當(dāng)前位置:育文網(wǎng)>高中>高中數(shù)學(xué)> 高中數(shù)學(xué)知識點總結(jié)

高中數(shù)學(xué)知識點總結(jié)

時間:2023-11-03 18:16:10 高中數(shù)學(xué)

[薦]高中數(shù)學(xué)知識點總結(jié)15篇

  總結(jié)是指社會團體、企業(yè)單位和個人對某一階段的學(xué)習(xí)、工作或其完成情況加以回顧和分析,得出教訓(xùn)和一些規(guī)律性認(rèn)識的一種書面材料,它是增長才干的一種好辦法,因此好好準(zhǔn)備一份總結(jié)吧?偨Y(jié)你想好怎么寫了嗎?下面是小編為大家收集的高中數(shù)學(xué)知識點總結(jié),希望對大家有所幫助。

[薦]高中數(shù)學(xué)知識點總結(jié)15篇

高中數(shù)學(xué)知識點總結(jié)1

  簡單隨機抽樣的定義:

  一般地,設(shè)一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內(nèi)的各個個體被抽到的機會都相等,就把這種抽樣方法叫做簡單隨機抽樣。

  簡單隨機抽樣的特點:

  (1)用簡單隨機抽樣從含有N個個體的總體中抽取一個容量為n的樣本時,每次抽取一個個體時任一個體被抽到的概率為___;在整個抽樣過程中各個個體被抽到的概率為____。

 。2)簡單隨機抽樣的特點是,逐個抽取,且各個個體被抽到的概率相等。

 。3)簡單隨機抽樣方法,體現(xiàn)了抽樣的客觀性與公平性,是其他更復(fù)雜抽樣方法的基礎(chǔ)。

  (4)簡單隨機抽樣是不放回抽樣;它是逐個地進行抽;它是一種等概率抽樣。

  簡單抽樣常用方法:

 。1)抽簽法:先將總體中的所有個體(共有N個)編號(號碼可從1到N),并把號碼寫在形狀、大小相同的`號簽上(號簽可用小球、卡片、紙條等制作),然后將這些號簽放在同一個箱子里,進行均勻攪拌,抽簽時每次從中抽一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本適用范圍:總體的個體數(shù)不多時優(yōu)點:抽簽法簡便易行,當(dāng)總體的個體數(shù)不太多時適宜采用抽簽法。

 。2)隨機數(shù)表法:隨機數(shù)表抽樣“三步曲”:第一步,將總體中的個體編號;第二步,選定開始的數(shù)字;第三步,獲取樣本號碼概率。

高中數(shù)學(xué)知識點總結(jié)2

  數(shù)學(xué)選修2-2導(dǎo)數(shù)及其應(yīng)用知識點必記

  1.函數(shù)的平均變化率是什么?答:平均變化率為

  f(x2)f(x1)f(x1x)f(x1)yfx2x1xxx注1:其中x是自變量的改變量,可正,可負(fù),可零。

  注2:函數(shù)的平均變化率可以看作是物體運動的平均速度。

  2、導(dǎo)函數(shù)的概念是什么?

  答:函數(shù)yf(x)在xx0處的瞬時變化率是limf(x0x)f(x0)y,則稱limx0xx0x函數(shù)yf(x)在點x0處可導(dǎo),并把這個極限叫做yf(x)在x0處的導(dǎo)數(shù),記作f"(x0)或y"|xx0,即f"(x0)=limf(x0x)f(x0)y.limx0xx0x

  3.平均變化率和導(dǎo)數(shù)的幾何意義是什么?

  答:函數(shù)的平均變化率的幾何意義是割線的斜率;函數(shù)的導(dǎo)數(shù)的幾何意義是切線的斜率。

  4導(dǎo)數(shù)的背景是什么?

  答:(1)切線的斜率;(2)瞬時速度;(3)邊際成本。

  5、常見的函數(shù)導(dǎo)數(shù)和積分公式有哪些?函數(shù)導(dǎo)函數(shù)不定積分ycy"0xn1xdxn1nyxnnN*y"nxn1yaxa0,a1y"alnay"exxaxadxlnaxyexedxexxylogaxa0,a1,x0ylnxy"1xlna1x1xdxlnxy"ysinxy"cosxcosxdxsinxsinxdxcosxycosxy"sinx

  6、常見的導(dǎo)數(shù)和定積分運算公式有哪些?答:若fx,gx均可導(dǎo)(可積),則有:和差的導(dǎo)數(shù)運算f(x)g(x)f(x)g(x)""f"(x)g"(x)f"(x)g(x)f(x)g"(x)積的導(dǎo)數(shù)運算特別地:Cfx"Cf"x商的導(dǎo)數(shù)運算f(x)f"(x)g(x)f(x)g"(x)(g(x)0)g(x)2g(x)"1g"(x)特別地:"2gxgx復(fù)合函數(shù)的導(dǎo)數(shù)yxyuux微積分基本定理fxdxab(其中F"xfx)和差的積分運算ba[f1(x)f2(x)]dxf1(x)dxf2(x)dxaabb特別地:積分的區(qū)間可加性bakf(x)dxkf(x)dx(k為常數(shù))abbaf(x)dxf(x)dxf(x)dx(其中acb)accb

  7.用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的步驟是什么?答:①求函數(shù)f(x)的導(dǎo)數(shù)f"(x)

  ②令f"(x)>0,解不等式,得x的范圍就是遞增區(qū)間.③令f"(x)

  8.利用導(dǎo)數(shù)求函數(shù)的最值的步驟是什么?

  答:求f(x)在a,b上的最大值與最小值的步驟如下:⑴求f(x)在a,b上的極值;

  ⑵將f(x)的各極值與f(a),f(b)比較,其中最大的一個是最大值,最小的一個是最小值。

  注:實際問題的開區(qū)間唯一極值點就是所求的最值點;

  9.求曲邊梯形的思想和步驟是什么?

  答:分割近似代替求和取極限(“以直代曲”的思想)

  10.定積分的性質(zhì)有哪些?

  根據(jù)定積分的定義,不難得出定積分的如下性質(zhì):

  11.

  ababbbbb性質(zhì)5若f(x)0,xa,b,則f(x)dx0

 、偻茝V:[f1(x)f2(x)fm(x)]dxf1(x)dxf2(x)dxfm(x)

  aaaa②推廣:f(x)dxf(x)dxf(x)dxf(x)dx

  aac1ckbc1c2b11定積分的取值情況有哪幾種?

  答:定積分的值可能取正值,也可能取負(fù)值,還可能是0.

  (l)當(dāng)對應(yīng)的曲邊梯形位于x軸上方時,定積分的值取正值,且等于x軸上方的圖形面積;

  (2)當(dāng)對應(yīng)的曲邊梯形位于x軸下方時,定積分的值取負(fù)值,且等于x軸上方圖形面積的相反數(shù);

 。3)當(dāng)位于x軸上方的曲邊梯形面積等于位于x軸下方的曲邊梯形面積時,定積分的值為0,且等于x軸上方圖形的面積減去下方的圖形的面積.

  12.物理中常用的微積分知識有哪些?答:(1)位移的導(dǎo)數(shù)為速度,速度的導(dǎo)數(shù)為加速度。(2)力的積分為功。

  數(shù)學(xué)選修2-2推理與證明知識點必記

  13.歸納推理的定義是什么?答:從個別事實中推演出一般性的'結(jié)論,像這樣的推理通常稱為歸納推理。歸納推理是由部分到整體,由個別到一般的推理。

  14.歸納推理的思維過程是什么?答:大致如圖:

  實驗、觀察概括、推廣猜測一般性結(jié)論

  15.歸納推理的特點有哪些?

  答:①歸納推理的前提是幾個已知的特殊現(xiàn)象,歸納所得的結(jié)論是尚屬未知的一般現(xiàn)象。

 、谟蓺w納推理得到的結(jié)論具有猜測的性質(zhì),結(jié)論是否真實,還需經(jīng)過邏輯證明和實驗檢驗,因此,它不能作為數(shù)學(xué)證明的工具。③歸納推理是一種具有創(chuàng)造性的推理,通過歸納推理的猜想,可以作為進一步研究的起點,幫助人們發(fā)現(xiàn)問題和提出問題。

  16.類比推理的定義是什么?

  答:根據(jù)兩個(或兩類)對象之間在某些方面的相似或相同,推演出它們在其他方面也相似或相同,這樣的推理稱為類比推理。類比推理是由特殊到特殊的推理。

  17.類比推理的思維過程是什么?答:

  觀察、比較聯(lián)想、類推推測新的結(jié)論

  18.演繹推理的定義是什么?

  答:演繹推理是根據(jù)已有的事實和正確的結(jié)論(包括定義、公理、定理等)按照嚴(yán)格的邏輯法則得到新結(jié)論的推理過程。演繹推理是由一般到特殊的推理。

  19.演繹推理的主要形式是什么?答:三段論

  20.“三段論”可以表示為什么?

