當(dāng)前位置:育文網(wǎng)>高中>高中數(shù)學(xué)> 高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間:2024-05-18 08:48:03 高中數(shù)學(xué) 我要投稿

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(實(shí)用15篇)

  總結(jié)是把一定階段內(nèi)的有關(guān)情況分析研究,做出有指導(dǎo)性結(jié)論的書面材料,它能使我們及時(shí)找出錯(cuò)誤并改正,快快來寫一份總結(jié)吧。那么總結(jié)要注意有什么內(nèi)容呢?以下是小編精心整理的高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),希望對(duì)大家有所幫助。

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(實(shí)用15篇)

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

  1.①與(0°≤<360°)終邊相同的角的集合(角與角的終邊重合):|k360,kZ

 、诮K邊在x軸上的角的集合:|k180,kZ③終邊在y軸上的角的集合:|k18090,kZ

 、芙K邊在坐標(biāo)軸上的角的集合:|k90,kZ

 、萁K邊在y=x軸上的角的集合:|k18045,kZ⑥終邊在yx軸上的角的集合:|k18045,kZ

 、呷艚桥c角的終邊關(guān)于x軸對(duì)稱,則角與角的關(guān)系:360k

  ⑧若角與角的終邊關(guān)于y軸對(duì)稱,則角與角的關(guān)系:360k180

 、崛艚桥c角的終邊在一條直線上,則角與角的關(guān)系:180k

 、饨桥c角的終邊互相垂直,則角與角的關(guān)系:360k902.角度與弧度的互換關(guān)系:360°=2180°=1°=0.017451=57.30°=57°18′3、弧長(zhǎng)公式:l||r.扇形面積公式:s12扇形2lr12||r

  2、三角函數(shù)在各象限的符號(hào):(一全二正弦,三切四余弦)

  yy+y+-+-+-o-x-o+x+o-x正弦、余割余弦、正割正切、余切

  3.三角函數(shù)的定義域:

  三角函數(shù)定義域f(x)sinxx|xRf(x)cosxx|xRf(x)tanxx|xR且xk1,kZ2

  f(x)cotxx|xR且xk,kZ

  4、同角三角函數(shù)的基本關(guān)系式:

  sincostan

  cossincot

  tancot1sin2cos217、誘導(dǎo)公式:

  把k2“奇變偶不變,符號(hào)看象限”的三角函數(shù)化為的三角函數(shù),概括為:三角函數(shù)的公式:

 。ㄒ唬┗娟P(guān)系

  公式組一sinxcscx=1tanx=sinx22

  cosxsinx+cosx=1cosxsecx=1x=cosx2sinx1+tanx=sec2xtanxcotx=11+cot2x=csc2x

  公式組二公式組三

  sin(2kx)sinxsin(x)sinxcos(2kx)cosxcos(x)cosxtan(2kx)tanxtan(x)tanxcot(2kx)cotxcot(x)cotx

  公式組四公式組五sin(x)sinxsin(2x)sinxcos(x)cosxcos(2x)cosxtan(x)tanxtan(2x)tanxcot(x)cotx

  cot(2x)cotx(二)角與角之間的互換

  cos()coscossinsincos()coscossinsin

  公式組六

  sin(x)sinxcos(x)cosxtan(x)tanx

  cot(x)cotxsin22sincos-2-

  cos2cos2sin2cos112sin

  2tan1tan2222sin()sincoscossintan2sin()sincoscossintan()tantan1tantan

  tantan1tantan

  tan()

  5.正弦、余弦、正切、余切函數(shù)的圖象的性質(zhì):

  ysinxycosxytanxycotxyAsinx(A、>0)定義域RR值域周期性奇偶性單調(diào)性[1,1][1,1]1x|xR且xk,kZ2x|xR且xk,kZRRR奇函數(shù)A,A22奇函數(shù)2當(dāng)當(dāng)0,非奇非偶奇函數(shù)偶函數(shù)奇函數(shù)0,上為上為上為增函上為增函數(shù);上為增增函數(shù);增函數(shù);數(shù);上為減函數(shù)函數(shù);上為減函數(shù)上為減上為減上為減函數(shù)函數(shù)函數(shù)注意:①ysinx與ysinx的單調(diào)性正好相反;ycosx與ycosx的單調(diào)性也同樣相反.一般地,若yf(x)在[a,b]上遞增(減),則yf(x)在[a,b]上遞減(增).②ysinx與的ycosx周期是.

  ▲y

  Ox

  0)的周期T③ysin(x)或yx2cos(x)(2.

  ytan的周期為2(TT2,如圖,翻折無效).

 、躽sin(x)的對(duì)稱軸方程是xk2(

  kZ),對(duì)稱中心(

  12k,0);

  ycos(x)的對(duì)稱軸方程是xk(

  kZ),對(duì)稱中心(k,0);

  yatn(

  x)的對(duì)稱中心(

  k2,0).

  三角函數(shù)圖像

  數(shù)y=Asin(ωx+φ)的振幅|A|,周期T2||,頻率f1T||2,相位x;初

  相(即當(dāng)x=0時(shí)的相位).(當(dāng)A>0,ω>0時(shí)以上公式可去絕對(duì)值符號(hào)),

  由y=sinx的圖象上的點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)伸長(zhǎng)(當(dāng)|A|>1)或縮短(當(dāng)0<|A|<1)到原來的|A|倍,得到y(tǒng)=Asinx的`圖象,叫做振幅變換或叫沿y軸的伸縮變換.(用y/A替換y)

  由y=sinx的圖象上的點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)伸長(zhǎng)(0<|ω|<1)或縮短(|ω|>1)到原來的|1|倍,得到y(tǒng)=sinωx的圖象,叫做周期變換或叫做沿x軸的伸縮變換.(用

  ωx替換x)

  由y=sinx的圖象上所有的點(diǎn)向左(當(dāng)φ>0)或向右(當(dāng)φ<0)平行移動(dòng)|φ|個(gè)單位,得到y(tǒng)=sin(x+φ)的圖象,叫做相位變換或叫做沿x軸方向的平移.(用x+φ替換x)

  由y=sinx的圖象上所有的點(diǎn)向上(當(dāng)b>0)或向下(當(dāng)b<0)平行移動(dòng)|b|個(gè)單位,得到y(tǒng)=sinx+b的圖象叫做沿y軸方向的平移.(用y+(-b)替換y)

  由y=sinx的圖象利用圖象變換作函數(shù)y=Asin(ωx+φ)(A>0,ω>0)(x∈R)的圖象,要特別注意:當(dāng)周期變換和相位變換的先后順序不同時(shí),原圖象延x軸量伸縮量的區(qū)別。

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

  數(shù)學(xué)立體幾何知識(shí)點(diǎn)

  1.平面的基本性質(zhì):掌握三個(gè)公理及推論,會(huì)說明共點(diǎn)、共線、共面問題。

  能夠用斜二測(cè)法作圖。

  2.空間兩條直線的位置關(guān)系:平行、相交、異面的概念;

  會(huì)求異面直線所成的角和異面直線間的距離;證明兩條直線是異面直線一般用反證法。

  3.直線與平面

 、傥恢藐P(guān)系:平行、直線在平面內(nèi)、直線與平面相交。

 、谥本與平面平行的判斷方法及性質(zhì),判定定理是證明平行問題的依據(jù)。

  ③直線與平面垂直的證明方法有哪些?

 、苤本與平面所成的角:關(guān)鍵是找它在平面內(nèi)的射影,范圍是

  ⑤三垂線定理及其逆定理:每年高考試題都要考查這個(gè)定理. 三垂線定理及其逆定理主要用于證明垂直關(guān)系與空間圖形的度量.如:證明異面直線垂直,確定二面角的平面角,確定點(diǎn)到直線的垂線.

  4.平面與平面

  (1)位置關(guān)系:平行、相交,(垂直是相交的一種特殊情況)

  (2)掌握平面與平面平行的證明方法和性質(zhì)。

  (3)掌握平面與平面垂直的證明方法和性質(zhì)定理。尤其是已知兩平面垂直,一般是依據(jù)性質(zhì)定理,可以證明線面垂直。

  (4)兩平面間的距離問題→點(diǎn)到面的距離問題→

  (5)二面角。二面角的平面交的作法及求法:

 、俣x法,一般要利用圖形的對(duì)稱性;一般在計(jì)算時(shí)要解斜三角形;

  ②垂線、斜線、射影法,一般要求平面的垂線好找,一般在計(jì)算時(shí)要解一個(gè)直角三角形。

 、凵溆懊娣e法,一般是二面交的兩個(gè)面只有一個(gè)公共點(diǎn),兩個(gè)面的交線不容易找到時(shí)用此法。

  高中數(shù)學(xué)立體幾何知識(shí)點(diǎn)

  數(shù)學(xué)知識(shí)點(diǎn)1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

  (1)棱柱:

  幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到

  截面距離與高的比的平方。

  (3)棱臺(tái):

  幾何特征:①上下底面是相似的平行多邊形 ②側(cè)面是梯形 ③側(cè)棱交于原棱錐的頂點(diǎn)

  (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

  幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖

  是一個(gè)矩形。

  (5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

  幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。

  (6)圓臺(tái):定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

  幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。

  (7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體 幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

  數(shù)學(xué)知識(shí)點(diǎn)2、空間幾何體的三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、 俯視圖(從上向下)

  注:正視圖反映了物體的高度和長(zhǎng)度;俯視圖反映了物體的長(zhǎng)度和寬度;側(cè)視圖反映了物體的高度和寬度。

  數(shù)學(xué)知識(shí)點(diǎn)3、空間幾何體的直觀圖——斜二測(cè)畫法

  斜二測(cè)畫法特點(diǎn):①原來與x軸平行的線段仍然與x平行且長(zhǎng)度不變;

 、谠瓉砼cy軸平行的線段仍然與y平行,長(zhǎng)度為原來的一半。

  快速提高數(shù)學(xué)成績(jī)的方法

  1、運(yùn)算是學(xué)好數(shù)學(xué)的基本功.初中階段是培養(yǎng)數(shù)學(xué)運(yùn)算能力的黃金時(shí)期,初中代數(shù)的`主要內(nèi)容都和運(yùn)算有關(guān),如有初中數(shù)學(xué)理數(shù)的運(yùn)算、整式的運(yùn)算、因式分解、分式的運(yùn)算、根式的運(yùn)算和解方程.初中運(yùn)算能力不過關(guān),會(huì)直接影響以后數(shù)學(xué)的學(xué)習(xí)。

