高中數(shù)學(xué)知識點總結(jié)【匯總15篇】
總結(jié)在一個時期、一個年度、一個階段對學(xué)習(xí)和工作生活等情況加以回顧和分析的一種書面材料,它能夠使頭腦更加清醒,目標(biāo)更加明確,讓我們抽出時間寫寫總結(jié)吧。你所見過的總結(jié)應(yīng)該是什么樣的?下面是小編收集整理的高中數(shù)學(xué)知識點總結(jié),希望對大家有所幫助。
高中數(shù)學(xué)知識點總結(jié)1
。浩矫
1.經(jīng)過不在同一條直線上的三點確定一個面.
注:兩兩相交且不過同一點的四條直線必在同一平面內(nèi).
2.兩個平面可將平面分成3或4部分.(①兩個平面平行,②兩個平面相交)
3.過三條互相平行的直線可以確定1或3個平面.(①三條直線在一個平面內(nèi)平行,②三條直線不在一個平面內(nèi)平行)
[注]:三條直線可以確定三個平面,三條直線的公共點有0或1個.
4.三個平面最多可把空間分成8部分.(X、Y、Z三個方向)
。嚎臻g的直線與平面
、逼矫娴幕拘再|(zhì)⑴三個公理及公理三的三個推論和它們的用途.、菩倍䴗y畫法.
⒉空間兩條直線的位置關(guān)系:相交直線、平行直線、異面直線.
、殴硭(平行線的傳遞性).等角定理.
、飘惷嬷本的判定:判定定理、反證法.
⑶異面直線所成的角:定義(求法)、范圍.
⒊直線和平面平行直線和平面的位置關(guān)系、直線和平面平行的判定與性質(zhì).
⒋直線和平面垂直
⑴直線和平面垂直:定義、判定定理.
⑵三垂線定理及逆定理.
5.平面和平面平行
兩個平面的位置關(guān)系、兩個平面平行的判定與性質(zhì).
6.平面和平面垂直
互相垂直的平面及其判定定理、性質(zhì)定理.
(二)直線與平面的平行和垂直的證明思路(見附圖)
(三)夾角與距離
7.直線和平面所成的角與二面角
、牌矫娴男本和平面所成的角:三面角余弦公式、最小角定理、斜線和平
面所成的角、直線和平面所成的角.
、贫娼牵孩俣x、范圍、二面角的平面角、直二面角.
、诨ハ啻怪钡钠矫婕捌渑卸ǘɡ怼⑿再|(zhì)定理.
8.距離
、劈c到平面的距離.
⑵直線到與它平行平面的距離.
、莾蓚平行平面的距離:兩個平行平面的公垂線、公垂線段.
、犬惷嬷本的距離:異面直線的公垂線及其性質(zhì)、公垂線段.
(四)簡單多面體與球
9.棱柱與棱錐
⑴多面體.
⑵棱柱與它的性質(zhì):棱柱、直棱柱、正棱柱、棱柱的性質(zhì).
⑶平行六面體與長方體:平行六面體、直平行六面體、長方體、正四棱柱、
正方體;平行六面體的性質(zhì)、長方體的性質(zhì).
、壤忮F與它的性質(zhì):棱錐、正棱錐、棱錐的性質(zhì)、正棱錐的性質(zhì).
⑸直棱柱和正棱錐的直觀圖的畫法.
10.多面體歐拉定理的發(fā)現(xiàn)
、藕唵味嗝骟w的歐拉公式.
、普嗝骟w.
11.球
、徘蚝退男再|(zhì):球體、球面、球的.大圓、小圓、球面距離.
、魄虻捏w積公式和表面積公式.