  答:①大前題:M是P②小前提:S是M③結(jié)論:S是P。

  其中①是大前提,它提供了一個一般性的原理;②是小前提,它指出了一個特殊對象;③是結(jié)論,它是根據(jù)一般性原理,對特殊情況做出的判斷。

  21.什么是直接證明?它包括哪幾種證明方法?

  答:直接證明是從命題的條件或結(jié)論出發(fā),根據(jù)已知的定義、公理、定理,直接推證結(jié)論的真實性。直接證明包括綜合法和分析法。

  22.什么是綜合法?

  答:綜合法就是“由因?qū)Ч保瑥囊阎獥l件出發(fā),不斷用必要條件代替前面的條件,直至推出要證的結(jié)論。

  23.什么是分析法?答:分析法就是從所要證明的結(jié)論出發(fā),不斷地用充分條件替換前面的條件或者一定成立的式子,可稱為“由果索因”。

  要注意敘述的形式:要證A,只要證B,B應(yīng)是A成立的充分條件.分析法和綜合法常結(jié)合使用,不要將它們割裂開。

  24什么是間接證明?

  答:即反證法:是指從否定的結(jié)論出發(fā),經(jīng)過邏輯推理,導(dǎo)出矛盾,證實結(jié)論的否定是錯誤的,從而肯定原結(jié)論是正確的證明方法。

  25.反證法的一般步驟是什么?

  答:(1)假設(shè)命題結(jié)論不成立,即假設(shè)結(jié)論的反面成立;

 。2)從假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;

  (3)從矛盾判定假設(shè)不正確,即所求證命題正確。

  26常見的“結(jié)論詞”與“反義詞”有哪些?原結(jié)論詞反義詞原結(jié)論詞至少有一個至多有一個至少有n個至多有n個一個也沒有至少有兩個至多有n-1個至少有n+1個對任意x不成立p或qp且q反義詞存在x使成立p且qp或q對所有的x都成立存在x使不成立

  27.反證法的思維方法是什么?答:正難則反....

  28.如何歸繆矛盾?

  答:(1)與已知條件矛盾;(2)與已有公理、定理、定義矛盾;

 。3)自相矛盾.

  29.?dāng)?shù)學(xué)歸納法(只能證明與正整數(shù)有關(guān)的數(shù)學(xué)命題)的步驟是什么?nnN答:(1)證明:當(dāng)n取第一個值時命題成立;00

  (2)假設(shè)當(dāng)n=k(k∈N*,且k≥n0)時命題成立,證明當(dāng)n=k+1時命題也成立由(1),(2)可知,命題對于從n0開始的所有正整數(shù)n都正確注:常用于證明不完全歸納法推測所得命題的正確性的證明。

  數(shù)學(xué)選修2-2數(shù)系的擴充和復(fù)數(shù)的概念知識點必記

  30.復(fù)數(shù)的概念是什么?答:形如a+bi的數(shù)叫做復(fù)數(shù),其中i叫虛數(shù)單位,a叫實部,b叫虛部,數(shù)集

  Cabi|a,bR叫做復(fù)數(shù)集。

  規(guī)定:abicdia=c且,強調(diào):兩復(fù)數(shù)不能比較大小,只有相等或不相b=d等。實數(shù)(b0)

  31.?dāng)?shù)集的關(guān)系有哪些?答:復(fù)數(shù)Z一般虛數(shù)(a0)

  虛數(shù)(b0)純虛數(shù)(a0)

  32.復(fù)數(shù)的幾何意義是什么?答:復(fù)數(shù)與平面內(nèi)的點或有序?qū)崝?shù)對一一對應(yīng)。

  33.什么是復(fù)平面?

  答:根據(jù)復(fù)數(shù)相等的定義,任何一個復(fù)數(shù)zabi,都可以由一個有序?qū)崝?shù)對

  (a,b)唯一確定。由于有序?qū)崝?shù)對(a,b)與平面直角坐標(biāo)系中的點一一對應(yīng),因此

  復(fù)數(shù)集與平面直角坐標(biāo)系中的點集之間可以建立一一對應(yīng)。這個建立了直角坐標(biāo)系來表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實軸,y軸叫做虛軸。實軸上的點都表示實數(shù),除了原點外,虛軸上的點都表示純虛數(shù)。

  34.如何求復(fù)數(shù)的模(絕對值)?答:與復(fù)數(shù)z對應(yīng)的向量OZ的模r叫做復(fù)數(shù)zabi的模(也叫絕對值)記作z或abi。由模的定義可知:zabia2b2

  35.復(fù)數(shù)的加、減法運算及幾何意義是什么?

  答:①復(fù)數(shù)的加、減法法則:z1abi與z2cdi,則z1z2ac(bd)i。

  注:復(fù)數(shù)的加、減法運算也可以按向量的加、減法來進行。

  ②復(fù)數(shù)的乘法法則:(abi)(cdi)acbdadbci。

  ③復(fù)數(shù)的除法法則:

  abi(abi)(cdi)acbdbcadicdi(cdi)(cdi)c2d2c2d2其中cdi叫做實數(shù)化因子

  36.什么是共軛復(fù)數(shù)?

  答:兩復(fù)數(shù)abi與abi互為共軛復(fù)數(shù),當(dāng)b0時,它們叫做共軛虛數(shù)。

高中數(shù)學(xué)知識點總結(jié)3

  1.一些基本概念:

  (1)向量:既有大小,又有方向的量.

  (2)數(shù)量:只有大小,沒有方向的量.

  (3)有向線段的三要素:起點、方向、長度.

  (4)零向量:長度為0的向量.

  (5)單位向量:長度等于1個單位的向量.

  (6)平行向量(共線向量):方向相同或相反的非零向量.

  ※零向量與任一向量平行.

  (7)相等向量:長度相等且方向相同的`向量.

  2.向量加法運算:

  ⑴三角形法則的特點:首尾相連.

 、破叫兴倪呅畏▌t的特點:共起點

高中數(shù)學(xué)知識點總結(jié)4

  一、直線與方程高考考試內(nèi)容及考試要求:

  考試內(nèi)容:

  1.直線的傾斜角和斜率;直線方程的點斜式和兩點式;直線方程的一般式;

  2.兩條直線平行與垂直的條件;兩條直線的交角;點到直線的距離;

  考試要求:

  1.理解直線的傾斜角和斜率的概念,掌握過兩點的直線的斜率公式,掌握直線方程的點斜式、兩點式、一般式,并能根據(jù)條件熟練地求出直線方程;

  2.掌握兩條直線平行與垂直的條件,兩條直線所成的角和點到直線的距離公式能夠根據(jù)直線的方程判斷兩條直線的位置關(guān)系;

  二、直線與方程

  課標(biāo)要求:

  1.在平面直角坐標(biāo)系中,結(jié)合具體圖形,探索確定直線位置的幾何要素;

  2.理解直線的傾斜角和斜率的概念,經(jīng)歷用代數(shù)方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式;

  3.根據(jù)確定直線位置的幾何要素,探索并掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數(shù)的關(guān)系;

  4.會用代數(shù)的方法解決直線的有關(guān)問題,包括求兩直線的交點,判斷兩條直線的位置關(guān)系,求兩點間的距離、點到直線的距離以及兩條平行線之間的距離等。

  要點精講:

  1.直線的傾斜角:當(dāng)直線l與x軸相交時,取x軸作為基準(zhǔn),x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角。特別地,當(dāng)直線l與x軸平行或重合時,規(guī)定α= 0°.

  傾斜角α的取值范圍:0°≤α<180°. 當(dāng)直線l與x軸垂直時, α= 90°.

  2.直線的斜率:一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是k = tanα

 。1)當(dāng)直線l與x軸平行或重合時,α=0°,k = tan0°=0;

 。2)當(dāng)直線l與x軸垂直時,α= 90°,k 不存在。

  由此可知,一條直線l的傾斜角α一定存在,但是斜率k不一定存在。

  3.過兩點p1(x1,y1),p2(x2,y2)(x1≠x2)的直線的斜率公式:

  (若x1=x2,則直線p1p2的斜率不存在,此時直線的傾斜角為90°)。

  4.兩條直線的平行與垂直的判定

  (1)若l1,l2均存在斜率且不重合:

 、;②

  注: 上面的等價是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個前提,結(jié)論并不成立。

 。2)

  若A1、A2、B1、B2都不為零。

  注意:若A2或B2中含有字母,應(yīng)注意討論字母=0與0的'情況。

  兩條直線的交點:兩條直線的交點的個數(shù)取決于這兩條直線的方程組成的方程組的解的個數(shù)。

  5.直線方程的五種形式

  確定直線方程需要有兩個互相獨立的條件,確定直線方程的形式很多,但必須注意各種形式的直線方程的適用范圍。

  直線的點斜式與斜截式不能表示斜率不存在(垂直于x 軸)的直線;兩點式不能表示平行或重合兩坐標(biāo)軸的直線;截距式不能表示平行或重合兩坐標(biāo)軸的直線及過原點的直線。

  6.直線的交點坐標(biāo)與距離公式

 。1)兩直線的交點坐標(biāo)