  2、做完一節(jié)的全部練習(xí)后,對(duì)照答案進(jìn)行批改.千萬別做一道對(duì)一道的答案,因?yàn)檫@樣會(huì)造成思維中斷和對(duì)答案的依賴心理;

  先易后難,遇到不會(huì)的題一定要先跳過去,以平穩(wěn)的速度過一遍所有題目,先徹底解決會(huì)做的初中數(shù)學(xué);不會(huì)的題過多時(shí),千萬別急躁、泄氣,其實(shí)你認(rèn)為困難的題,對(duì)其他人來講也是如此,只不過需要點(diǎn)時(shí)間和耐心;對(duì)于例題,有兩種處理方式:“先做后看”與“先看后測(cè)”。

  3、最重要就是興趣問題,學(xué)習(xí)興趣是一件非常重要的事情,如何培養(yǎng)我們的學(xué)習(xí)興趣呢?首先,我們自己要做的就是調(diào)整好我們的情緒,很多同學(xué)一提起數(shù)學(xué)這兩個(gè)字,負(fù)面情緒馬上出現(xiàn),這樣,不用其他人,你自己已經(jīng)把自己給放棄了!因此,想學(xué)好初中數(shù)學(xué),最重要的是調(diào)整好自己的情緒,只有有了積極的情緒,才會(huì)有高效率的學(xué)習(xí)。

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

  集合的分類:

 。1)按元素屬性分類,如點(diǎn)集,數(shù)集。

  (2)按元素的個(gè)數(shù)多少,分為有/無限集

  關(guān)于集合的概念:

  (1)確定性:作為一個(gè)集合的元素,必須是確定的,這就是說,不能確定的對(duì)象就不能構(gòu)成集合,也就是說,給定一個(gè)集合,任何一個(gè)對(duì)象是不是這個(gè)集合的元素也就確定了。

  (2)互異性:對(duì)于一個(gè)給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入同一個(gè)集合時(shí)只能算作集合的一個(gè)元素。

  (3)無序性:判斷一些對(duì)象時(shí)候構(gòu)成集合,關(guān)鍵在于看這些對(duì)象是否有明確的標(biāo)準(zhǔn)。

  集合可以根據(jù)它含有的元素的個(gè)數(shù)分為兩類:

  含有有限個(gè)元素的集合叫做有限集,含有無限個(gè)元素的集合叫做無限集。

  非負(fù)整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N。

  在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N_。

  整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z。

  有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q。(有理數(shù)是整數(shù)和分?jǐn)?shù)的統(tǒng)稱,一切有理數(shù)都可以化成分?jǐn)?shù)的形式。)

  實(shí)數(shù)全體構(gòu)成的集合,叫做實(shí)數(shù)集,記作R。(包括有理數(shù)和無理數(shù)。其中無理數(shù)就是無限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分?jǐn)?shù)。數(shù)學(xué)上,實(shí)數(shù)直觀地定義為和數(shù)軸上的'點(diǎn)一一對(duì)應(yīng)的數(shù)。)

  1、列舉法:如果一個(gè)集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號(hào)“{}”內(nèi)表示這個(gè)集合,例如,由兩個(gè)元素0,1構(gòu)成的集合可表示為{0,1}。

  有些集合的`元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個(gè)元素作為代表,其他元素用省略號(hào)表示。

  例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}。

  無限集有時(shí)也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}。

  2、描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來描述。

  例如:正偶數(shù)構(gòu)成的集合,它的每一個(gè)元素都具有性質(zhì):“能被2整除,且大于0”

  而這個(gè)集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括號(hào)內(nèi)豎線左邊的X表示這個(gè)集合的任意一個(gè)元素,元素X從實(shí)數(shù)集合中取值,在豎線右邊寫出只有集合內(nèi)的元素x才具有的性質(zhì)。

  一般地,如果在集合I中,屬于集合A的任意一個(gè)元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個(gè)特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡(jiǎn)稱描述法。

  例如:集合A={x∈R│x2—1=0}的特征是X2—1=0

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

  一、函數(shù)對(duì)稱性:

  1.2.3.4.5.6.7.8.

  f(a+x)=f(a-x)==>f(x)關(guān)于x=a對(duì)稱

  f(a+x)=f(b-x)==>f(x)關(guān)于x=(a+b)/2對(duì)稱f(a+x)=-f(a-x)==>f(x)關(guān)于點(diǎn)(a,0)對(duì)稱f(a+x)=-f(a-x)+2b==>f(x)關(guān)于點(diǎn)(a,b)對(duì)稱

  f(a+x)=-f(b-x)+c==>f(x)關(guān)于點(diǎn)[(a+b)/2,c/2]對(duì)稱y=f(x)與y=f(-x)關(guān)于x=0對(duì)稱y=f(x)與y=-f(x)關(guān)于y=0對(duì)稱y=f(x)與y=-f(-x)關(guān)于點(diǎn)(0,0)對(duì)稱

  例1:證明函數(shù)y=f(a+x)與y=f(b-x)關(guān)于x=(b-a)/2對(duì)稱。

  【解析】求兩個(gè)不同函數(shù)的對(duì)稱軸,用設(shè)點(diǎn)和對(duì)稱原理作解。

  證明:假設(shè)任意一點(diǎn)P(m,n)在函數(shù)y=f(a+x)上,令關(guān)于x=t的對(duì)稱點(diǎn)Q(2tm,n),那么n=f(a+m)=f[b(2tm)]

  ∴b2t=a,==>t=(b-a)/2,即證得對(duì)稱軸為x=(b-a)/2.

  例2:證明函數(shù)y=f(a-x)與y=f(xb)關(guān)于x=(a+b)/2對(duì)稱。

  證明:假設(shè)任意一點(diǎn)P(m,n)在函數(shù)y=f(a-x)上,令關(guān)于x=t的對(duì)稱點(diǎn)Q(2tm,n),那么n=f(a-m)=f[(2tm)b]

  ∴2t-b=a,==>t=(a+b)/2,即證得對(duì)稱軸為x=(a+b)/2.

  二、函數(shù)的周期性

  令a,b均不為零,若:

  1、函數(shù)y=f(x)存在f(x)=f(x+a)==>函數(shù)最小正周期T=|a|

  2、函數(shù)y=f(x)存在f(a+x)=f(b+x)==>函數(shù)最小正周期T=|b-a|

  3、函數(shù)y=f(x)存在f(x)=-f(x+a)==>函數(shù)最小正周期T=|2a|

  4、函數(shù)y=f(x)存在f(x+a)=1/f(x)==>函數(shù)最小正周期T=|2a|

  5、函數(shù)y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函數(shù)最小正周期T=|4a|

  這里只對(duì)第2~5點(diǎn)進(jìn)行解析。

  第2點(diǎn)解析:

  令X=x+a,f[a+(xa)]=f[b+(xa)]∴f(x)=f(x+ba)==>T=ba

  第3點(diǎn)解析:同理,f(x+a)=-f(x+2a)……

 、賔(x)=-f(x+a)……

 、凇嘤散俸廷诮獾胒(x)=f(x+2a)∴函數(shù)最小正周期T=|2a|

  第4點(diǎn)解析:

  f(x+2a)=1/f(x+a)==>f(x+a)=1/f(x+2a)

  又∵f(x+a)=1/f(x)∴f(x)=f(x+2a)

  ∴函數(shù)最小正周期T=|2a|

  第5點(diǎn)解析:

  ∵f(x+a)={2[1f(x)]}/[1f(x)]=2/[1f(x)]1

  ∴1f(x)=2/[f(x)+1]移項(xiàng)得f(x)=12/[f(x+a)+1]

  那么f(x-a)=12/[f(x)+1],等式右邊通分得f(x-a)=[f(x)1]/[1+f(x)]∴1/[f(x-a)=[1+f(x)]/[f(x)1],即-1/[f(x-a)=[1+f(x)]/[1-f(x)]∴-1/[f(x-a)=f(x+a),-1/[f(x2a)=f(x)==>-1/f(x)=f(x-2a)①,又∵-1/f(x)=f(x+2a)②,

  由①②得f(x+2a)=f(x-2a)==>f(x)=f(x+4a)

  ∴函數(shù)最小正周期T=|4a|

  擴(kuò)展閱讀:函數(shù)對(duì)稱性、周期性和奇偶性的規(guī)律總結(jié)

  函數(shù)對(duì)稱性、周期性和奇偶性規(guī)律總結(jié)

 。ㄒ唬┩缓瘮(shù)的函數(shù)的奇偶性與對(duì)稱性:(奇偶性是一種特殊的對(duì)稱性)

  1、奇偶性:

  (1)奇函數(shù)關(guān)于(0,0)對(duì)稱,奇函數(shù)有關(guān)系式f(x)f(x)0

 。2)偶函數(shù)關(guān)于y(即x=0)軸對(duì)稱,偶函數(shù)有關(guān)系式f(x)f(x)

  2、奇偶性的拓展:同一函數(shù)的對(duì)稱性

 。1)函數(shù)的軸對(duì)稱:

  函數(shù)yf(x)關(guān)于xa對(duì)稱f(ax)f(ax)

  f(ax)f(ax)也可以寫成f(x)f(2ax)或f(x)f(2ax)

  若寫成:f(ax)f(bx),則函數(shù)yf(x)關(guān)于直線x稱

 。╝x)(bx)ab對(duì)22證明:設(shè)點(diǎn)(x1,y1)在yf(x)上,通過f(x)f(2ax)可知,y1f(x1)f(2ax1),

  即點(diǎn)(2ax1,y1)也在yf(x)上,而點(diǎn)(x1,y1)與點(diǎn)(2ax1,y1)關(guān)于x=a對(duì)稱。得證。

  說明:關(guān)于xa對(duì)稱要求橫坐標(biāo)之和為2a,縱坐標(biāo)相等。

  ∵(ax1,y1)與(ax1,y1)關(guān)于xa對(duì)稱,∴函數(shù)yf(x)關(guān)于xa對(duì)稱

  f(ax)f(ax)

