿的熱情對待本職工作,兢兢業(yè)業(yè),忠于職守,凡是要求老師們做到的,自己首先做到。我始初認真落實學校制定的教學教研常規(guī),不斷規(guī)范教師教學行為。從學期初開始,認真執(zhí)行教學教研工作計劃和工作記錄,嚴格按照學校修訂的規(guī)章制度去要求師生,定期檢查教師教案及作業(yè)批改情況,發(fā)現(xiàn)問題及時反饋及時做好總結(jié)并進行跟蹤檢查,期末對教案進行歸納整理。規(guī)范日常巡課制度,定時巡課與不定時巡課相結(jié)合,不定時跟班聽課,與執(zhí)教教師共同切磋存在的問題,加強對教學工作的監(jiān)控,促進教學質(zhì)量的提高。

  學校要發(fā)展、要生存必須有一批高素質(zhì)的教師隊伍,同樣教師今后要生存要發(fā)展必須具有過硬的本領(lǐng)。我清楚的認識到必須加強骨干教師、青年教師的培養(yǎng)力度,也借助各種機遇,為教師搭建自我展示的平臺。加大新教師的培養(yǎng)力度,開展“師徒結(jié)對子”活動,通過推門聽課,領(lǐng)導聽課、一課三研、師傅引領(lǐng)課、新教師展示課等,鼓勵教師參加各級各類比賽、培訓活動等形式,促進新教師的迅速成長。我精心制定了以人為本的校本培訓計劃,每學期開展十多次骨干培訓活動,并進行讀書交流活動,活動做到人人有準備,人人有發(fā)言,人人有反思,老師們一同感悟,一起分享,在探索和交流中,不斷提升教學水準。

  通過開展語、數(shù)集體備課—上課—聽課——評課研討這樣的教研活動觀摩,讓更多的教師參與到校本教研活動中來,增強了教研活動的實效性,提高了教師的課堂教學水平。新教師展示課活動,“中荷才露尖尖角”,新教師在歷練中成長;常態(tài)化的研討課,“萬紫千紅總是春”,老師們?nèi)¢L補短,共同促進;名師、骨干教師的.精品課,“萬綠叢中一點紅”,起了引領(lǐng)示范的作用。

  教科研是教學的源泉,是教改的先導,我十分重視課題研究、管理。18年獨立承擔了省級重點課題研究已經(jīng)結(jié)題,并被評為科研課題先進個人,19年又獨立承擔了中課題的研究,已經(jīng)接近尾聲。

  4、自身提高方面:我能利用課余時間閱讀一些教育名著及教育教學刊物,并及時做好讀書筆記,建立個人博客,發(fā)表自己原創(chuàng)的教學感想、教案設(shè)計、學習心得、教育理念等文章。一份耕耘,一份收獲”,一年來,我積極參加各級各類比賽,多次獲獎,還被評為縣級學科帶頭人。

  三、存在的不足

  回顧一年來的工作,我雖然取得了一些成績,積累了一些經(jīng)驗,但是,實事求是地說,與領(lǐng)導的要求和自己的期待還有差距,主要表現(xiàn)在:

  1、對教導處管理工作還須腳踏實地地去做,謙虛認真地去學,以使自己取得更好的成績。

  2、教學方面對差生主要是采取開中灶、嚴要求的方式進行強化管理,對其心理攻堅尚不到位,所以見效慢,容易激化師生間的矛盾,還得在實踐中多摸索。課堂教學水平有待提高,要與同事們多切磋,多學習。

  3、教研方面,仍需強化、深化、細化地系統(tǒng)學習相關(guān)理論知識,所寫隨感不能僅僅停留在表面現(xiàn)象,還應(yīng)善于總結(jié)提升,以形成有一定深度的,并具有自我指導意義的理論型文字。

  另外,意志仍不夠堅強,堅持還不夠徹底,實是欠缺“鐵杵磨成針”的精神?傊仡櫲〉玫某煽,固然可喜,值得欣慰,但面對未來,仍感任重道遠、不敢懈怠。

  最后,用一句話作為本年度的工作總結(jié),下一年度的開始,也就是:既然選擇了遠方,必然風雨兼程。我將某某,繼續(xù)前行!

