人教版高一數(shù)學必修一重點知識點(通用7篇)
總結是指社會團體、企業(yè)單位和個人在自身的某一時期、某一項目或某些工作告一段落或者全部完成后進行回顧檢查、分析評價,從而肯定成績,得到經(jīng)驗,找出差距,得出教訓和一些規(guī)律性認識的一種書面材料,它可以促使我們思考,因此,讓我們寫一份總結吧。總結怎么寫才不會流于形式呢?以下是小編幫大家整理的人教版高一數(shù)學必修一重點知識點,僅供參考,希望能夠幫助到大家。
高一數(shù)學必修一重點知識點 1
1、“包含”關系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2、“相等”關系(5≥5,且5≤5,則5=5)
實例:設A={x|x2—1=0}B={—1,1}“元素相同”
結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的.任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
、偃魏我粋集合是它本身的子集。AíA
、谡孀蛹喝绻鸄íB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
、廴绻鸄íB,BíC,那么AíC
、苋绻鸄íB同時BíA那么A=B
3、不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
高一數(shù)學必修一重點知識點 2
定義:
x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。
范圍:
傾斜角的取值范圍是0°≤α<180°。
理解:
。1)注意“兩個方向”:直線向上的.方向、x軸的正方向;
(2)規(guī)定當直線和x軸平行或重合時,它的傾斜角為0度。
意義:
、僦本的傾斜角,體現(xiàn)了直線對x軸正向的傾斜程度;
②在平面直角坐標系中,每一條直線都有一個確定的傾斜角;
③傾斜角相同,未必表示同一條直線。
公式:
k=tanα
k>0時α∈(0°,90°)
k<0時α∈(90°,180°)
k=0時α=0°
當α=90°時k不存在
ax+by+c=0(a≠0)傾斜角為A,
則tanA=—a/b,
A=arctan(—a/b)
當a≠0時,
傾斜角為90度,即與X軸垂直
高一數(shù)學必修一重點知識點 3
指數(shù)函數(shù)
。1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。
。2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。
。3)函數(shù)圖形都是下凹的。
。4)a大于1,則指數(shù)函數(shù)單調遞增;a小于1大于0,則為單調遞減的。
。5)可以看到一個顯然的規(guī)律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的.正半軸的單調遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
。6)函數(shù)總是在某一個方向上無限趨向于X軸,永不相交。
。7)函數(shù)總是通過(0,1)這點。
。8)顯然指數(shù)函數(shù)。
高一數(shù)學必修一重點知識點 4
一、映射、函數(shù)、反函數(shù)
1、對應、映射、函數(shù)三個概念既有共性又有區(qū)別,映射是一種特殊的對應,而函數(shù)又是一種特殊的映射。
2、對于函數(shù)的概念,應注意如下幾點:
。1)掌握構成函數(shù)的三要素,會判斷兩個函數(shù)是否為同一函數(shù)。
。2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變量間的函數(shù)關系式,特別是會求分段函數(shù)的解析式。
。3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復合函數(shù),其中g(x)為內函數(shù),f(u)為外函數(shù)。
3、求函數(shù)y=f(x)的反函數(shù)的一般步驟:
(1)確定原函數(shù)的值域,也就是反函數(shù)的定義域;
。2)由y=f(x)的解析式求出x=f—1(y);
(3)將x,y對換,得反函數(shù)的習慣表達式y(tǒng)=f—1(x),并注明定義域。
二、函數(shù)的解析式與定義域
1、函數(shù)及其定義域是不可分割的整體,沒有定義域的函數(shù)是不存在的,因此,要正確地寫出函數(shù)的解析式,必須是在求出變量間的對應法則的同時,求出函數(shù)的定義域。求函數(shù)的定義域一般有三種類型:
。1)有時一個函數(shù)來自于一個實際問題,這時自變量x有實際意義,求定義域要結合實際意義考慮;
。2)已知一個函數(shù)的解析式求其定義域,只要使解析式有意義即可。如:
①分式的分母不得為零;
、谂即畏礁谋婚_方數(shù)不小于零;
、蹖(shù)函數(shù)的真數(shù)必須大于零;
、苤笖(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)必須大于零且不等于1;
⑤三角函數(shù)中的正切函數(shù)y=tanx(x∈R,且k∈Z),余切函數(shù)y=cotx(x∈R,x≠kπ,k∈Z)等。
應注意,一個函數(shù)的解析式由幾部分組成時,定義域為各部分有意義的自變量取值的公共部分(即交集)。
。3)已知一個函數(shù)的定義域,求另一個函數(shù)的定義域,主要考慮定義域的深刻含義即可。
已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)的值域。
2、求函數(shù)的解析式一般有四種情況
(1)根據(jù)某實際問題需建立一種函數(shù)關系時,必須引入合適的變量,根據(jù)數(shù)學的有關知識尋求函數(shù)的.解析式。
(2)有時題設給出函數(shù)特征,求函數(shù)的解析式,可采用待定系數(shù)法。比如函數(shù)是一次函數(shù),可設f(x)=ax+b(a≠0),其中a,b為待定系數(shù),根據(jù)題設條件,列出方程組,求出a,b即可。
。3)若題設給出復合函數(shù)f[g(x)]的表達式時,可用換元法求函數(shù)f(x)的表達式,這時必須求出g(x)的值域,這相當于求函數(shù)的定義域。
(4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(-x),等),必須根據(jù)已知等式,再構造其他等式組成方程組,利用解方程組法求出f(x)的表達式。
三、函數(shù)的值域與最值
1、函數(shù)的值域取決于定義域和對應法則,不論采用何種方法求函數(shù)值域都應先考慮其定義域,求函數(shù)值域常用方法如下:
。1)直接法:亦稱觀察法,對于結構較為簡單的函數(shù),可由函數(shù)的解析式應用不等式的性質,直接觀察得出函數(shù)的值域。
。2)換元法:運用代數(shù)式或三角換元將所給的復雜函數(shù)轉化成另一種簡單函數(shù)再求值域,若函數(shù)解析式中含有根式,當根式里一次式時用代數(shù)換元,當根式里是二次式時,用三角換元。
。3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)的定義域和值域間的關系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得。
。4)配方法:對于二次函數(shù)或二次函數(shù)有關的函數(shù)的值域問題可考慮用配方法。
。5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過應注意條件“一正二定三相等"。
(6)判別式法:把y=f(x)變形為關于x的一元二次方程,利用“△≥0”求值域。其題型特征是解析式中含有根式或分式。
。7)利用函數(shù)的單調性求值域:當能確定函數(shù)在其定義域上(或某個定義域的子集上)的單調性,可采用單調性法求出函數(shù)的值域。
(8)數(shù)形結合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結合求函數(shù)的值域。
2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系
求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最。ù螅┲。因此求函數(shù)的最值與值域,其實質是相同的,只是提問的角度不同,因而答題的方式就有所相異。
如函數(shù)的值域是(0,16],值是16,無最小值。再如函數(shù)的值域是(-∞,-2]∪[2,+∞),但此函數(shù)無值和最小值,只有在改變函數(shù)定義域后,如x>0時,函數(shù)的最小值為2?梢姸x域對函數(shù)的值域或最值的影響。
3、函數(shù)的最值在實際問題中的應用