  ∵(x1,y1)與(2ax1,y1)關(guān)于xa對(duì)稱,∴函數(shù)yf(x)關(guān)于xa對(duì)稱

  f(x)f(2ax)

  ∵(x1,y1)與(2ax1,y1)關(guān)于xa對(duì)稱,∴函數(shù)yf(x)關(guān)于xa對(duì)稱

  f(x)f(2ax)

 。2)函數(shù)的點(diǎn)對(duì)稱:

  函數(shù)yf(x)關(guān)于點(diǎn)(a,b)對(duì)稱f(ax)f(ax)2b

  上述關(guān)系也可以寫成f(2ax)f(x)2b或f(2ax)f(x)2b

  若寫成:f(ax)f(bx)c,函數(shù)yf(x)關(guān)于點(diǎn)(abc,)對(duì)稱2證明:設(shè)點(diǎn)(x1,y1)在yf(x)上,即y1f(x1),通過f(2ax)f(x)2b可知,f(2ax1)f(x1)2b,所以f(2ax1)2bf(x1)2by1,所以點(diǎn)(2ax1,2by1)也在yf(x)上,而點(diǎn)(2ax1,2by1)與(x1,y1)關(guān)于(a,b)對(duì)稱。得證。

  說明:關(guān)于點(diǎn)(a,b)對(duì)稱要求橫坐標(biāo)之和為2a,縱坐標(biāo)之和為2b,如(ax)與(ax)之和為2a。

 。3)函數(shù)yf(x)關(guān)于點(diǎn)yb對(duì)稱:假設(shè)函數(shù)關(guān)于yb對(duì)稱,即關(guān)于任一個(gè)x值,都有兩個(gè)y值與其對(duì)應(yīng),顯然這不符合函數(shù)的定義,故函數(shù)自身不可能關(guān)于yb對(duì)稱。但在曲線c(x,y)=0,則有可能會(huì)出現(xiàn)關(guān)于yb對(duì)稱,比如圓c(x,y)x2y240它會(huì)關(guān)于y=0對(duì)稱。

 。4)復(fù)合函數(shù)的奇偶性的`性質(zhì)定理:

  性質(zhì)1、復(fù)數(shù)函數(shù)y=f[g(x)]為偶函數(shù),則f[g(-x)]=f[g(x)]。復(fù)合函數(shù)y=f[g(x)]為奇函數(shù),則f[g(-x)]=-f[g(x)]。

  性質(zhì)2、復(fù)合函數(shù)y=f(x+a)為偶函數(shù),則f(x+a)=f(-x+a);復(fù)合函數(shù)y=f(x+a)為奇函數(shù),則f(-x+a)=-f(a+x)。

  性質(zhì)3、復(fù)合函數(shù)y=f(x+a)為偶函數(shù),則y=f(x)關(guān)于直線x=a軸對(duì)稱。復(fù)合函數(shù)y=f(x+a)為奇函數(shù),則y=f(x)關(guān)于點(diǎn)(a,0)中心對(duì)稱。

  總結(jié):x的系數(shù)一個(gè)為1,一個(gè)為-1,相加除以2,可得對(duì)稱軸方程

  總結(jié):x的系數(shù)一個(gè)為1,一個(gè)為-1,f(x)整理成兩邊,其中一個(gè)的系數(shù)是為1,另一個(gè)為-1,存在對(duì)稱中心。

  總結(jié):x的系數(shù)同為為1,具有周期性。

 。ǘ﹥蓚(gè)函數(shù)的圖象對(duì)稱性

  1、yf(x)與yf(x)關(guān)于X軸對(duì)稱。

  證明:設(shè)yf(x)上任一點(diǎn)為(x1,y1)則y1f(x1),所以yf(x)經(jīng)過點(diǎn)(x1,y1)

  ∵(x1,y1)與(x1,y1)關(guān)于X軸對(duì)稱,∴y1f(x1)與yf(x)關(guān)于X軸對(duì)稱.注:換種說法:yf(x)與yg(x)f(x)若滿足f(x)g(x),即它們關(guān)于y0對(duì)稱。

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

  一、集合、簡(jiǎn)易邏輯

  1、集合;

  2、子集;

  3、補(bǔ)集;

  4、交集;

  5、并集;

  6、邏輯連結(jié)詞;

  7、四種命題;

  8、充要條件。

  二、函數(shù)

  1、映射;

  2、函數(shù);

  3、函數(shù)的單調(diào)性;

  4、反函數(shù);

  5、互為反函數(shù)的函數(shù)圖象間的關(guān)系;

  6、指數(shù)概念的擴(kuò)充;

  7、有理指數(shù)冪的運(yùn)算;

  8、指數(shù)函數(shù);

  9、對(duì)數(shù);

  10、對(duì)數(shù)的運(yùn)算性質(zhì);

  11、對(duì)數(shù)函數(shù)。

  12、函數(shù)的應(yīng)用舉例。

  三、數(shù)列(12課時(shí),5個(gè))

  1、數(shù)列;

  2、等差數(shù)列及其通項(xiàng)公式;

  3、等差數(shù)列前n項(xiàng)和公式;

  4、等比數(shù)列及其通頂公式;

  5、等比數(shù)列前n項(xiàng)和公式。

  四、三角函數(shù)

  1、角的概念的推廣;

  2、弧度制;

  3、任意角的三角函數(shù);

  4、單位圓中的三角函數(shù)線;

  5、同角三角函數(shù)的基本關(guān)系式;

  6、正弦、余弦的誘導(dǎo)公式;

  7、兩角和與差的正弦、余弦、正切;

  8、二倍角的正弦、余弦、正切;

  9、正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);

  10、周期函數(shù);

  11、函數(shù)的奇偶性;

  12、函數(shù)的圖象;

  13、正切函數(shù)的圖象和性質(zhì);

  14、已知三角函數(shù)值求角;

  15、正弦定理;

  16、余弦定理;

  17、斜三角形解法舉例。

  五、平面向量

  1、向量;

  2、向量的加法與減法;

  3、實(shí)數(shù)與向量的積;

  4、平面向量的坐標(biāo)表示;

  5、線段的定比分點(diǎn);

  6、平面向量的數(shù)量積;

  7、平面兩點(diǎn)間的距離;

  8、平移。

  六、不等式

  1、不等式;

  2、不等式的'基本性質(zhì);

  3、不等式的證明;

  4、不等式的解法;

  5、含絕對(duì)值的不等式。

  七、直線和圓的方程

  1、直線的傾斜角和斜率;

  2、直線方程的點(diǎn)斜式和兩點(diǎn)式;

  3、直線方程的一般式;

  4、兩條直線平行與垂直的條件;

  5、兩條直線的交角;

  6、點(diǎn)到直線的距離;

  7、用二元一次不等式表示平面區(qū)域;

  8、簡(jiǎn)單線性規(guī)劃問題;

  9、曲線與方程的概念;

  10、由已知條件列出曲線方程;

  11、圓的標(biāo)準(zhǔn)方程和一般方程;

  12、圓的參數(shù)方程。

  八、圓錐曲線

  1、橢圓及其標(biāo)準(zhǔn)方程;

  2、橢圓的簡(jiǎn)單幾何性質(zhì);

  3、橢圓的參數(shù)方程;

  4、雙曲線及其標(biāo)準(zhǔn)方程;

  5、雙曲線的簡(jiǎn)單幾何性質(zhì);

  6、拋物線及其標(biāo)準(zhǔn)方程;

  7、拋物線的簡(jiǎn)單幾何性質(zhì)。

  九、直線、平面、簡(jiǎn)單何體

  1、平面及基本性質(zhì);

  2、平面圖形直觀圖的畫法;

  3、平面直線;

  4、直線和平面平行的判定與性質(zhì);

  5、直線和平面垂直的判定與性質(zhì);

  6、三垂線定理及其逆定理;

  7、兩個(gè)平面的位置關(guān)系;

  8、空間向量及其加法、減法與數(shù)乘;

  9、空間向量的坐標(biāo)表示;

  10、空間向量的數(shù)量積;

  11、直線的方向向量;

  12、異面直線所成的角;

  13、異面直線的公垂線;

  14、異面直線的距離;

  15、直線和平面垂直的性質(zhì);

  16、平面的法向量;

  17、點(diǎn)到平面的距離;

  18、直線和平面所成的角;

  19、向量在平面內(nèi)的射影;

  20、平面與平面平行的性質(zhì);

  21、平行平面間的距離;

  22、二面角及其平面角;

  23、兩個(gè)平面垂直的判定和性質(zhì);

  24、多面體;

  25、棱柱;

  26、棱錐;

  27、正多面體;

  28、球。

  十、排列、組合、二項(xiàng)式定理

  1、分類計(jì)數(shù)原理與分步計(jì)數(shù)原理;

  2、排列;

  3、排列數(shù)公式;

  4、組合;

  5、組合數(shù)公式;

  6、組合數(shù)的兩個(gè)性質(zhì);

  7、二項(xiàng)式定理;

  8、二項(xiàng)展開式的性質(zhì)。

  十一、概率

  1、隨機(jī)事件的概率;

  2、等可能事件的概率;

  3、互斥事件有一個(gè)發(fā)生的概率;

  4、相互獨(dú)立事件同時(shí)發(fā)生的概率;

  5、獨(dú)立重復(fù)試驗(yàn)。

  必修一函數(shù)重點(diǎn)知識(shí)整理

  1、函數(shù)的奇偶性

 。1)若f(x)是偶函數(shù),那么f(x)=f(—x);

  (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

  (3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(—x)=0或(f(x)≠0);

  (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性;

  (5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

  2、復(fù)合函數(shù)的有關(guān)問題

  (1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的`定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

 。2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

  3、函數(shù)圖像(或方程曲線的對(duì)稱性)

 。1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上;

 。2)證明圖像C1與C2的對(duì)稱性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在C2上,反之亦然;