  關(guān)于數(shù)學常見誤區(qū)有哪些

  1、被動學習

  許多同學進入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉(zhuǎn),沒有掌握學習主動權(quán).表現(xiàn)在不定計劃,坐等上課,課前沒有預習,對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學內(nèi)容。

  2、學不得法

  老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法。而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。

  3、不重視基礎(chǔ)

  一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經(jīng)常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。

  4、進一步學習條件不具備

  高中數(shù)學與初中數(shù)學相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識與技能為進一步學習作好準備。高中數(shù)學很多地方難度大、方法新、分析能力要求高。

  如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應(yīng)用題及實際應(yīng)用問題等?陀^上這些觀點就是分化點,有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補救措施,查缺補漏,分化是不可避免的。

初中數(shù)學知識點總結(jié)12

  1、定理1:關(guān)于中心對稱的兩個圖形是全等的

  2、定理2:關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分

  3、逆定理:如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱

  4、等腰梯形性質(zhì)定理:等腰梯形在同一底上的兩個角相等

  5、等腰梯形的兩條對角線相等

  6、等腰梯形判定定理:在同一底上的兩個角相等的梯:形是等腰梯形

  7、對角線相等的梯形是等腰梯形

  8、平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  9、推論1:經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰

  10、推論2:經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊

  11、三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半

  12、梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半:L=(a+b)÷2:S=L×h

  13、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc:如果:ad=bc:,那么a:b=c:d

  14、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d

  15、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  16、平行線分線段成比例定理:三條平行線截兩條直線,所得的對應(yīng)線段成比例

  17、推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例

  18、定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

  19、平行于三角形的一邊,并且和其他兩邊相交的直線,:所截得的三角形的三邊與原三角形三邊對應(yīng)成比例

  20、定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

  21、相似三角形判定定理1:兩角對應(yīng)相等,兩三角形相似(ASA)

  22、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

  23、判定定理2:兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)

  24、判定定理3:三邊對應(yīng)成比例,兩三角形相似(SSS)

  25、定理:如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似

  26、性質(zhì)定理1:相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比

  27、性質(zhì)定理2:相似三角形周長的比等于相似比

  28、性質(zhì)定理3:相似三角形面積的比等于相似比的平方

  29、任意銳角的'正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

  30、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  31、圓是定點的距離等于定長的點的集合

  32、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

  33、圓的外部可以看作是圓心的距離大于半徑的點的集合

  34、同圓或等圓的半徑相等

  35、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  36、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

  37、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

  38、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

  39、定理:不在同一直線上的三點確定一個圓。

  40、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  41、推論1

 、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條弧

  ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  42、推論2:圓的兩條平行弦所夾的弧相等

  43、圓是以圓心為對稱中心的中心對稱圖形

  44、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  45、推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

  46、定理:一條弧所對的圓周角等于它所對的圓心角的一半

  47、推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  48、推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  49、推論3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形

  50、定理:圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角

  51、①直線L和⊙O相交:d

  ②直線L和⊙O相切:d=r

  ③直線L和⊙O相離:d>r

  52、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  53、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑

  54、推論1:經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

  55、推論2:經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  56、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角

  57、圓的外切四邊形的兩組對邊的和相等

  58、弦切角定理:弦切角等于它所夾的弧對的圓周角

  59、推論:如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等

  60、相交弦定理:圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等

  61、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項

  62、切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項

  63、推論:從圓外一點引圓的兩條割線,這一點到每條:割線與圓的交點的兩條線段長的積相等

  64、如果兩個圓相切,那么切點一定在連心線上

  65、①兩圓外離:d>R+r:②兩圓外切:d=R+r③兩圓相交:R-rr)