函數(shù)的最值的應用主要體現(xiàn)在用函數(shù)知識求解實際問題上,從文字表述上常常表現(xiàn)為“工程造價最低”,“利潤”或“面積(體積)(最。钡戎T多現(xiàn)實問題上,求解時要特別關注實際意義對自變量的制約,以便能正確求得最值。
四、函數(shù)的奇偶性
1、函數(shù)的奇偶性的定義:對于函數(shù)f(x),如果對于函數(shù)定義域內的任意一個x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù))。
正確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點:(1)定義域在數(shù)軸上關于原點對稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恒等式。(奇偶性是函數(shù)定義域上的整體性質)。
2、奇偶函數(shù)的定義是判斷函數(shù)奇偶性的主要依據(jù)。為了便于判斷函數(shù)的奇偶性,有時需要將函數(shù)化簡或應用定義的等價形式:
注意如下結論的運用:
(1)不論f(x)是奇函數(shù)還是偶函數(shù),f(|x|)總是偶函數(shù);
。2)f(x)、g(x)分別是定義域D1、D2上的奇函數(shù),那么在D1∩D2上,f(x)+g(x)是奇函數(shù),f(x)·g(x)是偶函數(shù),類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;
。3)奇偶函數(shù)的復合函數(shù)的奇偶性通常是偶函數(shù);
(4)奇函數(shù)的導函數(shù)是偶函數(shù),偶函數(shù)的導函數(shù)是奇函數(shù)。
3、有關奇偶性的幾個性質及結論
。1)一個函數(shù)為奇函數(shù)的充要條件是它的圖象關于原點對稱;一個函數(shù)為偶函數(shù)的充要條件是它的圖象關于y軸對稱。
。2)如要函數(shù)的定義域關于原點對稱且函數(shù)值恒為零,那么它既是奇函數(shù)又是偶函數(shù)。
。3)若奇函數(shù)f(x)在x=0處有意義,則f(0)=0成立。
。4)若f(x)是具有奇偶性的區(qū)間單調函數(shù),則奇(偶)函數(shù)在正負對稱區(qū)間上的單調性是相同(反)的。
。5)若f(x)的定義域關于原點對稱,則F(x)=f(x)+f(-x)是偶函數(shù),G(x)=f(x)-f(-x)是奇函數(shù)。
。6)奇偶性的推廣
函數(shù)y=f(x)對定義域內的任-x都有f(a+x)=f(a-x),則y=f(x)的圖象關于直線x=a對稱,即y=f(a+x)為偶函數(shù)。函數(shù)y=f(x)對定義域內的任—x都有f(a+x)=-f(a-x),則y=f(x)的圖象關于點(a,0)成中心對稱圖形,即y=f(a+x)為奇函數(shù)。
五、函數(shù)的單調性
1、單調函數(shù)
對于函數(shù)f(x)定義在某區(qū)間[a,b]上任意兩點x1,x2,當x1>x2時,都有不等式f(x1)>f(x2)
對于函數(shù)單調性的定義的理解,要注意以下三點:
(1)單調性是與“區(qū)間”緊密相關的概念。一個函數(shù)在不同的區(qū)間上可以有不同的單調性。
(2)單調性是函數(shù)在某一區(qū)間上的“整體”性質,因此定義中的x1,x2具有任意性,不能用特殊值代替。
。3)單調區(qū)間是定義域的子集,討論單調性必須在定義域范圍內。
。4)注意定義的兩種等價形式:
設x1、x2∈[a,b],那么:
、僭赱a、b]上是增函數(shù);在[a、b]上是減函數(shù)。
、谠赱a、b]上是增函數(shù)。在[a、b]上是減函數(shù)。
需要指出的是:①的幾何意義是:增(減)函數(shù)圖象上任意兩點(x1,f(x1))、(x2,f(x2))連線的斜率都大于(或小于)零。
。5)由于定義都是充要性命題,因此由f(x)是增(減)函數(shù),且(或x1>x2),這說明單調性使得自變量間的不等關系和函數(shù)值之間的不等關系可以“正逆互推”。
5、復合函數(shù)y=f[g(x)]的單調性
若u=g(x)在區(qū)間[a,b]上的單調性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調性相同,則復合函數(shù)y=f[g(x)]在[a,b]上單調遞增;否則,單調遞減。簡稱“同增、異減”。
在研究函數(shù)的單調性時,常需要先將函數(shù)化簡,轉化為討論一些熟知函數(shù)的單調性。因此,掌握并熟記一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的單調性,將大大縮短我們的判斷過程。