 。3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=—x+a)的對(duì)稱曲線C2的方程為f(y—a,x+a)=0(或f(—y+a,—x+a)=0);

 。4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線C2方程為:f(2a—x,2b—y)=0;

 。5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a—x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱;

  (6)函數(shù)y=f(x—a)與y=f(b—x)的圖像關(guān)于直線x=對(duì)稱;

  4、函數(shù)的周期性

 。1)y=f(x)對(duì)x∈R時(shí),f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

  (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2︱a︱的周期函數(shù);

  (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4︱a︱的周期函數(shù);

 。4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2的周期函數(shù);

 。5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

 。6)y=f(x)對(duì)x∈R時(shí),f(x+a)=—f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

  5、方程k=f(x)有解k∈D(D為f(x)的值域);

  6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

  7、(1)(a>0,a≠1,b>0,n∈R+);

 。2)l og a N=(a>0,a≠1,b>0,b≠1);

  (3)l og a b的符號(hào)由口訣“同正異負(fù)”記憶;

  (4)a log a N= N(a>0,a≠1,N>0);

  8、判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):

  (1)A中元素必須都有象且唯一;

 。2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9、能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

  10、對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:

 。1)定義域上的單調(diào)函數(shù)必有反函數(shù);

  (2)奇函數(shù)的反函數(shù)也是奇函數(shù);

  (3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);

  (4)周期函數(shù)不存在反函數(shù);

  (5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;

 。6)y=f(x)與y=f—1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)。

  11、處理二次函數(shù)的問題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對(duì)稱軸與所給區(qū)間的相對(duì)位置關(guān)系;

  12、依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類參數(shù)的范圍問題

  13、恒成立問題的處理方法:

  (1)分離參數(shù)法;

  (2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解。

  拓展閱讀:高中數(shù)學(xué)復(fù)習(xí)方法

  1、把答案蓋住看例題

  例題不能帶著答案去看,不然會(huì)認(rèn)為自己就是這么,其實(shí)自己并沒有理解透徹。

  所以,在看例題時(shí),把解答蓋住,自己去做,做完或做不出時(shí)再去看。這時(shí)要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。

  經(jīng)過上面的訓(xùn)練,自己的思維空間擴(kuò)展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個(gè)批注,說明此題的“題眼”及巧妙之處,收獲會(huì)更大。

  2、研究每題都考什么

  數(shù)學(xué)能力的提高離不開做題,“熟能生巧”這個(gè)簡(jiǎn)單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),而是要通過一題聯(lián)想到很多題。

  3、錯(cuò)一次反思一次

  每次業(yè)及考試或多或少會(huì)發(fā)生些錯(cuò)誤,這并不可怕,要緊的是避免類似的錯(cuò)誤再次重現(xiàn)。因此平時(shí)注意把錯(cuò)題記下來。

  學(xué)生若能將每次考試或練習(xí)中出現(xiàn)的錯(cuò)誤記錄下來分析,并盡力保證在下次考試時(shí)不發(fā)生同樣錯(cuò)誤,那么以后人生中最重要的高考也就能避免犯錯(cuò)了。

  4、分析試卷總結(jié)經(jīng)驗(yàn)

  每次考試結(jié)束試卷發(fā)下來,要認(rèn)真分析得失,總結(jié)經(jīng)驗(yàn)教訓(xùn)。特別是將試卷中出現(xiàn)的錯(cuò)誤進(jìn)行分類。

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

  1、你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測(cè)畫法)。

  2、線面平行和面面平行的定義、判定和性質(zhì)定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯(lián)系和轉(zhuǎn)化在解決立幾問題中的應(yīng)用是怎樣的?每種平行之間轉(zhuǎn)換的條件是什么?

  3、三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關(guān)鍵是什么嗎?(一面、四線、三垂直、立柱即面的垂線是關(guān)鍵)一面四直線,立柱是關(guān)鍵,垂直三處見

  3、線面平行的判定定理和性質(zhì)定理在應(yīng)用時(shí)都是三個(gè)條件,但這三個(gè)條件易混為一談;面面平行的判定定理易把條件錯(cuò)誤地記為”一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面內(nèi)的兩條相交直線分別平行”而導(dǎo)致證明過程跨步太大。

  4、求兩條異面直線所成的角、直線與平面所成的角和二面角時(shí),如果所求的角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法。

  5、異面直線所成角利用“平移法”求解時(shí),一定要注意平移后所得角等于所求角(或其補(bǔ)角),特別是題目告訴異面直線所成角,應(yīng)用時(shí)一定要從題意出發(fā),是用銳角還是其補(bǔ)角,還是兩種情況都有可能。

  6、你知道公式:和中每一字母的意思嗎?能夠熟練地應(yīng)用它們解題嗎?

  7、兩條異面直線所成的角的范圍:0°《α≤90°

  直線與平面所成的角的范圍:0o≤α≤90°

  二面角的平面角的取值范圍:0°≤α≤180°

  8、你知道異面直線上兩點(diǎn)間的距離公式如何運(yùn)用嗎?

  9、平面圖形的.翻折,立體圖形的展開等一類問題,要注意翻折,展開前后有關(guān)幾何元素的“不變量”與“不變性”。

  10、立幾問題的求解分為“作”,“證”,“算”三個(gè)環(huán)節(jié),你是否只注重了“作”,“算”,而忽視了“證”這一重要環(huán)節(jié)?

  11、棱柱及其性質(zhì)、平行六面體與長(zhǎng)方體及其性質(zhì)。這些知識(shí)你掌握了嗎?(注意運(yùn)用向量的方法解題)

  12、球及其性質(zhì);經(jīng)緯度定義易混。經(jīng)度為二面角,緯度為線面角、球面距離的求法;球的表面積和體積公式。

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

 。浩矫

  1.經(jīng)過不在同一條直線上的三點(diǎn)確定一個(gè)面.

  注:兩兩相交且不過同一點(diǎn)的四條直線必在同一平面內(nèi).

  2.兩個(gè)平面可將平面分成3或4部分.(①兩個(gè)平面平行,②兩個(gè)平面相交)

  3.過三條互相平行的直線可以確定1或3個(gè)平面.(①三條直線在一個(gè)平面內(nèi)平行,②三條直線不在一個(gè)平面內(nèi)平行)

  [注]:三條直線可以確定三個(gè)平面,三條直線的公共點(diǎn)有0或1個(gè).

  4.三個(gè)平面最多可把空間分成8部分.(X、Y、Z三個(gè)方向)

 。嚎臻g的直線與平面

 、逼矫娴幕拘再|(zhì)⑴三個(gè)公理及公理三的三個(gè)推論和它們的用途. ⑵斜二測(cè)畫法.

 、部臻g兩條直線的位置關(guān)系:相交直線、平行直線、異面直線.

 、殴硭(平行線的傳遞性).等角定理.

  ⑵異面直線的判定:判定定理、反證法.

 、钱惷嬷本所成的角:定義(求法)、范圍.

 、持本和平面平行直線和平面的位置關(guān)系、直線和平面平行的判定與性質(zhì).

 、粗本和平面垂直

  ⑴直線和平面垂直:定義、判定定理.

 、迫咕定理及逆定理.

  5.平面和平面平行

  兩個(gè)平面的位置關(guān)系、兩個(gè)平面平行的判定與性質(zhì).

  6.平面和平面垂直

  互相垂直的平面及其判定定理、性質(zhì)定理.

  (二)直線與平面的平行和垂直的證明思路(見附圖)

  (三)夾角與距離

  7.直線和平面所成的角與二面角

 、牌矫娴男本和平面所成的角:三面角余弦公式、最小角定理、斜線和平

  面所成的角、直線和平面所成的'角.

 、贫娼牵孩俣x、范圍、二面角的平面角、直二面角.

  ②互相垂直的平面及其判定定理、性質(zhì)定理.

  8.距離

 、劈c(diǎn)到平面的距離.

 、浦本到與它平行平面的距離.

 、莾蓚(gè)平行平面的距離:兩個(gè)平行平面的公垂線、公垂線段.

 、犬惷嬷本的距離:異面直線的公垂線及其性質(zhì)、公垂線段.

  (四)簡(jiǎn)單多面體與球

  9.棱柱與棱錐

 、哦嗝骟w.

  ⑵棱柱與它的性質(zhì):棱柱、直棱柱、正棱柱、棱柱的性質(zhì).

  ⑶平行六面體與長(zhǎng)方體:平行六面體、直平行六面體、長(zhǎng)方體、正四棱柱、

  正方體;平行六面體的性質(zhì)、長(zhǎng)方體的性質(zhì).

 、壤忮F與它的性質(zhì):棱錐、正棱錐、棱錐的性質(zhì)、正棱錐的性質(zhì).

 、芍崩庵驼忮F的直觀圖的畫法.

  10.多面體歐拉定理的發(fā)現(xiàn)

  ⑴簡(jiǎn)單多面體的歐拉公式.

 、普嗝骟w.

  11.球

  ⑴球和它的性質(zhì):球體、球面、球的大圓、小圓、球面距離.

 、魄虻捏w積公式和表面積公式.

 。撼S媒Y(jié)論、方法和公式

  1.異面直線所成角的求法:

  (1)平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;

  (2)補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長(zhǎng)方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系;

  2.直線與平面所成的角

  斜線和平面所成的是一個(gè)直角三角形的銳角,它的三條邊分別是平面的垂線段、斜線段及斜線段在平面上的射影。通常通過斜線上某個(gè)特殊點(diǎn)作出平面的垂線段,垂足和斜足的連線,是產(chǎn)生線面角的關(guān)鍵;

  3.二面角的求法

  (1)定義法:直接在二面角的棱上取一點(diǎn)(特殊點(diǎn)),分別在兩個(gè)半平面內(nèi)作棱的垂線,得出平面角,用定義法時(shí),要認(rèn)真觀察圖形的特性;

  (2)三垂線法:已知二面角其中一個(gè)面內(nèi)一點(diǎn)到一個(gè)面的垂線,用三垂線定理或逆定理作出二面角的平面角;

  (3)垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過兩垂線作平面與兩個(gè)半平面的交線所成的角即為平面角,由此可知,二面角的平面角所在的平面與棱垂直;

  (4)射影法:利用面積射影公式S射=S原cos,其中為平面角的大小,此法不必在圖形中畫出平面角;

  特別:對(duì)于一類沒有給出棱的二面角,應(yīng)先延伸兩個(gè)半平面,使之相交出現(xiàn)棱,然后再選用上述方法(尤其要考慮射影法)。

  4.空間距離的求法

  (1)兩異面直線間的距離,高考要求是給出公垂線,所以一般先利用垂直作出公垂線,然后再進(jìn)行計(jì)算;

  (2)求點(diǎn)到直線的距離,一般用三垂線定理作出垂線再求解;

  (3)求點(diǎn)到平面的距離,一是用垂面法,借助面面垂直的性質(zhì)來作,因此,確定已知面的垂面是關(guān)鍵;二是不作出公垂線,轉(zhuǎn)化為求三棱錐的高,利用等體積法列方程求解;

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8

  1.等差數(shù)列的定義

  如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.