  一般地,將兩條直線的方程聯(lián)立,得方程組

  若方程組有唯一解,則兩條直線相交,解即為交點的坐標(biāo);若方程組無解,則兩條直線無公共點,此時兩條直線平行。

 。2)兩點間距離

  兩點P1(x1,y1),P2(x2,y2)間的距離公式

  特別地:軸,則、軸,則

 。3)點到直線的距離公式

  點到直線的距離為:

 。4)兩平行線間的距離公式:

  若,則:

  注意點:x,y對應(yīng)項系數(shù)應(yīng)相等。

高中數(shù)學(xué)知識點總結(jié)5

  高中數(shù)學(xué)(文)包含5本必修、2本選修,(理)包含5本必修、3本選修,每學(xué)期學(xué)**兩本書。

  必修一:1、集合與函數(shù)的概念 (這部分知識抽象,較難理解)2、基本的初等函數(shù)(指數(shù)函數(shù)、對數(shù)函數(shù))3、函數(shù)的性質(zhì)及應(yīng)用 (比較抽象,較難理解)

  必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問題,包括線面角和面面角

  這部分知識是高一學(xué)生的難點,比如:一個角實際上是一個銳角,但是在圖中顯示的鈍角等等一些問題,需要學(xué)生的立體意識較強。這部分知識高考占22---27分

  2、直線方程:高考時不單獨命題,易和圓錐曲線結(jié)合命題

  3、圓方程:

  必修三:1、算法初步:高考必考內(nèi)容,5分(選擇或填空)2、統(tǒng)計:3、概率:高考必考內(nèi)容,09年理科占到15分,文科數(shù)學(xué)占到5分

  必修四:1、三角函數(shù):(圖像、性質(zhì)、高中重難點,)必考大題:15---20分,并且經(jīng)常和其他函數(shù)混合起來考查

  2、平面向量:高考不單獨命題,易和三角函數(shù)、圓錐曲線結(jié)合命題。09年理科占到5分,文科占到13分

  必修五:1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數(shù)學(xué)占到13分左右2、數(shù)列:高考必考,17---22分3、不等式:(線性規(guī)劃,聽課時易理解,但做題較復(fù)雜,應(yīng)掌握技巧。高考必考5分)不等式不單獨命題,一般和函數(shù)結(jié)合求最值、解集。

  文科:選修1—1、1—2

  選修1--1:重點:高考占30分

  1、邏輯用語:一般不考,若考也是和集合放一塊考2、圓錐曲線:3、導(dǎo)數(shù)、導(dǎo)數(shù)的應(yīng)用(高考必考)

  選修1--2:1、統(tǒng)計:2、推理證明:一般不考,若考會是填空題3、復(fù)數(shù):(新課標(biāo)比老課本難的多,高考必考內(nèi)容)

  理科:選修2—1、2—2、2—3

  選修2--1:1、邏輯用語2、圓錐曲線3、空間向量:(利用空間向量可以把立體幾何做題簡便化)

  選修2--2:1、導(dǎo)數(shù)與微積分2、推理證明:一般不考3、復(fù)數(shù)

  選修2--3:1、計數(shù)原理:(排列組合、二項式定理)掌握這部分知識點需要大量做題找規(guī)律,無技巧。高考必考,10分2、隨機變量及其分布:不單獨命題3、統(tǒng)計:

  高考的知識板塊

  集合與簡單邏輯:5分或不考

  函數(shù):高考60分:①、指數(shù)函數(shù) ②對數(shù)函數(shù) ③二次函數(shù) ④三次函數(shù) ⑤三角函數(shù) ⑥抽象函數(shù)(無函數(shù)表達式,不易理解,難點)

  平面向量與解三角形

  立體幾何:22分左右

  不等式:(線性規(guī)則)5分必考

  數(shù)列:17分 (一道大題+一道選擇或填空)易和函數(shù)結(jié)合命題

  平面解析幾何:(30分左右)

  計算原理:10分左右

  概率統(tǒng)計:12分----17分

  復(fù)數(shù):5分

  推理證明

  一般高考大題分布

  1、17題:三角函數(shù)

  2、18、19、20 三題:立體幾何 、概率 、數(shù)列

  3、21、22 題:函數(shù)、圓錐曲線

  成績不理想一般是以下幾種情況:

  做題不細(xì)心,(會做,做不對)

  基礎(chǔ)知識沒有掌握

  解決問題不全面,知識的運用沒有系統(tǒng)化(如:一道題綜合了多個知識點)

  心理素質(zhì)不好

  總之學(xué)**數(shù)學(xué)一定要掌握科學(xué)的學(xué)**方法:1、筆記:記老師講的課本上沒有的知識點,尤其是數(shù)列性質(zhì),課本上沒有,但做題經(jīng)常用到 2、錯題收集、歸納總結(jié)

  高一年級

  必修一

  第一章 集合與函數(shù)概念

  第二章 基本初等函數(shù)(Ⅰ)

  第三章 函數(shù)的應(yīng)用

  必修二

  第一章 空間幾何體

  第二章 點、直線、平面之間的位置關(guān)系

  第三章 直線與方程

  必修三

  第一章 算法初步

  第二章 統(tǒng)計

  第三章 概率

  必修四

  第一章 三角函數(shù)

  第二章 平面向量

  第三章 三角恒等變換

  (二)教學(xué)要求

  在教學(xué)中,由于集合、函數(shù)等內(nèi)容比較抽象,三角函數(shù)在高考中占據(jù)重要地位,平面向量又是高考中數(shù)學(xué)必考內(nèi)容,教師在備課組協(xié)作的基礎(chǔ)上應(yīng)注意對各章知識的重難點的講解和釋疑,減輕學(xué)生自學(xué)的壓力,增強學(xué)生學(xué)好數(shù)學(xué)的信心。

  首先,在高中數(shù)學(xué)中,集合的初步知識以及與其它內(nèi)容的密切聯(lián)系。它們是學(xué)**、掌握和使用數(shù)學(xué)語言的基礎(chǔ),是高中數(shù)學(xué)學(xué)**的出發(fā)點。在教學(xué)中,應(yīng)注重引導(dǎo)學(xué)生更好的理解數(shù)學(xué)中出現(xiàn)的集合語言,使學(xué)生更好的使用集合語言表述數(shù)學(xué)問題,并且可以使學(xué)生運用集合的觀點,研究、處理數(shù)學(xué)問題。因此集合的基本概念、函數(shù)等有關(guān)內(nèi)容是教師重點講解的內(nèi)容。

  其次,函數(shù)作為中學(xué)數(shù)學(xué)中最重要的基本概念之一,教師應(yīng)注意運用有關(guān)的概念和函數(shù)的性質(zhì),培養(yǎng)學(xué)生的思維能力;通過指數(shù)與對數(shù),指數(shù)函數(shù)與對數(shù)函數(shù)之間的內(nèi)在聯(lián)系,對學(xué)生進行辯證唯物主義觀點的教育;通過聯(lián)系實際的引入問題和解決帶有實際意義的某些問題,培養(yǎng)學(xué)生的實踐能力和創(chuàng)新意識。

  第三,通過對三角函數(shù)的學(xué)**,學(xué)生將進一步了解符號與變元、集合與對應(yīng)、數(shù)形結(jié)合等基本的數(shù)學(xué)思想在研究三角函數(shù)時所起的重要作用,在式子與圖形的變化中,教師應(yīng)引導(dǎo)學(xué)生通過分析、探索、劃歸、類比、平行移動、伸長和縮短等常用的基本方法的學(xué)**,使學(xué)生在學(xué)**數(shù)學(xué)和應(yīng)用數(shù)學(xué)方面達到一個新的層次。

  第四,學(xué)**平面向量,不但應(yīng)注意平面向量基本知識的講解,更要充分挖掘平面向量的工具作用,提高學(xué)生應(yīng)用數(shù)學(xué)知識解決實際問題的能力和實際操作的能力,使學(xué)生學(xué)會提出問題,明確研究方向,使學(xué)生學(xué)會交流,體驗數(shù)學(xué)活動的過程,培養(yǎng)創(chuàng)新精神和應(yīng)用能力。

  第五、在學(xué)**空間幾何體、點、直線、平面之間的位置關(guān)系時,重點要幫助學(xué)生逐步形成空間想象能力,嚴(yán)格遵循從整體到局部,從具體到抽象的原則,逐步掌握解決空間幾何體的相關(guān)問題。

  第六、要在平面解析幾何初步教學(xué)中,幫助學(xué)生經(jīng)歷如下的過程:首先將幾何問題代數(shù)化,用代數(shù)的語言描述幾何要素及其關(guān)系,進而將幾何問題轉(zhuǎn)化為代數(shù)問題;處理代數(shù)問題;分析代數(shù)結(jié)果的幾何含義,最終解決幾何問題。這種思想應(yīng)貫穿平面解析幾何教學(xué)的始終,幫助學(xué)生不斷地體會“數(shù)形結(jié)合”的思想方法。