。撼S媒Y(jié)論、方法和公式
1.異面直線所成角的求法:
(1)平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;
(2)補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系;
2.直線與平面所成的角
斜線和平面所成的是一個直角三角形的銳角,它的三條邊分別是平面的垂線段、斜線段及斜線段在平面上的射影。通常通過斜線上某個特殊點作出平面的垂線段,垂足和斜足的連線,是產(chǎn)生線面角的關(guān)鍵;
3.二面角的求法
(1)定義法:直接在二面角的棱上取一點(特殊點),分別在兩個半平面內(nèi)作棱的垂線,得出平面角,用定義法時,要認(rèn)真觀察圖形的特性;
(2)三垂線法:已知二面角其中一個面內(nèi)一點到一個面的垂線,用三垂線定理或逆定理作出二面角的平面角;
(3)垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個半平面的交線所成的角即為平面角,由此可知,二面角的平面角所在的平面與棱垂直;
(4)射影法:利用面積射影公式S射=S原cos,其中為平面角的大小,此法不必在圖形中畫出平面角;
特別:對于一類沒有給出棱的二面角,應(yīng)先延伸兩個半平面,使之相交出現(xiàn)棱,然后再選用上述方法(尤其要考慮射影法)。
4.空間距離的求法
(1)兩異面直線間的距離,高考要求是給出公垂線,所以一般先利用垂直作出公垂線,然后再進(jìn)行計算;
(2)求點到直線的距離,一般用三垂線定理作出垂線再求解;
(3)求點到平面的距離,一是用垂面法,借助面面垂直的性質(zhì)來作,因此,確定已知面的垂面是關(guān)鍵;二是不作出公垂線,轉(zhuǎn)化為求三棱錐的高,利用等體積法列方程求解;
高中數(shù)學(xué)知識點總結(jié)2
一、函數(shù)對稱性:
1.2.3.4.5.6.7.8.
f(a+x)=f(a-x)==>f(x)關(guān)于x=a對稱
f(a+x)=f(b-x)==>f(x)關(guān)于x=(a+b)/2對稱f(a+x)=-f(a-x)==>f(x)關(guān)于點(a,0)對稱f(a+x)=-f(a-x)+2b==>f(x)關(guān)于點(a,b)對稱
f(a+x)=-f(b-x)+c==>f(x)關(guān)于點[(a+b)/2,c/2]對稱y=f(x)與y=f(-x)關(guān)于x=0對稱y=f(x)與y=-f(x)關(guān)于y=0對稱y=f(x)與y=-f(-x)關(guān)于點(0,0)對稱
例1:證明函數(shù)y=f(a+x)與y=f(b-x)關(guān)于x=(b-a)/2對稱。
【解析】求兩個不同函數(shù)的對稱軸,用設(shè)點和對稱原理作解。
證明:假設(shè)任意一點P(m,n)在函數(shù)y=f(a+x)上,令關(guān)于x=t的對稱點Q(2tm,n),那么n=f(a+m)=f[b(2tm)]
∴b2t=a,==>t=(b-a)/2,即證得對稱軸為x=(b-a)/2.
例2:證明函數(shù)y=f(a-x)與y=f(xb)關(guān)于x=(a+b)/2對稱。
證明:假設(shè)任意一點P(m,n)在函數(shù)y=f(a-x)上,令關(guān)于x=t的對稱點Q(2tm,n),那么n=f(a-m)=f[(2tm)b]
∴2t-b=a,==>t=(a+b)/2,即證得對稱軸為x=(a+b)/2.
二、函數(shù)的周期性
令a,b均不為零,若:
1、函數(shù)y=f(x)存在f(x)=f(x+a)==>函數(shù)最小正周期T=|a|
2、函數(shù)y=f(x)存在f(a+x)=f(b+x)==>函數(shù)最小正周期T=|b-a|
3、函數(shù)y=f(x)存在f(x)=-f(x+a)==>函數(shù)最小正周期T=|2a|
4、函數(shù)y=f(x)存在f(x+a)=1/f(x)==>函數(shù)最小正周期T=|2a|
5、函數(shù)y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函數(shù)最小正周期T=|4a|
這里只對第2~5點進(jìn)行解析。
第2點解析:
令X=x+a,f[a+(xa)]=f[b+(xa)]∴f(x)=f(x+ba)==>T=ba
第3點解析:同理,f(x+a)=-f(x+2a)……
①f(x)=-f(x+a)……
、凇嘤散俸廷诮獾胒(x)=f(x+2a)∴函數(shù)最小正周期T=|2a|
第4點解析:
f(x+2a)=1/f(x+a)==>f(x+a)=1/f(x+2a)
又∵f(x+a)=1/f(x)∴f(x)=f(x+2a)
∴函數(shù)最小正周期T=|2a|
第5點解析:
∵f(x+a)={2[1f(x)]}/[1f(x)]=2/[1f(x)]1
∴1f(x)=2/[f(x)+1]移項得f(x)=12/[f(x+a)+1]