  2.等差數(shù)列的通項(xiàng)公式

  若等差數(shù)列{an}的首項(xiàng)是a1,公差是d,則其通項(xiàng)公式為an=a1+(n-1)d.

  3.等差中項(xiàng)

  如果A=(a+b)/2,那么A叫做a與b的等差中項(xiàng).

  4.等差數(shù)列的常用性質(zhì)

  (1)通項(xiàng)公式的推廣:an=am+(n-m)d(n,m∈N_).

  (2)若{an}為等差數(shù)列,且m+n=p+q,則am+an=ap+aq(m,n,p,q∈N_).

  (3)若{an}是等差數(shù)列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數(shù)列.

  (4)數(shù)列Sm,S2m-Sm,S3m-S2m,…也是等差數(shù)列.

  (5)S2n-1=(2n-1)an.

  (6)若n為偶數(shù),則S偶-S奇=nd/2;

  若n為奇數(shù),則S奇-S偶=a中(中間項(xiàng)).

  注意:

  一個(gè)推導(dǎo)

  利用倒序相加法推導(dǎo)等差數(shù)列的前n項(xiàng)和公式:

  Sn=a1+a2+a3+…+an,①

  Sn=an+an-1+…+a1,②

  ①+②得:Sn=n(a1+an)/2

  兩個(gè)技巧

  已知三個(gè)或四個(gè)數(shù)組成等差數(shù)列的一類問題,要善于設(shè)元.

  (1)若奇數(shù)個(gè)數(shù)成等差數(shù)列且和為定值時(shí),可設(shè)為…,a-2d,a-d,a,a+d,a+2d,….

  (2)若偶數(shù)個(gè)數(shù)成等差數(shù)列且和為定值時(shí),可設(shè)為…,a-3d,a-d,a+d,a+3d,…,其余各項(xiàng)再依據(jù)等差數(shù)列的定義進(jìn)行對(duì)稱設(shè)元.

  四種方法

  等差數(shù)列的判斷方法

  (1)定義法:對(duì)于n≥2的任意自然數(shù),驗(yàn)證an-an-1為同一常數(shù);

  (2)等差中項(xiàng)法:驗(yàn)證2an-1=an+an-2(n≥3,n∈N_)都成立;

  (3)通項(xiàng)公式法:驗(yàn)證an=pn+q;

  (4)前n項(xiàng)和公式法:驗(yàn)證Sn=An2+Bn.

  注:后兩種方法只能用來判斷是否為等差數(shù)列,而不能用來證明等差數(shù)列.

  5.有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復(fù)遇到的,而且是以各種各樣的問題(包括論證、計(jì)算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對(duì)問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。

  6.判定兩個(gè)平面平行的方法:

  (1)根據(jù)定義--證明兩平面沒有公共點(diǎn);

  (2)判定定理--證明一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面;

  (3)證明兩平面同垂直于一條直線。

  7.兩個(gè)平面平行的主要性質(zhì):

  (1)由定義知:“兩平行平面沒有公共點(diǎn)”;

  (2)由定義推得:“兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線必平行于另一個(gè)平面”;

  (3)兩個(gè)平面平行的性質(zhì)定理:“如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行”;

  (4)一條直線垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面;

  (5)夾在兩個(gè)平行平面間的平行線段相等;

  (6)經(jīng)過平面外一點(diǎn)只有一個(gè)平面和已知平面平行。

  8.乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

  三角不等式 |a+b||a|+|b| |a-b||a|+|b| |a|b=-ba

  |a-b||a|-|b| -|a|a|a|

  一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a

  根與系數(shù)的關(guān)系 X1+X2=-b/a X1__X2=c/a 注:韋達(dá)定理

  判別式

  2-4ac=0 注:方程有兩個(gè)相等的`實(shí)根

  2-4ac0 注:方程有兩個(gè)不等的實(shí)根

  2-4ac0 注:方程沒有實(shí)根,有共軛復(fù)數(shù)根

  9.三角函數(shù)公式

  兩角和公式

  in(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  倍角公式

  tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  半角公式

  in(A/2)=((1-cosA)/2) sin(A/2)=-((1-cosA)/2)

  cos(A/2)=((1+cosA)/2) cos(A/2)=-((1+cosA)/2)

  tan(A/2)=((1-cosA)/((1+cosA)) tan(A/2)=-((1-cosA)/((1+cosA))

  ctg(A/2)=((1+cosA)/((1-cosA)) ctg(A/2)=-((1+cosA)/((1-cosA))

  和差化積

  2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

  inA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

  某些數(shù)列前n項(xiàng)和

  1+2+3+4+5+6+7+8+9++n=n(n+1)/2 1+3+5+7+9+11+13+15++(2n-1)=n2

  2+4+6+8+10+12+14++(2n)=n(n+1) 12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+n3=n2(n+1)2/4 1__2+2__3+3__4+4__5+5__6+6__7++n(n+1)=n(n+1)(n+2)/3

  正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑

  余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角圓的標(biāo)準(zhǔn)方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)

  10.圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F0

  拋物線標(biāo)準(zhǔn)方程 y2=2px y2=-2px x2=2py x2=-2py

  直棱柱側(cè)面積 S=c__h 斜棱柱側(cè)面積 S=c__h

  正棱錐側(cè)面積 S=1/2c__h 正棱臺(tái)側(cè)面積 S=1/2(c+c)h

  圓臺(tái)側(cè)面積 S=1/2(c+c)l=pi(R+r)l 球的表面積 S=4pi__r2

  圓柱側(cè)面積 S=c__h=2pi__h 圓錐側(cè)面積 S=1/2__c__l=pi__r__l

  弧長(zhǎng)公式 l=a__r a是圓心角的弧度數(shù)r 0 扇形面積公式 s=1/2__l__r

  錐體體積公式 V=1/3__S__H 圓錐體體積公式 V=1/3__pi__r2h

  斜棱柱體積 V=SL 注:其中,S是直截面面積, L是側(cè)棱長(zhǎng)

  柱體體積公式 V=s__h 圓柱體 V=pi__r2h

  11.通項(xiàng)公式的求法:

  (1)構(gòu)造等比數(shù)列:凡是出現(xiàn)關(guān)于后項(xiàng)和前項(xiàng)的一次遞推式都可以構(gòu)造等比數(shù)列求通項(xiàng)公式;

  (2)構(gòu)造等差數(shù)列:遞推式不能構(gòu)造等比數(shù)列時(shí),構(gòu)造等差數(shù)列;

  (3)遞推:即按照后項(xiàng)和前項(xiàng)的對(duì)應(yīng)規(guī)律,再往前項(xiàng)推寫對(duì)應(yīng)式。

  已知遞推公式求通項(xiàng)常見方法:

  ①已知a1=a,an+1=qan+b,求an時(shí),利用待定系數(shù)法求解,其關(guān)鍵是確定待定系數(shù),使an+1 +=q(an+)進(jìn)而得到。

 、谝阎猘1=a,an=an-1+f(n)(n2),求an時(shí),利用累加法求解,即an=a1+(a2-a1)+(a3-a2)++(an-an-1)的方法。

 、垡阎猘1=a,an=f(n)an-1(n2),求an時(shí),利用累乘法求解。

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9

  第一講相似三角形的判定及有關(guān)性質(zhì)1.平行線等分線段定理

  平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等。

  推理1:經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線必平分第三邊。推理2:經(jīng)過梯形一腰的中點(diǎn),且與底邊平行的直線平分另一腰。

  2.平分線分線段成比例定理

  平分線分線段成比例定理:三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例。

  推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例。

  3.相似三角形的判定及性質(zhì)

  相似三角形的判定:

  定義:對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形。相似三角形對(duì)應(yīng)邊的比值叫做相似比(或相似系數(shù))。

  由于從定義出發(fā)判斷兩個(gè)三角形是否相似,需考慮6個(gè)元素,即三組對(duì)應(yīng)角是否分別相等,三組對(duì)應(yīng)邊是否分別成比例,顯然比較麻煩。所以我們?cè)?jīng)給出過如下幾個(gè)判定兩個(gè)三角形相似的簡(jiǎn)單方法:

 。1)兩角對(duì)應(yīng)相等,兩三角形相似;

 。2)兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似;(3)三邊對(duì)應(yīng)成比例,兩三角形相似。

  預(yù)備定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與三角形相似。

  判定定理1:對(duì)于任意兩個(gè)三角形,如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似。簡(jiǎn)述為:兩角對(duì)應(yīng)相等,兩三角形相似。

  判定定理2:對(duì)于任意兩個(gè)三角形,如果一個(gè)三角形的兩邊和另一個(gè)三角形的兩邊對(duì)應(yīng)成比例,并且夾角相等,那么這兩個(gè)三角形相似。簡(jiǎn)述為:兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似。

  判定定理3:對(duì)于任意兩個(gè)三角形,如果一個(gè)三角形的三條邊和另一個(gè)三角形的三條邊對(duì)應(yīng)成比例,那么這兩個(gè)三角形相似。簡(jiǎn)述為:三邊對(duì)應(yīng)成比例,兩三角形相似。

  引理:如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊。定理:(1)如果兩個(gè)直角三角形有一個(gè)銳角對(duì)應(yīng)相等,那么它們相似;