  第七、在學(xué)**算法初步、統(tǒng)計等內(nèi)容的時候,要注意順序漸進,不可追求一步到位,特別要注意其思想的重要性。

  高二年級

  必修五

  第一章 解三角形

  第二章 數(shù)列

  第三章 不等式

  選修1-1

  第一章 常用邏輯用語

  第二章 圓錐曲線與方程

  第三章 導(dǎo)數(shù)及其應(yīng)用

  選修1-2

  第一章 統(tǒng)計案例

  第二章 推理與證明

  第三章 數(shù)系的擴充與復(fù)數(shù)的引入

  第四章 框圖

  選修2-1

  第一章 常用邏輯用語

  第二章 圓錐曲線與方程

  第三章 空間向量與立體幾何

  選修2-2

  第一章 導(dǎo)數(shù)及其應(yīng)用

  第二章 推理與證明

  第三章 數(shù)系的擴充與復(fù)數(shù)的引入

  選修2-3

  第一章 計數(shù)原理

  第二章 隨機變量及其分布

  第三章 統(tǒng)計案例

  (二)教學(xué)要求

  高二上

  必修5

  學(xué)生將在已有知識的基礎(chǔ)上,通過對任意三角形邊角關(guān)系的探究,發(fā)現(xiàn)并掌握三角形中的邊長與角度之間的數(shù)量關(guān)系,并認(rèn)識到運用它們可以解決一些與測量和幾何計算有關(guān)的實際問題。

  數(shù)列作為一種特殊的函數(shù),是反映自然規(guī)律的基本數(shù)學(xué)模型。在本模塊中,學(xué)生將通過對日常生活中大量實際問題的分析,建立等差數(shù)列和等比數(shù)列這兩種數(shù)列模型,探索并掌握它們的一些基本數(shù)量關(guān)系,感受這兩種數(shù)列模型的廣泛應(yīng)用,并利用它們解決一些實際問題。

  不等關(guān)系與相等關(guān)系都是客觀事物的基本數(shù)量關(guān)系,是數(shù)學(xué)研究的重要內(nèi)容。建立不等觀念、處理不等關(guān)系與處理等量問題是同樣重要的。在本模塊中,學(xué)生將通過具體情境,感受在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,理解不等式(組)對于刻畫不等關(guān)系的意義和價值;掌握求解一元二次不等式的基本方法,并能解決一些實際問題;能用二元一次不等式組表示平面區(qū)域,并嘗試解決一些簡單的二元線性規(guī)劃問題;認(rèn)識基本不等式及其簡單應(yīng)用;體會不等式、方程及函數(shù)之間的聯(lián)系。

  選修1—1(文科)

  在本模塊中,學(xué)生將在義務(wù)教育階段的.基礎(chǔ)上,學(xué)**常用邏輯用語,體會邏輯用語在表述和論證中的作用,利用這些邏輯用語準(zhǔn)確地表達數(shù)學(xué)內(nèi)容,更好地進行交流。

  在必修課程學(xué)**平面解析幾何初步的基礎(chǔ)上,在本模塊中,學(xué)生將學(xué)**圓錐曲線與方程,了解圓錐曲線與二次方程的關(guān)系,掌握圓錐曲線的基本幾何性質(zhì),感受圓錐曲線在刻畫現(xiàn)實世界和解決實際問題中的作用,進一步體會數(shù)形結(jié)合的思想。

  在本模塊中,學(xué)生將通過大量實例,經(jīng)歷由平均變化率到瞬時變化率的過程,刻畫現(xiàn)實問題,理解導(dǎo)數(shù)的含義,體會導(dǎo)數(shù)的思想及其內(nèi)涵;應(yīng)用導(dǎo)數(shù)探索函數(shù)的單調(diào)、極值等性質(zhì)及其在實際中的應(yīng)用,感受導(dǎo)數(shù)在解決數(shù)學(xué)問題和實際問題中的作用,體會微積分的產(chǎn)生對人類文化發(fā)展的價值。

  選修2-1(理科)

  在本模塊中,學(xué)生將學(xué)**常用邏輯用語、圓錐曲線與方程、空間中的向量(簡稱空間向量)與立體幾何。

  在本模塊中,學(xué)生將在義務(wù)教育階段的基礎(chǔ)上,學(xué)**常用邏輯用語,體會邏輯用語在表述和論證中的作用,利用這些邏輯用語準(zhǔn)確地表達數(shù)學(xué)內(nèi)容,從而更好地進行交流。

  在必修階段學(xué)**平面解析幾何初步的基礎(chǔ)上,在本模塊中,學(xué)生將學(xué)**圓錐曲線與方程,了解圓錐曲線與二次方程的關(guān)系,掌握圓錐曲線的基本幾何性質(zhì),感受圓錐曲線在刻畫現(xiàn)實世界和解決實際問題中的作用。結(jié)合已學(xué)過的曲線及其方程的實例,了解曲線與方程的對應(yīng)關(guān)系,進一步體會數(shù)形結(jié)合的思想。

  在本模塊中,學(xué)生將在學(xué)**平面向量的基礎(chǔ)上,把平面向量及其運算推廣到空間,運用空間向量解決有關(guān)直線、平面位置關(guān)系的問題,體會向量方法在研究幾何圖形中的作用,進一步發(fā)展空間想像能力和幾何直觀能力。

高中數(shù)學(xué)知識點總結(jié)6

  導(dǎo)數(shù)的應(yīng)用

  1.用導(dǎo)數(shù)研究函數(shù)的最值

  確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點,研究在零點左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點處函數(shù)取極小值。學(xué)習(xí)了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來檢驗下學(xué)習(xí)成果。

  2.生活中常見的函數(shù)優(yōu)化問題

  1)費用、成本最省問題

  2)利潤、收益問題

  3)面積、體積最(大)問題

  分層抽樣

  先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟,然后再在各個類型或?qū)哟沃胁捎煤唵坞S機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本。

  兩種方法

  1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。

  2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。

  3.分層抽樣是把異質(zhì)性較強的總體分成一個個同質(zhì)性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進而代表總體。

  分層標(biāo)準(zhǔn)

  (1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標(biāo)準(zhǔn)。

  (2)以保證各層內(nèi)部同質(zhì)性強、各層之間異質(zhì)性強、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。

  (3)以那些有明顯分層區(qū)分的變量作為分層變量。

  函數(shù)的奇偶性

  1、函數(shù)的奇偶性的定義:對于函數(shù)f(x),如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù)).

  正確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點:(1)定義域在數(shù)軸上關(guān)于原點對稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恒等式.(奇偶性是函數(shù)定義域上的整體性質(zhì)).

  2、奇偶函數(shù)的定義是判斷函數(shù)奇偶性的主要依據(jù)。為了便于判斷函數(shù)的奇偶性,有時需要將函數(shù)化簡或應(yīng)用定義的等價形式:

  注意如下結(jié)論的運用:

  (1)不論f(x)是奇函數(shù)還是偶函數(shù),f(|x|)總是偶函數(shù);

  (2)f(x)、g(x)分別是定義域D1、D2上的奇函數(shù),那么在D1∩D2上,f(x)+g(x)是奇函數(shù),f(x)·g(x)是偶函數(shù),類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

  (3)奇偶函數(shù)的復(fù)合函數(shù)的奇偶性通常是偶函數(shù);

  (4)奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù),偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù)。

  3、有關(guān)奇偶性的幾個性質(zhì)及結(jié)論

  (1)一個函數(shù)為奇函數(shù)的充要條件是它的圖象關(guān)于原點對稱;一個函數(shù)為偶函數(shù)的充要條件是它的圖象關(guān)于y軸對稱.

  (2)如要函數(shù)的'定義域關(guān)于原點對稱且函數(shù)值恒為零,那么它既是奇函數(shù)又是偶函數(shù).

  (3)若奇函數(shù)f(x)在x=0處有意義,則f(0)=0成立.

  (4)若f(x)是具有奇偶性的區(qū)間單調(diào)函數(shù),則奇(偶)函數(shù)在正負(fù)對稱區(qū)間上的單調(diào)性是相同(反)的。

  (5)若f(x)的定義域關(guān)于原點對稱,則F(x)=f(x)+f(-x)是偶函數(shù),G(x)=f(x)-f(-x)是奇函數(shù).

  (6)奇偶性的推廣

  函數(shù)y=f(x)對定義域內(nèi)的任一x都有f(a+x)=f(a-x),則y=f(x)的圖象關(guān)于直線x=a對稱,即y=f(a+x)為偶函數(shù).函數(shù)y=f(x)對定義域內(nèi)的任-x都有f(a+x)=-f(a-x),則y=f(x)的圖象關(guān)于點(a,0)成中心對稱圖形,即y=f(a+x)為奇函數(shù).