那么f(x-a)=12/[f(x)+1],等式右邊通分得f(x-a)=[f(x)1]/[1+f(x)]∴1/[f(x-a)=[1+f(x)]/[f(x)1],即-1/[f(x-a)=[1+f(x)]/[1-f(x)]∴-1/[f(x-a)=f(x+a),-1/[f(x2a)=f(x)==>-1/f(x)=f(x-2a)①,又∵-1/f(x)=f(x+2a)②,
由①②得f(x+2a)=f(x-2a)==>f(x)=f(x+4a)
∴函數(shù)最小正周期T=|4a|
擴(kuò)展閱讀:函數(shù)對稱性、周期性和奇偶性的規(guī)律總結(jié)
函數(shù)對稱性、周期性和奇偶性規(guī)律總結(jié)
。ㄒ唬┩缓瘮(shù)的函數(shù)的奇偶性與對稱性:(奇偶性是一種特殊的對稱性)
1、奇偶性:
。1)奇函數(shù)關(guān)于(0,0)對稱,奇函數(shù)有關(guān)系式f(x)f(x)0
。2)偶函數(shù)關(guān)于y(即x=0)軸對稱,偶函數(shù)有關(guān)系式f(x)f(x)
2、奇偶性的拓展:同一函數(shù)的對稱性
。1)函數(shù)的軸對稱:
函數(shù)yf(x)關(guān)于xa對稱f(ax)f(ax)
f(ax)f(ax)也可以寫成f(x)f(2ax)或f(x)f(2ax)
若寫成:f(ax)f(bx),則函數(shù)yf(x)關(guān)于直線x稱
。╝x)(bx)ab對22證明:設(shè)點(x1,y1)在yf(x)上,通過f(x)f(2ax)可知,y1f(x1)f(2ax1),
即點(2ax1,y1)也在yf(x)上,而點(x1,y1)與點(2ax1,y1)關(guān)于x=a對稱。得證。
說明:關(guān)于xa對稱要求橫坐標(biāo)之和為2a,縱坐標(biāo)相等。
∵(ax1,y1)與(ax1,y1)關(guān)于xa對稱,∴函數(shù)yf(x)關(guān)于xa對稱
f(ax)f(ax)
∵(x1,y1)與(2ax1,y1)關(guān)于xa對稱,∴函數(shù)yf(x)關(guān)于xa對稱
f(x)f(2ax)
∵(x1,y1)與(2ax1,y1)關(guān)于xa對稱,∴函數(shù)yf(x)關(guān)于xa對稱
f(x)f(2ax)
。2)函數(shù)的'點對稱:
函數(shù)yf(x)關(guān)于點(a,b)對稱f(ax)f(ax)2b
上述關(guān)系也可以寫成f(2ax)f(x)2b或f(2ax)f(x)2b
若寫成:f(ax)f(bx)c,函數(shù)yf(x)關(guān)于點(abc,)對稱2證明:設(shè)點(x1,y1)在yf(x)上,即y1f(x1),通過f(2ax)f(x)2b可知,f(2ax1)f(x1)2b,所以f(2ax1)2bf(x1)2by1,所以點(2ax1,2by1)也在yf(x)上,而點(2ax1,2by1)與(x1,y1)關(guān)于(a,b)對稱。得證。
說明:關(guān)于點(a,b)對稱要求橫坐標(biāo)之和為2a,縱坐標(biāo)之和為2b,如(ax)與(ax)之和為2a。
。3)函數(shù)yf(x)關(guān)于點yb對稱:假設(shè)函數(shù)關(guān)于yb對稱,即關(guān)于任一個x值,都有兩個y值與其對應(yīng),顯然這不符合函數(shù)的定義,故函數(shù)自身不可能關(guān)于yb對稱。但在曲線c(x,y)=0,則有可能會出現(xiàn)關(guān)于yb對稱,比如圓c(x,y)x2y240它會關(guān)于y=0對稱。
。4)復(fù)合函數(shù)的奇偶性的性質(zhì)定理:
性質(zhì)1、復(fù)數(shù)函數(shù)y=f[g(x)]為偶函數(shù),則f[g(-x)]=f[g(x)]。復(fù)合函數(shù)y=f[g(x)]為奇函數(shù),則f[g(-x)]=-f[g(x)]。
性質(zhì)2、復(fù)合函數(shù)y=f(x+a)為偶函數(shù),則f(x+a)=f(-x+a);復(fù)合函數(shù)y=f(x+a)為奇函數(shù),則f(-x+a)=-f(a+x)。
性質(zhì)3、復(fù)合函數(shù)y=f(x+a)為偶函數(shù),則y=f(x)關(guān)于直線x=a軸對稱。復(fù)合函數(shù)y=f(x+a)為奇函數(shù),則y=f(x)關(guān)于點(a,0)中心對稱。
總結(jié):x的系數(shù)一個為1,一個為-1,相加除以2,可得對稱軸方程
總結(jié):x的系數(shù)一個為1,一個為-1,f(x)整理成兩邊,其中一個的系數(shù)是為1,另一個為-1,存在對稱中心。
總結(jié):x的系數(shù)同為為1,具有周期性。
。ǘ﹥蓚函數(shù)的圖象對稱性
1、yf(x)與yf(x)關(guān)于X軸對稱。
證明:設(shè)yf(x)上任一點為(x1,y1)則y1f(x1),所以yf(x)經(jīng)過點(x1,y1)
∵(x1,y1)與(x1,y1)關(guān)于X軸對稱,∴y1f(x1)與yf(x)關(guān)于X軸對稱.注:換種說法:yf(x)與yg(x)f(x)若滿足f(x)g(x),即它們關(guān)于y0對稱。
高中數(shù)學(xué)知識點總結(jié)3
軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。
一、求動點的軌跡方程的基本步驟。
1、建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動點M的坐標(biāo);
2、寫出點M的集合;
3、列出方程=0;
4、化簡方程為最簡形式;
5、檢驗。
二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點法、參數(shù)法和交軌法等。
1、直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的'方法通常叫做直譯法。
2、定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
3、相關(guān)點法:用動點Q的坐標(biāo)x,y表示相關(guān)點P的坐標(biāo)x0、y0,然后代入點P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點法。
4、參數(shù)法:當(dāng)動點坐標(biāo)x、y之間的直接關(guān)系難以找到時,往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
5、交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。
求動點軌跡方程的一般步驟:
①建系——建立適當(dāng)?shù)淖鴺?biāo)系;
②設(shè)點——設(shè)軌跡上的任一點P(x,y);
③列式——列出動點p所滿足的關(guān)系式;
、艽鷵Q——依條件的特點,選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;
⑤證明——證明所求方程即為符合條件的動點軌跡方程。
高中數(shù)學(xué)知識點總結(jié)4
1、必修課程由5個模塊組成:
必修1:集合,函數(shù)概念與基本初等函數(shù)(指數(shù)函數(shù),冪函數(shù),對數(shù)函數(shù))
必修2:立體幾何初步、平面解析幾何初步。
必修3:算法初步、統(tǒng)計、概率。
必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。
必修5:解三角形、數(shù)列、不等式。
以上所有的知識點是所有高中生必須掌握的,而且要懂得運用。
選修課程分為4個系列:
系列1:2個模塊
選修1—1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何。
選修1—2:統(tǒng)計案例、推理與證明、數(shù)系的擴(kuò)充與復(fù)數(shù)、框圖
系列2:3個模塊
選修2—1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何
選修2—2:導(dǎo)數(shù)及其應(yīng)用、推理與證明、數(shù)系的擴(kuò)充與復(fù)數(shù)
選修2—3:計數(shù)原理、隨機(jī)變量及其分布列、統(tǒng)計案例
選修4—1:幾何證明選講
選修4—4:坐標(biāo)系與參數(shù)方程
選修4—5:不等式選講
2、重難點及其考點:
重點:函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導(dǎo)數(shù)
難點:函數(shù),圓錐曲線
高考相關(guān)考點:
1、集合與邏輯:集合的邏輯與運算(一般出現(xiàn)在高考卷的第一道選擇題)、簡易邏輯、充要條件
2、函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)函數(shù)、對數(shù)函數(shù)、函數(shù)的應(yīng)用
3、數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求通項、求和
4、三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和差倍半公式、求值、化簡、證明、三角函數(shù)的圖像及其性質(zhì)、應(yīng)用
5、平面向量:初等運算、坐標(biāo)運算、數(shù)量積及其應(yīng)用
6、不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式(經(jīng)常出現(xiàn)在大題的選做題里)、不等式的應(yīng)用
7、直線與圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系
8、圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問題、圓錐曲線的應(yīng)用
9、直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量
10、排列、組合和概率:排列、組合應(yīng)用題、二項式定理及其應(yīng)用