 。2)如果兩個(gè)直角三角形的兩條直角邊對(duì)應(yīng)成比例,那么它們相似。

  定理:如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)三角形的斜邊和直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似。相似三角形的性質(zhì):

 。1)相似三角形對(duì)應(yīng)高的比、對(duì)應(yīng)中線的比和對(duì)應(yīng)平分線的比都等于相似比;(2)相似三角形周長(zhǎng)的比等于相似比;

 。3)相似三角形面積的比等于相似比的平方。

  相似三角形外接圓的直徑比、周長(zhǎng)比等于相似比,外接圓的'面積比等于相似比的平方。

  4.直角三角形的射影定理

  射影定理:直角三角形斜邊上的高是兩直角邊在斜邊上射影的比例中項(xiàng);兩直角邊分別是它們?cè)谛边吷仙溆芭c斜邊的比例中項(xiàng)。

  第二講直線與圓的位置關(guān)系1.圓周定理

  圓周角定理:圓上一條弧所對(duì)的圓周角等于它所對(duì)的圓周角的一半。圓心角定理:圓心角的度數(shù)等于它所對(duì)弧的度數(shù)。

  推論1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧相等。推論2:半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。

  2.圓內(nèi)接四邊形的性質(zhì)與判定定理

  定理1:圓的內(nèi)接四邊形的對(duì)角互補(bǔ)。

  定理2:圓內(nèi)接四邊形的外角等于它的內(nèi)角的對(duì)角。

  圓內(nèi)接四邊形判定定理:如果一個(gè)四邊形的對(duì)角互補(bǔ),那么這個(gè)四邊形的四個(gè)頂點(diǎn)共圓。推論:如果四邊形的一個(gè)外角等于它的內(nèi)角的對(duì)角,那么這個(gè)四邊形的四個(gè)頂點(diǎn)共圓。

  3.圓的切線的性質(zhì)及判定定理

  切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點(diǎn)的半徑。推論1:經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)。推論2:經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心。

  切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。

  4.弦切角的性質(zhì)

  弦切角定理:弦切角等于它所夾的弧所對(duì)的圓周角。

  5.與圓有關(guān)的比例線段

  相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等。

  割線定理:從園外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等。

  切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)。

  切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角。

  6.垂徑定理

  垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧。

  7.三角形的五心

  (1)內(nèi)心:三條角平分線的交點(diǎn),也是三角形內(nèi)切圓的圓心。性質(zhì):到三邊距離相等。(2)外心:三條中垂線的交點(diǎn),也是三角形外接圓的圓心。性質(zhì):到三個(gè)頂點(diǎn)距離相等。(3)重心:三條中線的交點(diǎn)。性質(zhì):三條中線的三等分點(diǎn),到頂點(diǎn)距離為到對(duì)邊中點(diǎn)距離的2倍。

  (4)垂心:三條高所在直線的交點(diǎn)。

  (5)旁心:三角形任意兩角的外角平分線和第三個(gè)角的內(nèi)角平分線的交點(diǎn)。性質(zhì):到三邊的

  距離相等

  第三講圓錐曲線性質(zhì)的探究1.平面與圓柱面的截線:

  當(dāng)平面與圓柱的兩底面平行時(shí),截面是個(gè)圓;當(dāng)平面與圓柱的兩底面不平行時(shí),截面是個(gè)橢

  圓;定理1:圓柱形物體的斜截口是橢圓。

  定理2:在空間中,取直線l為軸,直線l’與l相交于O點(diǎn),夾角為α,l’圍繞l旋轉(zhuǎn)得

  到以O(shè)為頂點(diǎn),l’為母線的圓錐面,任取平面π,若它與軸l的夾角為β(當(dāng)π與l平行時(shí),記β=0),則截面不過頂點(diǎn)時(shí):

  (1)β>α,平面π與圓錐的交線為橢圓;(2)β=α,平面π與圓錐的交線為拋物線;(3)

  β<α,平面π與圓錐的交線為雙曲線;截面過頂點(diǎn)時(shí):(1)截面和圓錐面只相交于頂點(diǎn),交線為一個(gè)點(diǎn)。

  (2)截面和圓錐面相交于兩條母線,交線為兩條相交曲線。(3)截面和圓錐面相切,交線為兩

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10

  一、平面的基本性質(zhì)與推論

  1、平面的基本性質(zhì):

  公理1如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在這個(gè)平面內(nèi);

  公理2過不在一條直線上的三點(diǎn),有且只有一個(gè)平面;

  公理3如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線。

  2、空間點(diǎn)、直線、平面之間的位置關(guān)系:

  直線與直線—平行、相交、異面;

  直線與平面—平行、相交、直線屬于該平面(線在面內(nèi),最易忽視);

  平面與平面—平行、相交。

  3、異面直線:

  平面外一點(diǎn)A與平面一點(diǎn)B的連線和平面內(nèi)不經(jīng)過點(diǎn)B的直線是異面直線(判定);

  所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補(bǔ)角);

  兩條直線不是異面直線,則兩條直線平行或相交(反證);

  異面直線不同在任何一個(gè)平面內(nèi)。

  求異面直線所成的角:平移法,把異面問題轉(zhuǎn)化為相交直線的夾角

  二、空間中的平行關(guān)系

  1、直線與平面平行(核心)

  定義:直線和平面沒有公共點(diǎn)

  判定:不在一個(gè)平面內(nèi)的一條直線和平面內(nèi)的一條直線平行,則該直線平行于此平面(由線線平行得出)

  性質(zhì):一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,則這條直線就和兩平面的交線平行

  2、平面與平面平行

  定義:兩個(gè)平面沒有公共點(diǎn)

  判定:一個(gè)平面內(nèi)有兩條相交直線平行于另一個(gè)平面,則這兩個(gè)平面平行

  性質(zhì):兩個(gè)平面平行,則其中一個(gè)平面內(nèi)的直線平行于另一個(gè)平面;如果兩個(gè)平行平面同時(shí)與第三個(gè)平面相交,那么它們的交線平行。

  3、常利用三角形中位線、平行四邊形對(duì)邊、已知直線作一平面找其交線

  三、空間中的垂直關(guān)系

  1、直線與平面垂直

  定義:直線與平面內(nèi)任意一條直線都垂直

  判定:如果一條直線與一個(gè)平面內(nèi)的兩條相交的直線都垂直,則該直線與此平面垂直

  性質(zhì):垂直于同一直線的兩平面平行

  推論:如果在兩條平行直線中,有一條垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面

  直線和平面所成的角:【0,90】度,平面內(nèi)的一條斜線和它在平面內(nèi)的射影說成的銳角,特別規(guī)定垂直90度,在平面內(nèi)或者平行0度

  2、平面與平面垂直

  定義:兩個(gè)平面所成的二面角(從一條直線出發(fā)的`兩個(gè)半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點(diǎn)為端點(diǎn),在兩個(gè)半平面內(nèi)分別作垂直于棱的兩條射線所成的角)

  判定:一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直

  性質(zhì):兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11

  導(dǎo)數(shù)及其應(yīng)用

  一.導(dǎo)數(shù)概念的引入

  1.導(dǎo)數(shù)的物理意義:瞬時(shí)速率。一般的,函數(shù)yf(x)在xx0處的瞬時(shí)變化率是

  x0limf(x0x)f(x0),

  x我們稱它為函數(shù)yf(x)在xx0處的導(dǎo)數(shù),記作f(x0)或y|xx0,即f(x0)=limx0f(x0x)f(x0)

  x例1.在高臺(tái)跳水運(yùn)動(dòng)中,運(yùn)動(dòng)員相對(duì)于水面的高度h(單位:m)與起跳后的時(shí)間t(單位:

  s)存在函數(shù)關(guān)系

  h(t)4.9t26.5t10

  運(yùn)動(dòng)員在t=2s時(shí)的瞬時(shí)速度是多少?解:根據(jù)定義

  vh(2)limh(2x)h(2)13.1

  x0x即該運(yùn)動(dòng)員在t=2s是13.1m/s,符號(hào)說明方向向下

  2.導(dǎo)數(shù)的幾何意義:曲線的切線.通過圖像,我們可以看出當(dāng)點(diǎn)Pn趨近于P時(shí),直線PT與

  曲線相切。容易知道,割線PPn的斜率是knf(xn)f(x0),當(dāng)點(diǎn)Pn趨近于P時(shí),

  xnx0函數(shù)yf(x)在xx0處的導(dǎo)數(shù)就是切線PT的斜率k,即klimx0f(xn)f(x0)f(x0)

  xnx03.導(dǎo)函數(shù):當(dāng)x變化時(shí),f(x)便是x的一個(gè)函數(shù),我們稱它為f(x)的導(dǎo)函數(shù).yf(x)的導(dǎo)函數(shù)有時(shí)也記作y,即f(x)lim

  二.導(dǎo)數(shù)的計(jì)算

  1.函數(shù)yf(x)c的導(dǎo)數(shù)2.函數(shù)yf(x)x的導(dǎo)數(shù)3.函數(shù)yf(x)x的導(dǎo)數(shù)

  2x0f(xx)f(x)

  x

  4.函數(shù)yf(x)1的導(dǎo)數(shù)x基本初等函數(shù)的導(dǎo)數(shù)公式:

  1若f(x)c(c為常數(shù)),則f(x)0;

  2若f(x)x,則f(x)x1;

  3若f(x)sinx,則f(x)cosx

  4若f(x)cosx,則f(x)sinx;

  5若f(x)ax,則f(x)axlna6若f(x)e,則f(x)e

  xx1xlna18若f(x)lnx,則f(x)

  xx7若f(x)loga,則f(x)導(dǎo)數(shù)的運(yùn)算法則

  1.[f(x)g(x)]f(x)g(x)

  2.[f(x)g(x)]f(x)g(x)f(x)g(x)

  3.[f(x)f(x)g(x)f(x)g(x)]g(x)[g(x)]

  2復(fù)合函數(shù)求導(dǎo)

  yf(u)和ug(x),稱則y可以表示成為x的函數(shù),即yf(g(x))為一個(gè)復(fù)合函數(shù)yf(g(x))g(x)

  三.導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用

  1.函數(shù)的單調(diào)性與導(dǎo)數(shù):

  一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系:

  在某個(gè)區(qū)間(a,b)內(nèi),如果f(x)0,那么函數(shù)yf(x)在這個(gè)區(qū)間單調(diào)遞增;如果f(x)0,那么函數(shù)yf(x)在這個(gè)區(qū)間單調(diào)遞減.2.函數(shù)的極值與導(dǎo)數(shù)

  極值反映的是函數(shù)在某一點(diǎn)附近的大小情況.求函數(shù)yf(x)的極值的方法是:

  (1)如果在x0附近的左側(cè)f(x)0,右側(cè)f(x)0,那么f(x0)是極大值;

  (2)如果在x0附近的左側(cè)f(x)0,右側(cè)f(x)0,那么f(x0)是極小值;

  4.函數(shù)的最大(小)值與導(dǎo)數(shù)

  函數(shù)極大值與最大值之間的關(guān)系.