6、證明函數(shù)的單調性的方法
六、函數(shù)的圖象
函數(shù)的圖象是函數(shù)的直觀體現(xiàn),應加強對作圖、識圖、用圖能力的培養(yǎng),培養(yǎng)用數(shù)形結合的思想方法解決問題的意識。
求作圖象的函數(shù)表達式
與f(x)的關系
由f(x)的圖象需經(jīng)過的變換
y=f(x)±b(b>0)
沿y軸向移b個單位
y=f(x±a)(a>0)
沿x軸向移a個單位
y=-f(x)
作關于x軸的對稱圖形
y=f(|x|)
右不動、左右關于y軸對稱
y=|f(x)|
上不動、下沿x軸翻折
y=f—1(x)
作關于直線y=x的對稱圖形
y=f(ax)(a>0)
橫坐標縮短到原來的,縱坐標不變
y=af(x)
縱坐標伸長到原來的|a|倍,橫坐標不變
y=f(—x)
作關于y軸對稱的圖形
【例】定義在實數(shù)集上的函數(shù)f(x),對任意x,y∈R,有f(x+y)+f(x—y)=2f(x)·f(y),且f(0)≠0。
、偾笞C:f(0)=1;
②求證:y=f(x)是偶函數(shù);
、廴舸嬖诔(shù)c,使求證對任意x∈R,有f(x+c)=—f(x)成立;試問函數(shù)f(x)是不是周期函數(shù),如果是,找出它的一個周期;如果不是,請說明理由。
思路分析:我們把沒有給出解析式的函數(shù)稱之為抽象函數(shù),解決這類問題一般采用賦值法。
解答:
①令x=y=0,則有2f(0)=2f2(0),因為f(0)≠0,所以f(0)=1。
、诹顇=0,則有f(x)+f(—y)=2f(0)·f(y)=2f(y),所以f(—y)=f(y),這說明f(x)為偶函數(shù)。
、蹆蛇厬弥械慕Y論,得f(x+2c)=—f(x+c)=—[—f(x)]=f(x),所以f(x)是周期函數(shù),2c就是它的一個周期。
高一數(shù)學必修一重點知識點 5
一、集合相關概念
1.集合的含義
2.集合中元素的三個特征:
(1)元素的確定性如:世界上最高的山
(2)元素的互異性,如:由HAPPY由字母組成的集合{H,A,P,Y}
(3)元素的無序性: 如:{a,b,c}和{a,c,b}表示同一集
3.集合表示:{ … } 如:{我校籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我;@球隊員},B={1,2,3,4
(2)集合表示法:列舉法和描述法。
u注:常用數(shù)集及其記法:
非負整數(shù)集(即自然數(shù)集) 記作:N
正整數(shù)集 N*或 N 整數(shù)集Z 有理數(shù)集Q 實數(shù)集R
1)列舉法:{a,b,c……}
2)描述方法:描述集合元素的公共屬性,并在大括號中寫入集合方法。{x?R| x-3>2} ,{x| x-3>2}
3)語言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合分類:
(1)有限集 含有有限個元素的集合
(2)無限集 含有無限元素的集合
(3)空集 不含任何元素的集合 例:{x|x2=-5}
二、集合間的基本關系
1.包含關系-子集
注意:
(1)有兩種可能性A(2)A與B相同的集合: 集合A不包括在集合中B,或者集合B不包括集合A,記作A
2.相等關系:A=B (5≥5,且5≤5,則5=5)
實例:設 A={x|x2-1=0} B={-1,1} 元素相同,兩集相等。
即:① 任何一集都是它自己的子集。AíA
、谡孀蛹喝绻鸄íB,且A1 B也就是說,集合A是集合B的真子集,記錄下來A
、廴绻 AíB, BíC ,那么 AíC
、 如果AíB 同時 BíA 那么A=B
3. 不含任何元素的集合稱為空集,記為Φ
規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
u含有2個n個元素的集合n個子集,2n-1個真子集
二、函數(shù)
1、函數(shù)定義域、值域求法綜合
2.、解決函數(shù)奇偶性和單調性問題的策略
3.解決恒成立問題的策略
4.反函數(shù)的幾種題型和方法
5.二次函數(shù)根問題-一題多解
&指數(shù)函數(shù)y=a^x
a^a*a^b=a^a b(a>0,a、b屬于Q)
(a^a)^b=a^ab(a>0,a、b屬于Q)
(ab)^a=a^a*b^a(a>0,a、b屬于Q)
指數(shù)函數(shù)對稱規(guī)律:
1、函數(shù)y=a^x與y=a^-x關于y軸對稱
2、函數(shù)y=a^x與y=-a^xx軸對稱
3、函數(shù)y=a^x與y=-a^-x坐標原點對稱常數(shù).