  二項式定理

  ①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

  特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

  ②主要性質(zhì)和主要結(jié)論:對稱性Cnm=Cnn-m

  二項式系數(shù)在中間。(要注意n為奇數(shù)還是偶數(shù),答案是中間一項還是中間兩項)

  所有二項式系數(shù)的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

  奇數(shù)項二項式系數(shù)的和=偶數(shù)項而是系數(shù)的和

  Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

 、弁棡榈趓+1項:Tr+1=Cnran-rbr作用:處理與指定項、特定項、常數(shù)項、有理項等有關(guān)問題。

高中數(shù)學(xué)知識點總結(jié)7

  立體幾何初步

  (1)棱柱:

  定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

  表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱

  幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

  表示:用各頂點字母,如五棱錐

  幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

  (3)棱臺:

  定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺、五棱臺等

  表示:用各頂點字母,如五棱臺

  幾何特征:

 、偕舷碌酌媸窍嗨频腵平行多邊形

 、趥(cè)面是梯形

  ③側(cè)棱交于原棱錐的頂點

  (4)圓柱:

  定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體

  幾何特征:

 、俚酌媸侨鹊膱A;

 、谀妇與軸平行;

 、圯S與底面圓的半徑垂直;

 、軅(cè)面展開圖是一個矩形。

  (5)圓錐:

  定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體

  幾何特征:

 、俚酌媸且粋圓;

 、谀妇交于圓錐的頂點;

 、蹅(cè)面展開圖是一個扇形。

  (6)圓臺:

  定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

  幾何特征:

 、偕舷碌酌媸莾蓚圓;

  ②側(cè)面母線交于原圓錐的頂點;

  ③側(cè)面展開圖是一個弓形。

  (7)球體:

  定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

  幾何特征:

 、偾虻慕孛媸菆A;

 、谇蛎嫔先我庖稽c到球心的距離等于半徑。

高中數(shù)學(xué)知識點總結(jié)8

  選修4-4數(shù)學(xué)知識點

  一、選考內(nèi)容《坐標(biāo)系與參數(shù)方程》高考考試大綱要求:

  1.坐標(biāo)系:

  ①理解坐標(biāo)系的作用.

 、诹私庠谄矫嬷苯亲鴺(biāo)系伸縮變換作用下平面圖形的變化情況.

 、勰茉跇O坐標(biāo)系中用極坐標(biāo)表示點的位置,理解在極坐標(biāo)系和平面直角坐標(biāo)系中表示點的位置的區(qū)別,能進行極坐標(biāo)和直角坐標(biāo)的互化.

 、苣茉跇O坐標(biāo)系中給出簡單圖形(如過極點的直線、過極點或圓心在極點的圓)的方程.通過比較這些圖形在極坐標(biāo)系和平面直角坐標(biāo)系中的方程,理解用方程表示平面圖形時選擇適當(dāng)坐標(biāo)系的意義.

  2.參數(shù)方程:①了解參數(shù)方程,了解參數(shù)的意義.

 、谀苓x擇適當(dāng)?shù)膮?shù)寫出直線、圓和圓錐曲線的參數(shù)方程.

  二、知識歸納總結(jié):

  1.伸縮變換:設(shè)點P(x,y)是平面直角坐標(biāo)系中的任意一點,在變換:yy,(0).的作用下,點P(x,y)對應(yīng)到點P(x,y),稱為平面直角坐標(biāo)系中的坐標(biāo)伸縮變換,簡稱伸縮變換。

  2.極坐標(biāo)系的概念:在平面內(nèi)取一個定點O,叫做極點;自極點O引一條射線Ox叫做極軸;再選定一個長度單位、一個角度單位(通常取弧度)及其正方向(通常取逆時針方向),這樣就建立了一個極坐標(biāo)系。

  3.點M的極坐標(biāo):設(shè)M是平面內(nèi)一點,極點O與點M的距離|OM|叫做點M的極徑,記為;以極軸Ox為始邊,射線OM為終邊的.xOM叫做點M的極角,記為。有序數(shù)對(,)叫做點M的極坐標(biāo),記為M(,).極坐標(biāo)(,)與(,2k)(kZ)表示同一個點。極點O的坐標(biāo)為(0,)(R).

  4.若0,則0,規(guī)定點(,)與點(,)關(guān)于極點對稱,即(,)與(,)表示同一點。如果規(guī)定0,02,那么除極點外,平面內(nèi)的點可用唯一的極坐標(biāo)(,)表示;同時,極坐標(biāo)(,)表示的點也是唯一確定的。

  5.極坐標(biāo)與直角坐標(biāo)的互化:2x2y2,xcos,yysin,tan(x0)x

  6.圓的極坐標(biāo)方程:在極坐標(biāo)系中,以極點為圓心,r為半徑的圓的極坐標(biāo)方程是r;在極坐標(biāo)系中,以C(a,0)(a0)為圓心,a為半徑的圓的極坐標(biāo)方程是2acos;在極坐標(biāo)系中,以C(a,2)(a0)為圓心,a為半徑的圓的極坐標(biāo)方程是2asin;

  7.在極坐標(biāo)系中,(0)表示以極點為起點的一條射線;(R)表示過極點的一條直線.在極坐標(biāo)系中,過點A(a,0)(a0),且垂直于極軸的直線l的極坐標(biāo)方程是cosa.

  8.參數(shù)方程的概念:在平面直角坐標(biāo)系中,如果曲線上任意一點的坐標(biāo)x,y都是某個變數(shù)txf(t),并且對于t的每一個允許值,由這個方程所確定的點M(x,y)都在這條yg(t),曲線上,那么這個方程就叫做這條曲線的參數(shù)方程,聯(lián)系變數(shù)x,y的變數(shù)t叫做參變數(shù),的函數(shù)簡稱參數(shù)。相對于參數(shù)方程而言,直接給出點的坐標(biāo)間關(guān)系的方程叫做普通方程。xarcos,(為參數(shù)).

  9.圓(xa)(yb)r的參數(shù)方程可表示為ybrsin.xacos,x2y2(為參數(shù)).橢圓221(ab0)的參數(shù)方程可表示為abybsin.x2px2,2(t為參數(shù)).拋物線y2px的參數(shù)方程可表示為y2pt.xxotcos,經(jīng)過點MO(xo,yo),傾斜角為的直線l的參數(shù)方程可表示為(t為yyotsin.222參數(shù)).

  10.在建立曲線的參數(shù)方程時,要注明參數(shù)及參數(shù)的取值范圍。在參數(shù)方程與普通方程的互化中,必須使x,y的取值范圍保持一致.

高中數(shù)學(xué)知識點總結(jié)9

  函數(shù)與導(dǎo)數(shù)。主要考查集合運算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。

  平面向量與三角函數(shù)、三角變換及其應(yīng)用。這一部分是高考的重點但不是難點,主要出一些基礎(chǔ)題或中檔題。

  數(shù)列及其應(yīng)用。這部分是高考的重點而且是難點,主要出一些綜合題。

  不等式。主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。

  概率和統(tǒng)計。這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。

  空間位置關(guān)系的定性與定量分析。主要是證明平行或垂直,求角和距離。主要考察對定理的熟悉程度、運用程度。

  解析幾何。高考的難點,運算量大,一般含參數(shù)。

  高考對數(shù)學(xué)基礎(chǔ)知識的考查,既全面又突出重點,扎實的數(shù)學(xué)基礎(chǔ)是成功解題的關(guān)鍵。

  掌握分類計數(shù)原理與分步計數(shù)原理,并能用它們分析和解決一些簡單的應(yīng)用問題。

  理解排列的意義,掌握排列數(shù)計算公式,并能用它解決一些簡單的應(yīng)用問題。

  理解組合的意義,掌握組合數(shù)計算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡單的應(yīng)用問題。

  掌握二項式定理和二項展開式的性質(zhì),并能用它們計算和證明一些簡單的問題。

  了解隨機事件的發(fā)生存在著規(guī)律性和隨機事件概率的.意義。

  了解等可能性事件的概率的意義,會用排列組合的基本公式計算一些等可能性事件的概率。

  了解互斥事件、相互獨立事件的意義,會用互斥事件的概率加法公式與相互獨立事件的概率乘法公式計算一些事件的概率。

  會計算事件在n次獨立重復(fù)試驗中恰好發(fā)生k次的概率。

高中數(shù)學(xué)知識點總結(jié)10

  一集合

  1、集合的含義:集合為一些確定的、不同的對象的全體。2、集合的中元素的三個特性:確定性、互異性、無序性。3、集合的表示:

 。1)用大寫字母表示集合:A,B…(2)集合的表示方法:

  a、列舉法:將集合中的元素一一列舉出來{a,b,c}b、描述法:集合中元素的公共屬性描述出來,寫在大括號內(nèi)表示集合,xRx23c、維恩圖:用一條封閉曲線的內(nèi)部表示.