 、軆蓤A內(nèi)切:d=R-r(R>r):⑤兩圓內(nèi)含:dr)

  66、定理:相交兩圓的連心線垂直平分兩圓的公共弦

  67、定理:把圓分成n(n≥3):

  ⑴依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

 、平(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  68、定理:任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

  69、正n邊形的每個內(nèi)角都等于(n-2)×180°/n

  70、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  71、正n邊形的面積Sn=pnrn/2:p表示正n邊形的周長

  72、正三角形面積√3a/4:a表示邊長

  73、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  74、弧長計算公式:L=n兀R/180

  75、扇形面積公式:S扇形=n兀R^2/360=LR/2

  76、內(nèi)公切線長=:d-(R-r):外公切線長=:d-(R+r):本回答被提問者采納

初中數(shù)學知識點總結(jié)13

  1.平方差公式:平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。

  2.完全平方:完全平方有三項,首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;首±尾括號帶平方,尾項符號隨中央。

  3.一元一次不等式解題的一般步驟:去分母、去括號,移項時候要變號,同類項、合并好,再把系數(shù)來除掉,兩邊除(以)負數(shù)時,不等號改向別忘了。

  4. 一元一次不等式組的解集:大大取較大,小小取較小,小大,大小取中間,大小,小大無處找。

  5.一元二次不等式、一元一次絕對值不等式的解集:大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。

  6.分式混合運算法則:分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;加減分母需同,分母化積關(guān)鍵;找出最簡公分母,通分不是很難;變號必須兩處,結(jié)果要求最簡。

  7.分式方程的解法步驟:同乘最簡公分母,化成整式寫清楚,求得解后須驗根,原(根)留、增(根)舍別含糊。

  8.最簡根式的條件:最簡根式三條件,號內(nèi)不把分母含,冪指(數(shù))根指(數(shù))要互質(zhì),冪指比根指小一點。

  9.特殊點坐標特征:坐標平面點(x,y),橫在前來縱在后;(+,+),(-,+),(-,-)和(+,-),四個象限分前后;X軸上y為0,x為0在Y軸。

  10.象限角的平分線:象限角的平分線,坐標特征有特點,一、三橫縱都相等,二、四橫縱確相反。

  11.平行某軸的直線:平行某軸的直線,點的坐標有講究,直線平行X軸,縱坐標相等橫不同;直線平行于Y軸,點的橫坐標仍照舊。

  12.對稱點坐標:對稱點坐標要記牢,相反數(shù)位置莫混淆,X軸對稱y相反, Y軸對稱,x前面添負號;原點對稱記,橫縱坐標變符號。

  13.自變量的取值范圍:分式分母不為零,偶次根下負不行;零次冪底數(shù)不為零,整式、奇次根全能行。

  14.函數(shù)圖像的移動規(guī)律: 若把一次函數(shù)解析式寫成y=k(x+0)+b、二次函數(shù)的解析式寫成y=a(x+h)2+k的形式,則用下面后的口訣“左右平移在括號,上下平移在末稍,左正右負須牢記,上正下負錯不了”。

  15.巧記三角函數(shù)定義:初中所學的三角函數(shù)有正弦、余弦、正切、余切,它們實際是三角形邊的比值,可以把兩個字用/隔開,再用下面的一句話記定義:一位不高明的廚子教徒弟殺魚,說了這么一句話:正對魚磷(余鄰)直刀切。正:正弦或正切,對:對邊即正是對;余:余弦或余弦,鄰:鄰邊即余是鄰;切是直角邊。

  初三數(shù)學上冊期末知識點歸納

  單項式與多項式

  僅含有一些數(shù)和字母的乘法(包括乘方)運算的式子叫做單項式單獨的一個數(shù)或字母也是單項式。

  單項式中的數(shù)字因數(shù)叫做這個單項式(或字母因數(shù))的數(shù)字系數(shù),簡稱系數(shù)。

  當一個單項式的系數(shù)是1或-1時,“1”通常省略不寫。

  一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。

  如果在幾個單項式中,不管它們的系數(shù)是不是相同,只要他們所含的字母相同,并且相同字母的指數(shù)也分別相同,那么,這幾個單項式就叫做同類單項式,簡稱同類項所有的常數(shù)都是同類項。