  求函數(shù)yf(x)在[a,b]上的最大值與最小值的步驟

 。1)求函數(shù)yf(x)在(a,b)內(nèi)的極值;

 。2)將函數(shù)yf(x)的各極值與端點(diǎn)處的函數(shù)值f(a),f(b)比較,其中最大的是一個(gè)最大值,最小的`是最小值.

  四.生活中的優(yōu)化問題

  利用導(dǎo)數(shù)的知識(shí),求函數(shù)的最大(小)值,從而解決實(shí)際問題

  第二章推理與證明

  考點(diǎn)一合情推理與類比推理

  根據(jù)一類事物的部分對(duì)象具有某種性質(zhì),退出這類事物的所有對(duì)象都具有這種性質(zhì)的推理,叫做歸納推理,歸納是從特殊到一般的過程,它屬于合情推理

  根據(jù)兩類不同事物之間具有某些類似(或一致)性,推測(cè)其中一類事物具有與另外一類事物類似的性質(zhì)的推理,叫做類比推理.

  類比推理的一般步驟:

  (1)找出兩類事物的相似性或一致性;

  (2)用一類事物的性質(zhì)去推測(cè)另一類事物的性質(zhì),得出一個(gè)明確的命題(猜想);

  (3)一般的,事物之間的各個(gè)性質(zhì)并不是孤立存在的,而是相互制約的如果兩個(gè)事物在某些性質(zhì)上相同或相似,那么他們?cè)诹硪粚懶再|(zhì)上也可能相同或類似,類比的結(jié)論可能是真的

  (4)一般情況下,如果類比的相似性越多,相似的性質(zhì)與推測(cè)的性質(zhì)之間越相關(guān),那么類比得出的命題越可靠.

  考點(diǎn)二演繹推理(俗稱三段論)

  由一般性的命題推出特殊命題的過程,這種推理稱為演繹推理.

  考點(diǎn)三數(shù)學(xué)歸納法

  1.它是一個(gè)遞推的數(shù)學(xué)論證方法.

  2.步驟:A.命題在n=1(或n0)時(shí)成立,這是遞推的基礎(chǔ);B.假設(shè)在n=k時(shí)命題成立C.證明n=k+1時(shí)命題也成立,

  完成這兩步,就可以斷定對(duì)任何自然數(shù)(或n>=n0,且nN)結(jié)論都成立。

  考點(diǎn)三證明

  1.反證法:

  2.分析法:

  3.綜合法:

  第一章數(shù)系的擴(kuò)充和復(fù)數(shù)的概念考點(diǎn)一:復(fù)數(shù)的概念

  (1)復(fù)數(shù):形如abi(aR,bR)的數(shù)叫做復(fù)數(shù),a和b分別叫它的實(shí)部和虛部.

  (2)分類:復(fù)數(shù)abi(aR,bR)中,當(dāng)b0,就是實(shí)數(shù);b0,叫做虛數(shù);當(dāng)a0,b0時(shí),叫做純虛數(shù).

  (3)復(fù)數(shù)相等:如果兩個(gè)復(fù)數(shù)實(shí)部相等且虛部相等就說這兩個(gè)復(fù)數(shù)相等.

  (4)共軛復(fù)數(shù):當(dāng)兩個(gè)復(fù)數(shù)實(shí)部相等,虛部互為相反數(shù)時(shí),這兩個(gè)復(fù)數(shù)互為共軛復(fù)數(shù).

  (5)復(fù)平面:建立直角坐標(biāo)系來表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實(shí)軸,y軸除去原點(diǎn)的部分叫做虛軸。

  (6)兩個(gè)實(shí)數(shù)可以比較大小,但兩個(gè)復(fù)數(shù)如果不全是實(shí)數(shù)就不能比較大小。

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12

  1、等比中項(xiàng)

  如果在a與b中間插入一個(gè)數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項(xiàng)。

  有關(guān)系:

  注:兩個(gè)非零同號(hào)的實(shí)數(shù)的等比中項(xiàng)有兩個(gè),它們互為相反數(shù),所以G2=ab是a,G,b三數(shù)成等比數(shù)列的必要不充分條件。

  2、等比數(shù)列通項(xiàng)公式

  an=a1_q’(n-1)(其中首項(xiàng)是a1,公比是q)

  an=Sn-S(n-1)(n≥2)

  前n項(xiàng)和

  當(dāng)q≠1時(shí),等比數(shù)列的前n項(xiàng)和的公式為

  Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)

  當(dāng)q=1時(shí),等比數(shù)列的前n項(xiàng)和的公式為

  Sn=na1

  3、等比數(shù)列前n項(xiàng)和與通項(xiàng)的關(guān)系

  an=a1=s1(n=1)

  an=sn-s(n-1)(n≥2)

  4、等比數(shù)列性質(zhì)

  (1)若m、n、p、q∈N_,且m+n=p+q,則am·an=ap·aq;

  (2)在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列。

  (3)從等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

  (4)等比中項(xiàng):q、r、p成等比數(shù)列,則aq·ap=ar2,ar則為ap,aq等比中項(xiàng)。

  記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  另外,一個(gè)各項(xiàng)均為正數(shù)的等比數(shù)列各項(xiàng)取同底指數(shù)冪后構(gòu)成一個(gè)等差數(shù)列;反之,以任一個(gè)正數(shù)C為底,用一個(gè)等差數(shù)列的各項(xiàng)做指數(shù)構(gòu)造冪Can,則是等比數(shù)列。在這個(gè)意義下,我們說:一個(gè)正項(xiàng)等比數(shù)列與等差數(shù)列是“同構(gòu)”的.。

  (5)等比數(shù)列前n項(xiàng)之和Sn=a1(1-q’n)/(1-q)

  (6)任意兩項(xiàng)am,an的關(guān)系為an=am·q’(n-m)

  (7)在等比數(shù)列中,首項(xiàng)a1與公比q都不為零。

  注意:上述公式中a’n表示a的n次方。

  等比數(shù)列求和公式

  q≠1時(shí),Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)

  q=1時(shí),Sn=na1

  (a1為首項(xiàng),an為第n項(xiàng),d為公差,q為等比)

  這個(gè)常數(shù)叫做等比數(shù)列的公比,公比通常用字母q表示(q≠0),等比數(shù)列a1≠ 0。注:q=1時(shí),{an}為常數(shù)列。利用等比數(shù)列求和公式可以快速的計(jì)算出該數(shù)列的和。

  等比數(shù)列求和公式推導(dǎo)

  Sn=a1+a2+a3+、、、+an(公比為q)

  qSn=a1q + a2q + a3q +、、、+ anq = a2+ a3+ a4+、、、+ an+ a(n+1)

  Sn-qSn=(1-q)Sn=a1-a(n+1)

  a(n+1)=a1qn

  Sn=a1(1-qn)/(1-q)(q≠1)

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13

  1.有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復(fù)遇到的,而且是以各種各樣的問題(包括論證、計(jì)算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決平行與垂直的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對(duì)問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。

  2. 判定兩個(gè)平面平行的方法:

  (1)根據(jù)定義--證明兩平面沒有公共點(diǎn);

  (2)判定定理--證明一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面;

  (3)證明兩平面同垂直于一條直線。

  3.兩個(gè)平面平行的主要性質(zhì):

  (1)由定義知:兩平行平面沒有公共點(diǎn)。

  (2)由定義推得:兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線必平行于另一個(gè)平面。

  (3)兩個(gè)平面平行的性質(zhì)定理:如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行。

  (4)一條直線垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面。

  (5)夾在兩個(gè)平行平面間的平行線段相等。

  (6)經(jīng)過平面外一點(diǎn)只有一個(gè)平面和已知平面平行。

  以上性質(zhì)(2)、(3)、(5)、(6)在課文中雖未直接列為性質(zhì)定理,但在解題過程中均可直接作為性質(zhì)定理引用。

  數(shù)學(xué)必修單元知識(shí)點(diǎn)

  第一,函數(shù)與導(dǎo)數(shù)。主要考查集合運(yùn)算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。

  第二,平面向量與三角函數(shù)、三角變換及其應(yīng)用。這一部分是高考的重點(diǎn)但不是難點(diǎn),主要出一些基礎(chǔ)題或中檔題。

  第三,數(shù)列及其應(yīng)用。這部分是高考的重點(diǎn)而且是難點(diǎn),主要出一些綜合題。

  第四,不等式。主要考查不等式的求解和證明,而且很少單獨(dú)考查,主要是在解答題中比較大小。是高考的重點(diǎn)和難點(diǎn)

  第五,概率和統(tǒng)計(jì)。這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。

  第六,空間位置關(guān)系的定性與定量分析,主要是證明平行或垂直,求角和距離。

  第七,解析幾何。是高考的難點(diǎn),運(yùn)算量大,一般含參數(shù)。

  高中數(shù)學(xué)知識(shí)點(diǎn)梳理

  函數(shù)與導(dǎo)數(shù)

  第一、求函數(shù)定義域題忽視細(xì)節(jié)函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,考生想要在考場(chǎng)上準(zhǔn)確求出定義域,就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數(shù)的定義域。