  4、集合的分類:

  (1)有限集:含有有限個元素的集合(2)無限集:含有無限個元素的集合(3)空集:不含任何元素的集合5、元素與集合的關(guān)系:aA;aA注意:常用數(shù)集及其記法:

  非負(fù)整數(shù)集:(即自然數(shù)集)N正整數(shù)集:Nx或N+整數(shù)集:Z有理數(shù)集:Q實數(shù)集:R

  6、集合間的基本關(guān)系(1)“包含”關(guān)系子集

  定義:如果集合A的任何一個元素都是集合B的元素,我們說這兩個集合有包含

  關(guān)系,稱集合A是集合B的子集。記作:AB(或BA)

  注意:AB有兩種可能(1)A是B的一部分;

 。2)A與B是同一集合。

  B或BA反之:集合A不包含于集合B,或集合B不包含集合A,記作A(2)“包含”關(guān)系真子集

  如果集合AB,但存在元素xB且xA,則集合A是集合B的真子集,記作AB(或BA)

  (3“相等”關(guān)系:A=B“元素相同則兩集合相等”,如果AB同時BA那么A=B

  規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。(4)集合的性質(zhì)

 、偃魏我粋集合是它本身的子集,AA②如果AB,BC,那么AC③如果AB且BC,那么AC

 、苡衝個元素的集合,含有2n個子集,2n-1個真子集

  7、集合的運算

  運算類型交集并集定義由所有屬于A且屬于B由所有屬于集合A或?qū)俚脑厮M成的集合,于集合B的元素所組成叫做A,B的交集.記作的集合,叫做A,B的并AB(讀作‘A交B’)集.記作:AB(讀作‘A并B’)補集全集:一般,若一個集合含有我們所研究問題中的所有元素,我們就稱這個集合為全集,記作:U設(shè)S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)記作CSA,韋恩圖示ABABSA圖1圖2CU(CUA)A性質(zhì)A∩A=AA∩Φ=ΦA(chǔ)∩B=BAAUA=AAUΦ=AAUB=BUAAU(CuA)=UA∩(CuA)=Φ.A∩BAA∩AUBABBAUBB二函數(shù)1.函數(shù)的概念:記法y=f(x),x∈A.

  2.函數(shù)的三要素:定義域、值域、對應(yīng)法則

  3.函數(shù)的表示方法:(1)解析法:(2)圖象法:(3)列表法:4.函數(shù)的基本性質(zhì)

  a、函數(shù)解析式子的求法

 。1)代入法:(2)待定系數(shù)法:(3)換元法:(4)拼湊法:

  b、定義域:能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。(1)分式的分母不等于零;

  (2)偶次方根的被開方數(shù)大于等于零;

  (3)對數(shù)式的真數(shù)必須大于零;(4)零次冪式的底數(shù)不等于零;(5)分段函數(shù)的各段范圍取并集;

  (6)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的那么,它的定義域是使各部分都有意義的x的值組成的集合;

  (7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.c、相同函數(shù)的判斷方法;定義域一致②對應(yīng)法則一致

  d.區(qū)間的概念:

  e.值域(先考慮其定義域)5.分段函數(shù)6.映射的概念

  對于映射f:A→B來說,則應(yīng)滿足:

  (1)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中對應(yīng)的象可以是同一個;(3)不要求集合B中的每一個元素在集合A中都有原象。注意:函數(shù)是特殊的映射。7、函數(shù)的單調(diào)性(局部性質(zhì))(1)增減函數(shù)定義(2)圖象的特點

  如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.

  (3)函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法(A)定義法:○1取值;○2作差;○3變形;○4定號;○5結(jié)論.(B)圖象法(從圖象上看升降)

  (C)復(fù)合函數(shù)的單調(diào)性:“同增異減”

  注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.

  8、函數(shù)的奇偶性(整體性質(zhì))(1)奇、偶函數(shù)定義

 。2)具有奇偶性的函數(shù)的圖象的特征

  偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱.(3)利用定義判斷函數(shù)奇偶性的步驟:

  a、首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點對稱;若是不對稱,則是非奇非偶的函數(shù);若對稱,則進行下面判斷;b、確定f(-x)與f(x)的關(guān)系;

  c、作出相應(yīng)結(jié)論:若f(-x)=f(x),則f(x)是偶函數(shù);

  若f(-x)=-f(x),則f(x)是奇函數(shù).

  注意:函數(shù)定義域關(guān)于原點對稱是函數(shù)具有奇偶性的前提條件.首先看函數(shù)的定義域是否關(guān)于原點對稱,若不對稱則函數(shù)是非奇非偶函數(shù).(4)函數(shù)的奇偶性與單調(diào)性

  奇函數(shù)在關(guān)于原點對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點對稱的區(qū)間上有相反的單調(diào)性。(5)若已知是奇、偶函數(shù)可以直接用特值9、基本初等函數(shù)

  一、一次函數(shù)

  二、二次函數(shù):二次函數(shù)的圖象與性質(zhì),注意:二次函數(shù)值域求法三、指數(shù)函數(shù)(一)指數(shù)

  1、有理指數(shù)冪的運算法則2、根式的概念3、分?jǐn)?shù)指數(shù)冪

  正數(shù)的分?jǐn)?shù)指數(shù)冪的

  anam(a0,m,nNx,n1),amnmn1amn1nam(a0,m,nNx,n1)

  (二)指數(shù)函數(shù)的性質(zhì)及其特點

  1、指數(shù)函數(shù)的概念:一般地,函數(shù)yax(a0,且a1)叫做指數(shù)函數(shù),其中x是自變量,

  函數(shù)的定義域為R.

  2、指數(shù)函數(shù)的圖象和性質(zhì)a>16540

  注意:換底公式

  logablogcb(a0,且a1;c0,且c1;b0).logca1nlogab;(2)logabmlogba利用換底公式推導(dǎo)下面的結(jié)論(1)logambn.

 。ㄈ⿲(shù)函數(shù)

  1、對數(shù)函數(shù)的概念:函數(shù)ylogax(a0,且a1)叫做對數(shù)函數(shù),其中x是自變量,

  函數(shù)的定義域是(0,+∞).

  2、對數(shù)函數(shù)的性質(zhì):a>10

高中數(shù)學(xué)知識點總結(jié)11

  一、函數(shù)對稱性:

  1.2.3.4.5.6.7.8.

  f(a+x)=f(a-x)==>f(x)關(guān)于x=a對稱

  f(a+x)=f(b-x)==>f(x)關(guān)于x=(a+b)/2對稱f(a+x)=-f(a-x)==>f(x)關(guān)于點(a,0)對稱f(a+x)=-f(a-x)+2b==>f(x)關(guān)于點(a,b)對稱

  f(a+x)=-f(b-x)+c==>f(x)關(guān)于點[(a+b)/2,c/2]對稱y=f(x)與y=f(-x)關(guān)于x=0對稱y=f(x)與y=-f(x)關(guān)于y=0對稱y=f(x)與y=-f(-x)關(guān)于點(0,0)對稱

  例1:證明函數(shù)y=f(a+x)與y=f(b-x)關(guān)于x=(b-a)/2對稱。

  【解析】求兩個不同函數(shù)的對稱軸,用設(shè)點和對稱原理作解。

  證明:假設(shè)任意一點P(m,n)在函數(shù)y=f(a+x)上,令關(guān)于x=t的對稱點Q(2tm,n),那么n=f(a+m)=f[b(2tm)]

  ∴b2t=a,==>t=(b-a)/2,即證得對稱軸為x=(b-a)/2.

  例2:證明函數(shù)y=f(a-x)與y=f(xb)關(guān)于x=(a+b)/2對稱。

  證明:假設(shè)任意一點P(m,n)在函數(shù)y=f(a-x)上,令關(guān)于x=t的對稱點Q(2tm,n),那么n=f(a-m)=f[(2tm)b]

  ∴2t-b=a,==>t=(a+b)/2,即證得對稱軸為x=(a+b)/2.

  二、函數(shù)的周期性

  令a,b均不為零,若:

  1、函數(shù)y=f(x)存在f(x)=f(x+a)==>函數(shù)最小正周期T=|a|

  2、函數(shù)y=f(x)存在f(a+x)=f(b+x)==>函數(shù)最小正周期T=|b-a|

  3、函數(shù)y=f(x)存在f(x)=-f(x+a)==>函數(shù)最小正周期T=|2a|

  4、函數(shù)y=f(x)存在f(x+a)=1/f(x)==>函數(shù)最小正周期T=|2a|

  5、函數(shù)y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函數(shù)最小正周期T=|4a|

  這里只對第2~5點進行解析。

  第2點解析:

  令X=x+a,f[a+(xa)]=f[b+(xa)]∴f(x)=f(x+ba)==>T=ba

  第3點解析:同理,f(x+a)=-f(x+2a)……

 、賔(x)=-f(x+a)……

 、凇嘤散俸廷诮獾胒(x)=f(x+2a)∴函數(shù)最小正周期T=|2a|

  第4點解析:

  f(x+2a)=1/f(x+a)==>f(x+a)=1/f(x+2a)

  又∵f(x+a)=1/f(x)∴f(x)=f(x+2a)

  ∴函數(shù)最小正周期T=|2a|

  第5點解析:

  ∵f(x+a)={2[1f(x)]}/[1f(x)]=2/[1f(x)]1

  ∴1f(x)=2/[f(x)+1]移項得f(x)=12/[f(x+a)+1]