  1、多項式

  有有限個單項式的代數(shù)和組成的式子,叫做多項式。

  多項式里每個單項式叫做多項式的項,不含字母的項,叫做常數(shù)項。

  單項式可以看作是多項式的特例

  把同類單項式的系數(shù)相加或相減,而單項式中的字母的乘方指數(shù)不變。

  在多項式中,所含的不同未知數(shù)的個數(shù),稱做這個多項式的元數(shù)經(jīng)過合并同類項后,多項式所含單項式的個數(shù),稱為這個多項式的項數(shù)所含個單項式中次項的次數(shù),就稱為這個多項式的次數(shù)。

  2、多項式的值

  任何一個多項式,就是一個用加、減、乘、乘方運算把已知數(shù)和未知數(shù)連接起來的式子。

  3、多項式的恒等

  對于兩個一元多項式f(x)、g(x)來說,當未知數(shù)x同取任一個數(shù)值a時,如果它們所得的值都是相等的,即f(a)=g(a),那么,這兩個多項式就稱為是恒等的記為f(x)==g(x),或簡記為f(x)=g(x)。

  性質(zhì)1如果f(x)==g(x),那么,對于任一個數(shù)值a,都有f(a)=g(a)。

  性質(zhì)2如果f(x)==g(x),那么,這兩個多項式的個同類項系數(shù)就一定對應(yīng)相等。

  4、一元多項式的根

  一般地,能夠使多項式f(x)的值等于0的未知數(shù)x的值,叫做多項式f(x)的根。

  多項式的加、減法,乘法

  1、多項式的加、減法

  2、多項式的乘法

  單項式相乘,用它們系數(shù)作為積的系數(shù),對于相同的字母因式,則連同它的指數(shù)作為積的一個因式。

  3、多項式的乘法

  多項式與多項式相乘,先用一個多項式等每一項乘以另一個多項式的各項,再把所得的積相加。

  常用乘法公式

  公式I平方差公式

  (a+b)(a-b)=a^2-b^2

  兩個數(shù)的和與這兩個數(shù)的差的積等于這兩個數(shù)的平方差。

  關(guān)于數(shù)學常見誤區(qū)有哪些

  1、被動學習

  許多同學進入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉(zhuǎn),沒有掌握學習主動權(quán).表現(xiàn)在不定計劃,坐等上課,課前沒有預習,對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學內(nèi)容。

  2、學不得法

  老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法。而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。

  3、不重視基礎(chǔ)

  一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經(jīng)常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。

  4、進一步學習條件不具備

  高中數(shù)學與初中數(shù)學相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識與技能為進一步學習作好準備。高中數(shù)學很多地方難度大、方法新、分析能力要求高。

  如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實根分布與參變量方程,三角公式的'變形與靈活運用,空間概念的形成,排列組合應(yīng)用題及實際應(yīng)用問題等。客觀上這些觀點就是分化點,有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補救措施,查缺補漏,分化是不可避免的。

  如何整理數(shù)學學科課堂筆記

  一、內(nèi)容提綱。老師講課大多有提綱,并且講課時老師會將一堂課的線索脈絡(luò)、重點難點等,簡明清晰地呈現(xiàn)在黑板上。同時,教師會使之富有條理性和直觀性。記下這些內(nèi)容提綱,便于課后復習回顧,整體把握知識框架,對所學知識做到胸有成竹、清晰完整。

  二、疑難問題。將課堂上未聽懂的問題及時記下來,便于課后請教同學或老師,把問題弄懂弄通。教師在組織課堂教學時,受到時空的限制,不可能做到顧及每一位同學。相應(yīng)的,一些問題對部分學生來說,是屬于疑難問題,由于課堂上來不及思考成熟,記下疑難問題,可在課后繼續(xù)加以思考和探究,加以理解和掌握,不致出現(xiàn)知識的斷層、方法的缺陷。

