y,那么yy;(對稱性)②如果x>y,y>z;那么x>z;(傳遞性)③">
當(dāng)前位置:育文網(wǎng)>初中>初中數(shù)學(xué)> 初中數(shù)學(xué)不等式的知識點(diǎn)歸納

初中數(shù)學(xué)不等式的知識點(diǎn)歸納

時間:2022-04-01 06:10:09 初中數(shù)學(xué) 我要投稿
  • 相關(guān)推薦

初中數(shù)學(xué)不等式的知識點(diǎn)歸納

  初中數(shù)學(xué)不等式的性質(zhì)知識點(diǎn)結(jié)構(gòu)

初中數(shù)學(xué)不等式的知識點(diǎn)歸納

  不等式的知識我們可以分為嚴(yán)格不等式與非嚴(yán)格不等式,我們常用的就是嚴(yán)格的不等式。

  不等式的性質(zhì)

 、偃绻鹸>y,那么yy;(對稱性)

  ②如果x>y,y>z;那么x>z;(傳遞性)

 、廴绻鹸>y,而z為任意實(shí)數(shù)或整式,那么x+z>y+z;(加法原則)

  ④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz

 、萑绻鹸>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z

 、奕绻鹸>y,m>n,那么x+m>y+n;(充分不必要條件)

 、呷绻鹸>y>0,m>n>0,那么xm>yn;

 、嗳绻鹸>y>0,那么x的n次冪>y的n次冪(n為正數(shù))[1]

  初中數(shù)學(xué)知識點(diǎn)總結(jié):平面直角坐標(biāo)系

  平面直角坐標(biāo)系

  平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

  平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合

  三個規(guī)定:

  ①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實(shí)際有時也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  初中數(shù)學(xué)知識點(diǎn):平面直角坐標(biāo)系的構(gòu)成

  平面直角坐標(biāo)系的構(gòu)成

  在同一個平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。

  初中數(shù)學(xué)知識點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)

  點(diǎn)的坐標(biāo)的性質(zhì)

  建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點(diǎn)。

  對于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點(diǎn)C的坐標(biāo)。

  一個點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

  初中數(shù)學(xué)知識點(diǎn):因式分解的一般步驟

  因式分解的一般步驟

  如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,

  通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。

  初中數(shù)學(xué)知識點(diǎn):因式分解

  因式分解

  因式分解定義:把一個多項(xiàng)式化成幾個整式的積的形式的變形叫把這個多項(xiàng)式因式分解。

  因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

  因式分解與整式乘法的關(guān)系:m(a+b+c)

  公因式:一個多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個多項(xiàng)式各項(xiàng)的公因式。

  公因式確定方法:①系數(shù)是整數(shù)時取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項(xiàng)式各項(xiàng)的公因式。

  提取公因式步驟:

 、俅_定公因式。②確定商式③公因式與商式寫成積的形式。

  分解因式注意;

 、俨粶(zhǔn)丟字母

 、诓粶(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)

 、垭p重括號化成單括號

 、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列

 、菹嗤蚴綄懗蓛绲男问

 、奘醉(xiàng)負(fù)號放括號外

 、呃ㄌ杻(nèi)同類項(xiàng)合并。

【初中數(shù)學(xué)不等式的知識點(diǎn)歸納】相關(guān)文章:

初中數(shù)學(xué)《不等式與不等式組》知識點(diǎn)04-23

初中數(shù)學(xué)知識點(diǎn)歸納.07-30

初中數(shù)學(xué)圓的知識點(diǎn)歸納04-15

初中數(shù)學(xué)知識點(diǎn)歸納總結(jié)12-02

初中數(shù)學(xué)橢圓的方程知識點(diǎn)歸納04-07

初中數(shù)學(xué)圓錐的體積知識點(diǎn)歸納03-31

初中數(shù)學(xué)垂線的性質(zhì)知識點(diǎn)歸納04-07

初中數(shù)學(xué)有序數(shù)對的知識點(diǎn)歸納04-01

初中數(shù)學(xué)直線方程知識點(diǎn)歸納04-01

初中數(shù)學(xué)知識點(diǎn)歸納14篇01-19