  那么f(x-a)=12/[f(x)+1],等式右邊通分得f(x-a)=[f(x)1]/[1+f(x)]∴1/[f(x-a)=[1+f(x)]/[f(x)1],即-1/[f(x-a)=[1+f(x)]/[1-f(x)]∴-1/[f(x-a)=f(x+a),-1/[f(x2a)=f(x)==>-1/f(x)=f(x-2a)①,又∵-1/f(x)=f(x+2a)②,

  由①②得f(x+2a)=f(x-2a)==>f(x)=f(x+4a)

  ∴函數(shù)最小正周期T=|4a|

  擴展閱讀:函數(shù)對稱性、周期性和奇偶性的規(guī)律總結(jié)

  函數(shù)對稱性、周期性和奇偶性規(guī)律總結(jié)

 。ㄒ唬┩缓瘮(shù)的函數(shù)的奇偶性與對稱性:(奇偶性是一種特殊的對稱性)

  1、奇偶性:

  (1)奇函數(shù)關(guān)于(0,0)對稱,奇函數(shù)有關(guān)系式f(x)f(x)0

  (2)偶函數(shù)關(guān)于y(即x=0)軸對稱,偶函數(shù)有關(guān)系式f(x)f(x)

  2、奇偶性的拓展:同一函數(shù)的`對稱性

  (1)函數(shù)的軸對稱:

  函數(shù)yf(x)關(guān)于xa對稱f(ax)f(ax)

  f(ax)f(ax)也可以寫成f(x)f(2ax)或f(x)f(2ax)

  若寫成:f(ax)f(bx),則函數(shù)yf(x)關(guān)于直線x稱

 。╝x)(bx)ab對22證明:設(shè)點(x1,y1)在yf(x)上,通過f(x)f(2ax)可知,y1f(x1)f(2ax1),

  即點(2ax1,y1)也在yf(x)上,而點(x1,y1)與點(2ax1,y1)關(guān)于x=a對稱。得證。

  說明:關(guān)于xa對稱要求橫坐標(biāo)之和為2a,縱坐標(biāo)相等。

  ∵(ax1,y1)與(ax1,y1)關(guān)于xa對稱,∴函數(shù)yf(x)關(guān)于xa對稱

  f(ax)f(ax)

  ∵(x1,y1)與(2ax1,y1)關(guān)于xa對稱,∴函數(shù)yf(x)關(guān)于xa對稱

  f(x)f(2ax)

  ∵(x1,y1)與(2ax1,y1)關(guān)于xa對稱,∴函數(shù)yf(x)關(guān)于xa對稱

  f(x)f(2ax)

 。2)函數(shù)的點對稱:

  函數(shù)yf(x)關(guān)于點(a,b)對稱f(ax)f(ax)2b

  上述關(guān)系也可以寫成f(2ax)f(x)2b或f(2ax)f(x)2b

  若寫成:f(ax)f(bx)c,函數(shù)yf(x)關(guān)于點(abc,)對稱2證明:設(shè)點(x1,y1)在yf(x)上,即y1f(x1),通過f(2ax)f(x)2b可知,f(2ax1)f(x1)2b,所以f(2ax1)2bf(x1)2by1,所以點(2ax1,2by1)也在yf(x)上,而點(2ax1,2by1)與(x1,y1)關(guān)于(a,b)對稱。得證。

  說明:關(guān)于點(a,b)對稱要求橫坐標(biāo)之和為2a,縱坐標(biāo)之和為2b,如(ax)與(ax)之和為2a。

 。3)函數(shù)yf(x)關(guān)于點yb對稱:假設(shè)函數(shù)關(guān)于yb對稱,即關(guān)于任一個x值,都有兩個y值與其對應(yīng),顯然這不符合函數(shù)的定義,故函數(shù)自身不可能關(guān)于yb對稱。但在曲線c(x,y)=0,則有可能會出現(xiàn)關(guān)于yb對稱,比如圓c(x,y)x2y240它會關(guān)于y=0對稱。

 。4)復(fù)合函數(shù)的奇偶性的性質(zhì)定理:

  性質(zhì)1、復(fù)數(shù)函數(shù)y=f[g(x)]為偶函數(shù),則f[g(-x)]=f[g(x)]。復(fù)合函數(shù)y=f[g(x)]為奇函數(shù),則f[g(-x)]=-f[g(x)]。

  性質(zhì)2、復(fù)合函數(shù)y=f(x+a)為偶函數(shù),則f(x+a)=f(-x+a);復(fù)合函數(shù)y=f(x+a)為奇函數(shù),則f(-x+a)=-f(a+x)。

  性質(zhì)3、復(fù)合函數(shù)y=f(x+a)為偶函數(shù),則y=f(x)關(guān)于直線x=a軸對稱。復(fù)合函數(shù)y=f(x+a)為奇函數(shù),則y=f(x)關(guān)于點(a,0)中心對稱。

  總結(jié):x的系數(shù)一個為1,一個為-1,相加除以2,可得對稱軸方程

  總結(jié):x的系數(shù)一個為1,一個為-1,f(x)整理成兩邊,其中一個的系數(shù)是為1,另一個為-1,存在對稱中心。

  總結(jié):x的系數(shù)同為為1,具有周期性。

  (二)兩個函數(shù)的圖象對稱性

  1、yf(x)與yf(x)關(guān)于X軸對稱。

  證明:設(shè)yf(x)上任一點為(x1,y1)則y1f(x1),所以yf(x)經(jīng)過點(x1,y1)

  ∵(x1,y1)與(x1,y1)關(guān)于X軸對稱,∴y1f(x1)與yf(x)關(guān)于X軸對稱.注:換種說法:yf(x)與yg(x)f(x)若滿足f(x)g(x),即它們關(guān)于y0對稱。

高中數(shù)學(xué)知識點總結(jié)12

  一、圓及圓的相關(guān)量的定義

  1.平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。

  2.圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經(jīng)過圓心的弦叫

  做直徑。

  3.頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。

  4.過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓心稱為內(nèi)心。

  5.直線與圓有3種位置關(guān)系:無公共點為相離;有2個公共點為相交;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。

  6.兩圓之間有5種位置關(guān)系:無公共點的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。

  7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。

  二、有關(guān)圓的字母表示方法

  圓--⊙ 半徑—r 弧--⌒ 直徑—d

  扇形弧長/圓錐母線—l 周長—C 面積—S三、有關(guān)圓的基本性質(zhì)與定理(27個)

  1.點P與圓O的位置關(guān)系(設(shè)P是一點,則PO是點到圓心的距離):

  P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO

  2.圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。

  3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定

  理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。

  4.在同圓或等圓中,如果2個圓心角,2個圓周角,2條弧,2條弦中有一組量相等,那么他們所對應(yīng)的其余各組量都分別相等。

  5.一條弧所對的圓周角等于它所對的圓心角的一半。

  6.直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

  7.不在同一直線上的3個點確定一個圓。

  8.一個三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形3個頂點距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點,到三角形3邊距離相等。

  9.直線AB與圓O的位置關(guān)系(設(shè)OP⊥AB于P,則PO是AB到圓心的距

  離):

  AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO

  10.圓的切線垂直于過切點的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個圓的切線。

  11.圓與圓的位置關(guān)系(設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為P):

  外離P>R+r;外切P=R+r;相交R-r

  三、有關(guān)圓的計算公式

  1.圓的周長C=2πr=πd

  2.圓的面積S=s=πr?

  3.扇形弧長l=nπr/180

  4.扇形面積S=nπr? /360=rl/2

  5.圓錐側(cè)面積S=πrl

  四、圓的方程

  1.圓的標(biāo)準(zhǔn)方程

  在平面直角坐標(biāo)系中,以點O(a,b)為圓心,以r為半徑的圓的標(biāo)準(zhǔn)方程是

  (x-a)^2+(y-b)^2=r^2

  2.圓的一般方程

  把圓的標(biāo)準(zhǔn)方程展開,移項,合并同類項后,可得圓的一般方程是

  x^2+y^2+Dx+Ey+F=0

  和標(biāo)準(zhǔn)方程對比,其實D=-2a,E=-2b,F=a^2+b^2

  相關(guān)知識:圓的離心率e=0.在圓上任意一點的`曲率半徑都是r.

  五、圓與直線的位置關(guān)系判斷

  平面內(nèi),直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是

  討論如下2種情況:

 。1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

  代入x^2+y^2+Dx+Ey+F=0,即成為一個關(guān)于x的一元二次方程f(x)=0.