  三、思路方法。對老師在課堂上介紹的解題方法和分析思路也應(yīng)及時記下,課后加以消化,若有疑惑,先作獨立分析,因為有可能是自己理解錯誤造成的,也有可能是老師講課疏忽造成的,記下來后,便于課后及時與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對于啟迪思維,開闊視野,開發(fā)智力,培養(yǎng)能力,并對提高解題水平大有益處。在這基礎(chǔ)上,若能主動鉆研,另辟蹊徑,則更難能可貴。

  四、歸納總結(jié)。注意記下老師的課后總結(jié),這對于濃縮一堂課的內(nèi)容,找出重點及各部分之間的聯(lián)系,掌握基本概念、公式、定理,尋找規(guī)律,融會貫通課堂內(nèi)容都很有作用。同時,很多有經(jīng)驗的老師在課后小結(jié)時,一方面是承上歸納所學內(nèi)容,另一方面又是啟下布置預習任務(wù)或點明后面所要學的內(nèi)容,做好筆記可以把握學習的主動權(quán),提前作準備,做到目標任務(wù)明確。

  五、錯誤反思。學習過程中不可避免地會犯這樣或那樣的錯誤,記下自己所犯的錯誤,并用紅筆醒目地加以標注,以警示自己,同時也應(yīng)注明錯誤成因,正確思路及方法,在反思中成熟,在反思中提高。

  數(shù)學常用解題技巧有哪些

  第一,應(yīng)堅持由易到難的做題順序。近年來高考數(shù)學試題的設(shè)置是8道選擇題、6道填空題、6到大題,通常稱為866結(jié)構(gòu)。在實體設(shè)置的結(jié)構(gòu)中有三個小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設(shè)置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設(shè)置也是這樣的。根據(jù)這樣的試題結(jié)構(gòu),應(yīng)先做前面容易的,基礎(chǔ)好一點的考生就先做前7個選擇,前5個填空、前5個大題,稱為是755結(jié)構(gòu);A(chǔ)差的就是644,先把自己能做的、會做的拿到手。這是第一點。

  第二,審題是關(guān)鍵。把題給看清楚了再動筆答題,看清楚題以后問什么、已知什么、讓你做什么,把這些問題搞清楚了,自己制訂了一個完整的解題策略,在開始寫的時候,這個時候是很快就可以完成的。

  第三,屬于非智力因素導致想不起來。本來是很簡單的題比如說是做到第三題、第四題的時候不是難題,但想不起來了,卡住了,這時候怎么辦?雖然是簡單題卻不會做怎么辦?應(yīng)先跳過去,不是這道題不會做嗎?后面還有很多的簡單題呢,把后面的題做一做,不要在考場上愣神,先跳過去做其他的題,等穩(wěn)定下來以后再回過頭來看會頓悟,豁然開朗。

  第四,做選擇題的時候應(yīng)運用最好的解題方法。因為選擇題和填空題都是看結(jié)果不看過程,因此在這個過程中都應(yīng)不擇手段,只要是能把正確的結(jié)論找到就行。考生常用的方法是直接法,從已知的開始也不看它的四個選項,從頭到尾寫完了之后一看答案就寫上去了。另外就是特質(zhì)法(音),一些出現(xiàn)字母、特別是不等式,這時候給它賦一個值,代進去這時候速度會比較快,正確地找出結(jié)果來。再就是數(shù)形結(jié)合法。最后實在不行了,就將四個選項代入驗證,看看哪個符合就是哪個了。填空題用上述的直接法、特質(zhì)法、數(shù)形結(jié)合法三種方法都適合。做大題的時候要特別注意解題步驟,規(guī)范答題可以減少失分。簡單地說,規(guī)范答題就是從上一步的原因到下一步的結(jié)論,這是一個必然的過程,讓誰寫、誰看都是這樣的。因為什么所以什么是一個必然的過程,這是規(guī)范答題。