2.力函數(shù)性質歸納.
(1)所有功率函數(shù)為(0, ∞)有定義,圖像過點(1,1);
三、平面向量
兩個已知的向量從同一點O開始OA、OB,以OA、OB平行四邊形作為鄰邊OACB,以O為起點的'對角線OC就是向量OA、OB是的,這種計算法被稱為向量加法的平行四邊形法。零向量和任意向量a,有:0 a=a 0=a。|a b|≤|a| |b|。向量加法滿足所有加法操作定律。數(shù)乘運算實數(shù)λ與向量a的積是一個向量,稱為向量數(shù)乘,記錄λa|λa|=|λ||a|,當λ > 0時,λa當方向與a相同時,λ < 0時,λa當方向與a相反時,λ = 0時,λa = 0。設λ、μ所以:(1)(λμ)a = λ(μa)(2)(λ μ)a = λa μa(3)λ(a ± b) = λa ± λb(4)(-λ)a =-(λa) = λ(-a)。加法運算、減法運算、數(shù)乘運算統(tǒng)稱線性運算。兩個非零向量的數(shù)量積已知a、b,那么|a||b|cos θ叫做a與b記錄數(shù)量積或內積a?b,θ是a與b的夾角|a|cos θ(|b|cos θ)稱為向量a在b方向上(b投影方向a)。零向量和任意向量的數(shù)量積為0。a?b幾何意義:數(shù)量積a?b等于a的長度|a|與b在a投影的方向|b|cos θ的乘積。兩個向量的數(shù)量積等于相應坐標的乘積。
高一數(shù)學必修一重點知識點 6
歸納1
1、“包含”關系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2、“相等”關系(5≥5,且5≤5,則5=5)
實例:設A={x|x2—1=0}B={—1,1}“元素相同”
結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
、偃魏我粋集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
、廴绻鸄íB,BíC,那么AíC
、苋绻鸄íB同時BíA那么A=B
3、不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
歸納2
形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。
自變量x的取值范圍是不等于0的一切實數(shù)。
反比例函數(shù)圖像性質:
反比例函數(shù)的圖像為雙曲線。
由于反比例函數(shù)屬于奇函數(shù),有f(—x)=—f(x),圖像關于原點對稱。
另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。
上面給出了k分別為正和負(2和—2)時的函數(shù)圖像。
當K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)
當K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)
反比例函數(shù)圖像只能無限趨向于坐標軸,無法和坐標軸相交。
知識點:
1、過反比例函數(shù)圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。
2、對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)
歸納3
方程的根與函數(shù)的零點
1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。
2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:方程有實數(shù)根,函數(shù)的圖象與坐標軸有交點,函數(shù)有零點。
3、函數(shù)零點的求法:
。1)(代數(shù)法)求方程的實數(shù)根;
。2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質找出零點。
4、二次函數(shù)的零點:
。1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點。
。2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點。
。3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點。
歸納3
形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。
自變量x的取值范圍是不等于0的一切實數(shù)。
反比例函數(shù)圖像性質:
反比例函數(shù)的圖像為雙曲線。
由于反比例函數(shù)屬于奇函數(shù),有f(—x)=—f(x),圖像關于原點對稱。
另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的`圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。
如圖,上面給出了k分別為正和負(2和—2)時的函數(shù)圖像。
當K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)
當K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)
反比例函數(shù)圖像只能無限趨向于坐標軸,無法和坐標軸相交。
知識點:
1、過反比例函數(shù)圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。
2、對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)
歸納4
冪函數(shù)的性質:
對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設a=—k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(—∞,0)∪(0,+∞)、因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:
排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);
排除了為0這種可能,即對于x<0x="">0的所有實數(shù),q不能是偶數(shù);
排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。
總結起來,就可以得到當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);
如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。
在x大于0時,函數(shù)的值域總是大于0的實數(shù)。
在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。
而只有a為正數(shù),0才進入函數(shù)的值域。
由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況、
可以看到:
(1)所有的圖形都通過(1,1)這點。
。2)當a大于0時,冪函數(shù)為單調遞增的,而a小于0時,冪函數(shù)為單調遞減函數(shù)。
。3)當a大于1時,冪函數(shù)圖形下凹;當a小于1大于0時,冪函數(shù)圖形上凸。
。4)當a小于0時,a越小,圖形傾斜程度越大。
。5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點。
。6)顯然冪函數(shù)無界。
解題方法:換元法
解數(shù)學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這種方法叫換元法,換元的實質是轉化,關鍵是構造元和設元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標準型問題標準化、復雜問題簡單化,變得容易處理。
換元法又稱輔助元素法、變量代換法。通過引進新的變量,可以把分散的條件聯(lián)系起來,隱含的條件顯露出來,或者把條件與結論聯(lián)系起來;蛘咦?yōu)槭煜さ男问剑褟碗s的計算和推證簡化。
它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問題中有廣泛的應用。
高一數(shù)學必修一重點知識點 7
1.多面體的結構特征
(1)棱柱有兩個面相互平行,其余各面都是平行四邊形,每相鄰兩個四邊形的公共邊平行。
正棱柱:側棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多邊形,側棱垂直于底面,側面是矩形。
(2)棱錐的底面是任意多邊形,側面是有一個公共頂點的三角形。
正棱錐:底面是正多邊形,頂點在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐.特別地,各棱均相等的正三棱錐叫正四面體.反過來,正棱錐的底面是正多邊形,且頂點在底面的射影是底面正多邊形的中心。
(3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。
2.旋轉體的結構特征
(1)圓柱可以由矩形繞一邊所在直線旋轉一周得到.
(2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉一周得到.
(3)圓臺可以由直角梯形繞直角腰所在直線旋轉一周或等腰梯形繞上下底面中心所在直線旋轉半周得到,也可由平行于底面的平面截圓錐得到。
(4)球可以由半圓面繞直徑旋轉一周或圓面繞直徑旋轉半周得到。
3.空間幾何體的三視圖
空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的.,三視圖包括正視圖、側視圖、俯視圖。
三視圖的長度特征:“長對正,寬相等,高平齊”,即正視圖和側視圖一樣高,正視圖和俯視圖一樣長,側視圖和俯視圖一樣寬.若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實、虛線的畫法。
4.空間幾何體的直觀圖
空間幾何體的直觀圖常用斜二測畫法來畫,基本步驟是:
(1)畫幾何體的底面
在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點O,畫直觀圖時,把它們畫成對應的x′軸、y′軸,兩軸相交于點O′,且使∠x′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x′軸、y′軸.已知圖形中平行于x軸的線段,在直觀圖中長度不變,平行于y軸的線段,長度變?yōu)樵瓉淼囊话搿?/p>
(2)畫幾何體的高
在已知圖形中過O點作z軸垂直于xOy平面,在直觀圖中對應的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z′軸且長度不變。
【高一數(shù)學必修一重點知識點】相關文章:
高一數(shù)學必修一教案02-06
高中數(shù)學高一數(shù)學必修一知識點與學習方法07-21
高中數(shù)學高一數(shù)學必修一知識點與學習方法最新09-14
高中數(shù)學高一數(shù)學必修一知識點與學習方法(熱)09-16
人教版高一數(shù)學必修一教案04-24
高一數(shù)學必修四必修五教學計劃06-16
高中數(shù)學必修一知識點總結05-31
高一數(shù)學必修五教學計劃06-25
高中數(shù)學必修一知識點總結(優(yōu)秀)07-24
高一數(shù)學上學期必修一教學計劃06-22