  在求一般函數(shù)定義域時(shí),要注意以下幾點(diǎn):分母不為0;偶次被開放式非負(fù);真數(shù)大于0以及0的0次冪無意義。函數(shù)的定義域是非空的數(shù)集,在解答函數(shù)定義域類的題時(shí)千萬別忘了這一點(diǎn)。復(fù)合函數(shù)要注意外層函數(shù)的定義域由內(nèi)層函數(shù)的值域決定。

  第二、帶絕對(duì)值的函數(shù)單調(diào)性判斷錯(cuò)誤帶絕對(duì)值的函數(shù)實(shí)質(zhì)上就是分段函數(shù),判斷分段函數(shù)的單調(diào)性有兩種方法:第一,在各個(gè)段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,然后對(duì)各個(gè)段上的單調(diào)區(qū)間進(jìn)行整合;第二,畫出這個(gè)分段函數(shù)的'圖象,結(jié)合函數(shù)圖象、性質(zhì)能夠進(jìn)行直觀的判斷。函數(shù)題離不開函數(shù)圖象,而函數(shù)圖象反應(yīng)了函數(shù)的所有性質(zhì),考生在解答函數(shù)題時(shí),要第一時(shí)間在腦海中畫出函數(shù)圖象,從圖象上分析問題,解決問題。

  對(duì)于函數(shù)不同的單調(diào)遞增(減)區(qū)間,千萬記住,不要使用并集,指明這幾個(gè)區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。

  第三、求函數(shù)奇偶性的常見錯(cuò)誤求函數(shù)奇偶性類的題最常見的錯(cuò)誤有求錯(cuò)函數(shù)定義域或忽視函數(shù)定義域,對(duì)函數(shù)具有奇偶性的前提條件不清,對(duì)分段函數(shù)奇偶性判斷方法不當(dāng)?shù)鹊。判斷函?shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱,如果不具備這個(gè)條件,函數(shù)一定是非奇非偶的函數(shù)。在定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱的前提下,再根據(jù)奇偶函數(shù)的定義進(jìn)行判斷。

  在用定義進(jìn)行判斷時(shí),要注意自變量在定義域區(qū)間內(nèi)的任意性。

  第四、抽象函數(shù)推理不嚴(yán)謹(jǐn)很多抽象函數(shù)問題都是以抽象出某一類函數(shù)的共同特征而設(shè)計(jì)的,在解答此類問題時(shí),考生可以通過類比這類函數(shù)中一些具體函數(shù)的性質(zhì)去解決抽象函數(shù)。多用特殊賦值法,通過特殊賦可以找到函數(shù)的不變性質(zhì),這往往是問題的突破口。

  抽象函數(shù)性質(zhì)的證明屬于代數(shù)推理,和幾何推理證明一樣,考生在作答時(shí)要注意推理的嚴(yán)謹(jǐn)性。每一步都要有充分的條件,別漏掉條件,更不能臆造條件,推理過程層次分明,還要注意書寫規(guī)范。

  第五、函數(shù)零點(diǎn)定理使用不當(dāng)若函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,且有f(a)f(b)0。那么函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c(a,b),使得f(c)=0。這個(gè)c也可以是方程f(c)=0的根,稱之為函數(shù)的零點(diǎn)定理,分為變號(hào)零點(diǎn)和不變號(hào)零點(diǎn),而對(duì)于不變號(hào)零點(diǎn),函數(shù)的零點(diǎn)定理是無能為力的,在解決函數(shù)的零點(diǎn)時(shí),考生需格外注意這類問題。

  第六、混淆兩類切線曲線上一點(diǎn)處的切線是指以該點(diǎn)為切點(diǎn)的曲線的切線,這樣的切線只有一條;曲線的過一個(gè)點(diǎn)的切線是指過這個(gè)點(diǎn)的曲線的所有切線,這個(gè)點(diǎn)如果在曲線上當(dāng)然包括曲線在該點(diǎn)處的切線,曲線的過一個(gè)點(diǎn)的切線可能不止一條。

  因此,考生在求解曲線的切線問題時(shí),首先要區(qū)分是什么類型的切線。

  第七、混淆導(dǎo)數(shù)與單調(diào)性的關(guān)系一個(gè)函數(shù)在某個(gè)區(qū)間上是增函數(shù)的這類題型,如果考生認(rèn)為函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大于0,很容易就會(huì)出錯(cuò)。

  解答函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的關(guān)系時(shí)一定要注意,一個(gè)函數(shù)的導(dǎo)函數(shù)在某個(gè)區(qū)間上單調(diào)遞增(減)的充要條件是這個(gè)函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大(小)于等于0,且導(dǎo)函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。

  第八、導(dǎo)數(shù)與極值關(guān)系不清考生在使用導(dǎo)數(shù)求函數(shù)極值類問題時(shí),容易出現(xiàn)的錯(cuò)誤就是求出使導(dǎo)函數(shù)等于0的點(diǎn),卻沒有對(duì)這些點(diǎn)左右兩側(cè)導(dǎo)函數(shù)的符號(hào)進(jìn)行判斷,誤以為使導(dǎo)函數(shù)等于0的點(diǎn)就是函數(shù)的極值點(diǎn),往往就會(huì)出錯(cuò),出錯(cuò)原因就是考生對(duì)導(dǎo)數(shù)與極值關(guān)系沒搞清楚。

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14

  一、求導(dǎo)數(shù)的方法

  (1)基本求導(dǎo)公式

 。2)導(dǎo)數(shù)的四則運(yùn)算

 。3)復(fù)合函數(shù)的導(dǎo)數(shù)

  設(shè)在點(diǎn)x處可導(dǎo),y=在點(diǎn)處可導(dǎo),則復(fù)合函數(shù)在點(diǎn)x處可導(dǎo),且即

  二、關(guān)于極限

  1、數(shù)列的極限:

  粗略地說,就是當(dāng)數(shù)列的項(xiàng)n無限增大時(shí),數(shù)列的項(xiàng)無限趨向于A,這就是數(shù)列極限的描述性定義。記作:=A。如:

  2、函數(shù)的極限:

  當(dāng)自變量x無限趨近于常數(shù)時(shí),如果函數(shù)無限趨近于一個(gè)常數(shù),就說當(dāng)x趨近于時(shí),函數(shù)的極限是,記作

  三、導(dǎo)數(shù)的概念

  1、在處的導(dǎo)數(shù)。

  2、在的導(dǎo)數(shù)。

  3。函數(shù)在點(diǎn)處的導(dǎo)數(shù)的幾何意義:

  函數(shù)在點(diǎn)處的導(dǎo)數(shù)是曲線在處的切線的斜率,

  即k=,相應(yīng)的切線方程是

  注:函數(shù)的導(dǎo)函數(shù)在時(shí)的'函數(shù)值,就是在處的導(dǎo)數(shù)。

  例、若=2,則=()A—1B—2C1D

  四、導(dǎo)數(shù)的綜合運(yùn)用

 。ㄒ唬┣的切線

  函數(shù)y=f(x)在點(diǎn)處的導(dǎo)數(shù),就是曲線y=(x)在點(diǎn)處的切線的斜率。由此,可以利用導(dǎo)數(shù)求曲線的切線方程。具體求法分兩步:

 。1)求出函數(shù)y=f(x)在點(diǎn)處的導(dǎo)數(shù),即曲線y=f(x)在點(diǎn)處的切線的斜率k=

  (2)在已知切點(diǎn)坐標(biāo)和切線斜率的條件下,求得切線方程為x。

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15

  數(shù)學(xué)知識(shí)點(diǎn)1

  柱、錐、臺(tái)、球的結(jié)構(gòu)特征

  (1)棱柱:

  幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到

  截面距離與高的比的平方。

  (3)棱臺(tái):

  幾何特征:

 、偕舷碌酌媸窍嗨频钠叫卸噙呅

  ②側(cè)面是梯形

 、蹅(cè)棱交于原棱錐的頂點(diǎn)

  (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

  幾何特征:

 、俚酌媸侨鹊膱A;

 、谀妇與軸平行;

 、圯S與底面圓的'半徑垂直;

 、軅(cè)面展開圖

  是一個(gè)矩形。

  (5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

  幾何特征:

 、俚酌媸且粋(gè)圓;

  ②母線交于圓錐的頂點(diǎn);

 、蹅(cè)面展開圖是一個(gè)扇形。

  (6)圓臺(tái):定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

  幾何特征:

  ①上下底面是兩個(gè)圓;

 、趥(cè)面母線交于原圓錐的頂點(diǎn);

 、蹅(cè)面展開圖是一個(gè)弓形。

  (7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

  幾何特征:

  ①球的截面是圓;

  ②球面上任意一點(diǎn)到球心的距離等于半徑。

  數(shù)學(xué)知識(shí)點(diǎn)2

  空間幾何體的三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、 俯視圖(從上向下)

  注:正視圖反映了物體的高度和長(zhǎng)度;俯視圖反映了物體的長(zhǎng)度和寬度;側(cè)視圖反映了物體的高度和寬度。

  數(shù)學(xué)知識(shí)點(diǎn)3

  空間幾何體的直觀圖——斜二測(cè)畫法

  斜二測(cè)畫法特點(diǎn):

 、僭瓉砼cx軸平行的線段仍然與x平行且長(zhǎng)度不變;

 、谠瓉砼cy軸平行的線段仍然與y平行,長(zhǎng)度為原來的一半。

【高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

高中數(shù)學(xué)統(tǒng)計(jì)知識(shí)點(diǎn)總結(jié)10-21

高中數(shù)學(xué)知識(shí)點(diǎn)的總結(jié)03-07

高中數(shù)學(xué)導(dǎo)數(shù)知識(shí)點(diǎn)總結(jié)04-10

高中數(shù)學(xué)復(fù)數(shù)知識(shí)點(diǎn)總結(jié)05-10

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-15

高中數(shù)學(xué)基本的知識(shí)點(diǎn)總結(jié)05-17

高中數(shù)學(xué)求切線知識(shí)點(diǎn)總結(jié)10-27

高中數(shù)學(xué)必修2知識(shí)點(diǎn)總結(jié)11-22

高中數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)總結(jié)11-18

高中數(shù)學(xué)基本的知識(shí)點(diǎn)總結(jié)[精華]05-17