初中數(shù)學知識點總結(jié)14

  1、正數(shù)和負數(shù)的有關(guān)概念

  (1)正數(shù):

  比0大的數(shù)叫做正數(shù);

  負數(shù):比0小的數(shù)叫做負數(shù);

  0既不是正數(shù),也不是負數(shù)。

  (2)正數(shù)和負數(shù)表示相反意義的量。

  2、有理數(shù)的概念及分類

  3、有關(guān)數(shù)軸

  (1)數(shù)軸的三要素:原點、正方向、單位長度。數(shù)軸是一條直線。

  (2)所有有理數(shù)都可以用數(shù)軸上的點來表示,但數(shù)軸上的點不一定都是有理數(shù)。

  (3)數(shù)軸上,右邊的數(shù)總比左邊的數(shù)大;表示正數(shù)的點在原點的右側(cè),表示負數(shù)的點在原點的左側(cè)。

  (2)相反數(shù):符號不同、絕對值相等的兩個數(shù)互為相反數(shù)。

  若a、b互為相反數(shù),則a+b=0;

  相反數(shù)是本身的是0,正數(shù)的相反數(shù)是負數(shù),負數(shù)的相反數(shù)是正數(shù)。

  (3)絕對值最小的數(shù)是0;絕對值是本身的數(shù)是非負數(shù)。

  4、任何數(shù)的絕對值是非負數(shù)。

  最小的正整數(shù)是1,最大的負整數(shù)是-1。

  5、利用絕對值比較大小

  兩個正數(shù)比較:絕對值大的那個數(shù)大;

  兩個負數(shù)比較:先算出它們的絕對值,絕對值大的反而小。

  6、有理數(shù)加法

  (1)符號相同的兩數(shù)相加:和的符號與兩個加數(shù)的符號一致,和的絕對值等于兩個加數(shù)絕對值之和。

  (2)符號相反的兩數(shù)相加:當兩個加數(shù)絕對值不等時,和的符號與絕對值較大的加數(shù)的符號相同,和的絕對值等于加數(shù)中較大的絕對值減去較小的絕對值;當兩個加數(shù)絕對值相等時,兩個加數(shù)互為相反數(shù),和為零。

  (3)一個數(shù)同零相加,仍得這個數(shù)。

  加法的交換律:a+b=b+a

  加法的結(jié)合律:(a+b)+c=a+(b+c)

  7、有理數(shù)減法:

  減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  8、在把有理數(shù)加減混合運算統(tǒng)一為最簡的形式,負數(shù)前面的加號可以省略不寫。

  例如:14+12+(-25)+(-17)可以寫成省略括號的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負25、負17的和。”

  9、有理數(shù)的乘法

  兩個數(shù)相乘,同號得正,異號得負,再把絕對值相乘;任何數(shù)與0相乘都得0。

  第一步:確定積的符號第二步:絕對值相乘

  10、乘積的`符號的確定

  幾個有理數(shù)相乘,因數(shù)都不為0時,積的符號由負因數(shù)的個數(shù)確定:當負因數(shù)有奇數(shù)個時,積為負;

  當負因數(shù)有偶數(shù)個時,積為正。幾個有理數(shù)相乘,有一個因數(shù)為零,積就為零。

  11、倒數(shù):

  乘積為1的兩個數(shù)互為倒數(shù),0沒有倒數(shù)。

  正數(shù)的倒數(shù)是正數(shù),負數(shù)的倒數(shù)是負數(shù)。(互為倒數(shù)的兩個數(shù)符號一定相同)

  倒數(shù)是本身的只有1和-1。

  初中數(shù)學知識點總結(jié)2平面直角坐標系

  平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

  平面直角坐標系的要素:

 、僭谕黄矫

  ②兩條數(shù)軸

 、刍ハ啻怪

  ④原點重合

  三個規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向。

 、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標系知識的講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們都能考試成功。

  初中數(shù)學知識點:平面直角坐標系的構(gòu)成。

  對于平面直角坐標系的構(gòu)成內(nèi)容,下面我們一起來學習哦。

  平面直角坐標系的構(gòu)成。

  在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。

初中數(shù)學知識點總結(jié)15

  二元一次方程(組)

  1、二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。

  2、二元一次方程組:含有兩個未知數(shù)的兩個一次方程所組成的一組方程,叫做二元一次方程組。

  3、二元一次方程組的解:二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。

  4、二元一次方程組的解法。

  (1)代人消元法:解方程組的基本思路是“消元”一把“二元”變?yōu)椤耙辉,主要步驟是,將其中一個方程中的某個未知數(shù)用含有另一個未知數(shù)的代數(shù)式表示出來,并代人另一個方程中,從而消去一個未知數(shù),化二元一次方程組為一元一次方程,這種解方程組的方法稱為代人消元法,簡稱代人法。

 。2)加減消元法:通過方程兩邊分別相加(減)消去其中一個未知數(shù),這種解二元一次方程組的方法叫做加減消元法,簡稱加減法。

  提醒大家:二元一次方程組的解法包括代人消元法和加減消元法。

  平面直角坐標系

  下面是對平面直角坐標系的內(nèi)容學習,希望同學們很好的掌握下面的內(nèi)容。

  平面直角坐標系

  平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

  平面直角坐標系的要素:

  ①在同一平面

  ②兩條數(shù)軸

 、刍ハ啻怪

 、茉c重合

  三個規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標系知識的講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們都能考試成功。

  平面直角坐標系的`構(gòu)成

  在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。

  通過上面對平面直角坐標系的構(gòu)成知識的講解學習,希望同學們對上面的內(nèi)容都能很好的掌握,同學們認真學習吧。

  點的坐標的性質(zhì)

  建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。

  對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標、縱坐標,有序?qū)崝?shù)對(a,b)叫做點C的坐標。

  一個點在不同的象限或坐標軸上,點的坐標不一樣。

  希望上面對點的坐標的性質(zhì)知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。

  因式分解的一般步驟

  如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。

  相信上面對因式分解的一般步驟知識的內(nèi)容講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們會考出好成績。

  因式分解

  因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

  因式分解要素:

 、俳Y(jié)果必須是整式

 、诮Y(jié)果必須是積的形式

  ③結(jié)果是等式

  因式分解與整式乘法的關(guān)系:m(a+b+c)

  公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

  公因式確定方法:

 、傧禂(shù)是整數(shù)時取各項最大公約數(shù)。

 、谙嗤帜溉∽畹痛蝺

  ③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

  提取公因式步驟:

  ①確定公因式。

 、诖_定商式

  ③公因式與商式寫成積的形式。

  分解因式注意;

  ①不準丟字母

 、诓粶蕘G常數(shù)項注意查項數(shù)

 、垭p重括號化成單括號

 、芙Y(jié)果按數(shù)單字母單項式多項式順序排列

  ⑤相同因式寫成冪的形式

 、奘醉椮撎柗爬ㄌ柾

 、呃ㄌ杻(nèi)同類項合并。

【初中數(shù)學知識點總結(jié)】相關(guān)文章:

初中數(shù)學總結(jié)知識點08-26

初中數(shù)學幾何知識點總結(jié)11-05

初中數(shù)學函數(shù)知識點總結(jié)11-24

初中數(shù)學圓的知識點總結(jié)12-05

初中數(shù)學函數(shù)知識點總結(jié)06-14

數(shù)學初中知識點總結(jié)06-10

【經(jīng)典】數(shù)學初中知識點總結(jié)07-16

初中數(shù)學概率知識點總結(jié)10-21

初中數(shù)學知識點總結(jié)07-15

初中數(shù)學知識點總結(jié)(精選)06-16