  利用判別式b^2-4ac的符號可確定圓與直線的位置關(guān)系如下:

  如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交

  如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切

  如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離

 。2)如果B=0即直線為Ax+C=0,即x=-C/A.它平行于y軸(或垂直于x軸)

  將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2

  令y=b,求出此時的兩個x值x1,x2,并且我們規(guī)定x1

  當(dāng)x=-C/Ax2時,直線與圓相離

  當(dāng)x1

  當(dāng)x=-C/A=x1或x=-C/A=x2時,直線與圓相切

  圓的定理:

  1.不在同一直線上的三點確定一個圓。

  2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1.①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧

  ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2.圓的兩條平行弦所夾的弧相等

  3.圓是以圓心為對稱中心的中心對稱圖形

  4.圓是定點的距離等于定長的點的集合

  5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

  6.圓的外部可以看作是圓心的距離大于半徑的點的集合

  7.同圓或等圓的半徑相等

  8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等

  10.推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

  11.定理 圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它 的內(nèi)對角

  12.①直線L和⊙O相交 d

 、谥本L和⊙O相切 d=r

 、壑本L和⊙O相離 d>r

  13.切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑

  15.推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

  16.推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  17.切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角

  18.圓的外切四邊形的兩組對邊的和相等 外角等于內(nèi)對角

  19.如果兩個圓相切,那么切點一定在連心線上

  20.①兩圓外離 d>R+r ②兩圓外切 d=R+r

 、蹆蓤A相交 R-rr)

 、軆蓤A內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含dr)

  21.定理 相交兩圓的連心線垂直平分兩圓的公共弦

  22.定理 把圓分成n(n≥3):

 。1)依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

 。2)經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  23.定理 任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

  24.正n邊形的每個內(nèi)角都等于(n-2)×180°/n

  25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

  27.正三角形面積√3a/4 a表示邊長

  28.如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  29.弧長計算公式:L=n兀R/180

  30.扇形面積公式:S扇形=n兀R^2/360=LR/2

  31.內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)

  32.定理 一條弧所對的圓周角等于它所對的圓心角的一半

  33.推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  34.推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑

  35.弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r

高中數(shù)學(xué)知識點總結(jié)13

  總體和樣本

  ①在統(tǒng)計學(xué)中,把研究對象的全體叫做總體。

  ②把每個研究對象叫做個體。

 、郯芽傮w中個體的總數(shù)叫做總體容量。

  ④為了研究總體的有關(guān)性質(zhì),一般從總體中隨機抽取一部分:x1,x2,....,x-x研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量。

  簡單隨機抽樣

  也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨。

  機地抽取調(diào)查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎(chǔ),高三。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。

  簡單隨機抽樣常用的方法

 、俪楹灧

 、陔S機數(shù)表法

  ③計算機模擬法

 、苁褂媒y(tǒng)計軟件直接抽取。

  在簡單隨機抽樣的樣本容量設(shè)計中,主要考慮:

 、倏傮w變異情況;

  ②允許誤差范圍;

 、鄹怕时WC程度。

  抽簽法

 、俳o調(diào)查對象群體中的每一個對象編號;

 、跍(zhǔn)備抽簽的工具,實施抽簽;

 、蹖颖局械拿恳粋個體進行測量或調(diào)查。

  拓展閱讀:高二數(shù)學(xué)學(xué)習(xí)方法

  一、提高聽課的效率是關(guān)鍵

  課前預(yù)習(xí)能提高聽課的針對性。預(yù)習(xí)中發(fā)現(xiàn)的難點,就是聽課的重點;對預(yù)習(xí)中遇到的沒有掌握好的有關(guān)的舊知識,可進行補缺,以減少聽課過程中的困難;有助于提高思維能力,預(yù)習(xí)后把自己理解了的東西與老師的講解進行比較、分析即可提高自己思維水平;預(yù)習(xí)還可以培養(yǎng)自己的自學(xué)能力。其次就是聽課要全神貫注。

  二、做好復(fù)習(xí)和總結(jié)工作

  做好及時的復(fù)習(xí)。課完課的當(dāng)天,必須做好當(dāng)天的復(fù)習(xí)。復(fù)習(xí)的有效方法不是一遍遍地看書或筆記,而是采取回憶式的復(fù)習(xí),然后打開筆記與書本,對照一下還有哪些沒記清的,把它補起來,就使得當(dāng)天上課內(nèi)容鞏固下來,同時也就檢查了當(dāng)天課堂聽課的.效果如何,也為改進聽課方法及提高聽課效果提出必要的改進措施。

  三、指導(dǎo)做一定量的練習(xí)題

  做題的目的在于檢查你學(xué)的知識,方法是否掌握得很好。如果你掌握得不準(zhǔn),甚至有偏差,那么多做題的結(jié)果,反而鞏固了你的缺欠,因此,要在準(zhǔn)確地把握住基本知識和方法的基礎(chǔ)上做一定量的練習(xí)是必要的。而對于中檔題,尢其要講究做題的效益,這就需要在做題后進行一定的“反思”,思考一下本題所用的基礎(chǔ)知識,把它們聯(lián)系起來,你就會得到更多的經(jīng)驗和教訓(xùn),更重要的是養(yǎng)成善于思考的好習(xí)慣,這將大大有利于你今后的學(xué)習(xí)。

高中數(shù)學(xué)知識點總結(jié)14

  4.1.1圓的標(biāo)準(zhǔn)方程

  1、圓的標(biāo)準(zhǔn)方程:(xa)2(yb)2r2

  圓心為A(a,b),半徑為r的圓的方程

  2、點M(x0,y0)與圓(xa)(1)(x0(3)(x02(yb)2r2的關(guān)系的.判斷方法:

  a)2(y0b)2>r2,點在圓外(2)(x0a)2(y0b)2=r2,點在圓上a)2(y0b)2歸海木心QQ:634102564

 。4)當(dāng)l|r1r2|時,圓C1與圓C2內(nèi)切;(5)當(dāng)l|r1r2|時,圓C1與圓C2內(nèi)含;

  4.2.3直線與圓的方程的應(yīng)用

  1、利用平面直角坐標(biāo)系解決直線與圓的位置關(guān)系;2、過程與方法

  用坐標(biāo)法解決幾何問題的步驟:

  第一步:建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和方程表示問題中的幾何元素,將平面幾何問題轉(zhuǎn)化為代數(shù)問題;第二步:通過代數(shù)運算,解決代數(shù)問題;第三步:將代數(shù)運算結(jié)果“翻譯”成幾何結(jié)論.

  RM4.3.1空間直角坐標(biāo)系

  1、點M對應(yīng)著唯一確定的有序?qū)崝?shù)組(x,y,z),x、上的坐標(biāo)

  2、有序?qū)崝?shù)組(x,y,z),對應(yīng)著空間直角坐標(biāo)系中的一點

  y、z分別是P、Q、R在x、y、z軸

  xOPQM"y3、空間中任意點M的坐標(biāo)都可以用有序?qū)崝?shù)組(x,y,z)來表示,該數(shù)組叫做點M在此空間直角坐標(biāo)系中的坐標(biāo),記M(x,y,z),x叫做點M的橫坐標(biāo),坐標(biāo)。y叫做點M的縱坐標(biāo),z叫做點M的豎

  z4.3.2空間兩點間的距離公式1、空間中任意一點P1(x1,y1,z1)到點P2(x2,y2,z2)之間的距離公式P1P2P1P2(x1x2)(y1y2)(z1z2)222N1xOM1MM2HN2yN

高中數(shù)學(xué)知識點總結(jié)15

  空間兩條直線只有三種位置關(guān)系:平行、相交、異面

  按是否共面可分為兩類:

  (1)共面:平行、相交

  (2)異面:

  異面直線的定義:不同在任何一個平面內(nèi)的兩條直線或既不平行也不相交。

  異面直線判定定理:用平面內(nèi)一點與平面外一點的直線,與平面內(nèi)不經(jīng)過該點的直線是異面直線。

  兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法

  兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法

  若從有無公共點的角度看可分為兩類:

  (1)有且僅有一個公共點——相交直線;

  (2)沒有公共點——平行或異面

  直線和平面的位置關(guān)系:

  直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行

 、僦本在平面內(nèi)——有無數(shù)個公共點

  ②直線和平面相交——有且只有一個公共點

  直線與平面所成的角:平面的一條斜線和它在這個平面內(nèi)的射影所成的銳角。

  空間向量法(找平面的法向量)

  規(guī)定:

  a、直線與平面垂直時,所成的角為直角,

  b、直線與平面平行或在平面內(nèi),所成的角為0°角

  由此得直線和平面所成角的取值范圍為[0°,90°]

  最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角

  三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個平面的一條斜線的'射影垂直,那么它也與這條斜線垂直

  直線和平面垂直

  直線和平面垂直的定義:如果一條直線a和一個平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

  直線與平面垂直的判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面。

  直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。③直線和平面平行——沒有公共點

  直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。

  直線和平面平行的判定定理:如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。

  直線和平面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。

【高中數(shù)學(xué)知識點總結(jié)】相關(guān)文章:

高中數(shù)學(xué)知識點總結(jié)04-07

高中數(shù)學(xué)知識點總結(jié)11-12

高中數(shù)學(xué)全部知識點總結(jié)04-25

高中數(shù)學(xué)統(tǒng)計知識點總結(jié)10-21

高中數(shù)學(xué)導(dǎo)數(shù)知識點總結(jié)05-09

高中數(shù)學(xué)重點知識點總結(jié)11-18

高中數(shù)學(xué)必修2知識點總結(jié)11-22

文科高中數(shù)學(xué)知識點總結(jié)04-25

高中數(shù)學(xué)學(xué)考知識點總結(jié)04-25

高中數(shù)學(xué)必修1知識點總結(jié)04-25