11、概率與統(tǒng)計:概率、分布列、期望、方差、抽樣、正態(tài)分布
12、導(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用
13、復(fù)數(shù):復(fù)數(shù)的概念與運算
高中數(shù)學(xué)學(xué)習(xí)要注意的方法
1、用心感受數(shù)學(xué),欣賞數(shù)學(xué),掌握數(shù)學(xué)思想。有位數(shù)學(xué)家曾說過:數(shù)學(xué)是用最小的空間集中了的理想。
2、要重視數(shù)學(xué)概念的理解。高一數(shù)學(xué)與初中數(shù)學(xué)的區(qū)別是概念多并且較抽象,學(xué)起來“味道”同以往很不一樣,解題方法通常就來自概念本身。學(xué)習(xí)概念時,僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義并掌握各種等價的表達(dá)方式。例如,為什么函數(shù)y=f(x)與y=f—1(x)的圖象關(guān)于直線y=x對稱,而y=f(x)與x=f—1(y)卻有相同的圖象;又如,為什么當(dāng)f(x—1)=f(1—x)時,函數(shù)y=f(x)的圖象關(guān)于y軸對稱,而y=f(x—1)與y=f(1—x)的圖象卻關(guān)于直線x=1對稱,不透徹理解一個圖象的對稱性與兩個圖象的對稱關(guān)系的區(qū)別,兩者很容易混淆。
3、對數(shù)學(xué)學(xué)習(xí)應(yīng)抱著二個詞――“嚴(yán)謹(jǐn),創(chuàng)新”,所謂嚴(yán)謹(jǐn),就是在平時訓(xùn)練的時候,不能一絲馬虎,是對就是對,錯了就一定要承認(rèn),要找原因,要改正,萬不可以抱著“好像是對的”的心態(tài),蒙混過關(guān)。至于創(chuàng)新呢,要求就高一點了,要求在你會解決此問題的情況下,你還會不會用另一種更簡單,更有效的方法,這就需要扎實的基本功。平時,我們看到一些人,做題時從不用常規(guī)方法,總愛自己創(chuàng)造一些方法以“偏方”解題,雖然有時候也能讓他撞上一些好的方法,但我認(rèn)為是不可取的。因為你首先必須學(xué)會用常規(guī)的方法,在此基礎(chǔ)上你才能創(chuàng)新,你的創(chuàng)新才有意義,而那些總是片面“追求”新方法的人,他們的思維有如空中樓閣,必然是曇花一現(xiàn)。當(dāng)然我們要有創(chuàng)新意識,但是,創(chuàng)新是有條件的,必須有扎實的基礎(chǔ),因此我想勸一下那些基礎(chǔ)不牢,而平時總愛用“偏方”的同學(xué)們,該是清醒一下的時候了,千萬不要繼續(xù)鉆那可憐的牛角尖。
4、建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,習(xí)慣是經(jīng)過重復(fù)練習(xí)而鞏固下來的穩(wěn)重持久的條件反射和自然需要。建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學(xué)時間,以便加寬知識面和培養(yǎng)自己再學(xué)習(xí)能力。
5、多聽、多作、多想、多問:此“四多”乃培養(yǎng)數(shù)學(xué)能力的要訣,“聽”就是在“學(xué)”,作是“練習(xí)”(作課本上的習(xí)題或其它問題),也就是把您所學(xué)的,應(yīng)用到解決問題上。“聽”與“作”難免會碰到疑難,那就要靠“想”的功夫去打通它,假如還想不通,解不來就要“問”――問同學(xué)、問老師或參考書,務(wù)必將疑難解決為止。這就是所謂的學(xué)問:既學(xué)又問。
6、要有毅力、要有恒心:基本上要有一個認(rèn)識:數(shù)學(xué)能力乃是長期努力累積的結(jié)果,而不是一朝一夕之功所能達(dá)到的。您可能花一天或一個晚上的功夫把某課文背得滾瓜爛熟,第二天考背誦時對答如流而獲高分,也有可能花了一兩個禮拜的時間拼命學(xué)數(shù)學(xué),但到頭來數(shù)學(xué)可能還考不好,這時候您可不能氣餒,也不必為花掉的時間惋惜。
高中數(shù)學(xué)復(fù)習(xí)的五大要點分析
一、端正態(tài)度,切忌浮躁,忌急于求成
在第一輪復(fù)習(xí)的過程中,心浮氣躁是一個非常普遍的現(xiàn)象。主要表現(xiàn)為平時復(fù)習(xí)覺得沒有問題,題目也能做,但是到了考試時就是拿不了高分!這主要是因為:
(1)對復(fù)習(xí)的知識點缺乏系統(tǒng)的理解,解題時缺乏思維層次結(jié)構(gòu)。第一輪復(fù)習(xí)著重對基礎(chǔ)知識點的挖掘,數(shù)學(xué)老師一定都會反復(fù)強(qiáng)調(diào)基礎(chǔ)的重要性。如果不重視對知識點的系統(tǒng)化分析,不能構(gòu)成一個整體的知識網(wǎng)絡(luò)構(gòu)架,自然在解題時就不能擁有整體的構(gòu)思,也不能深入理解高考典型例題的思維方法。
。2)復(fù)習(xí)的時候心不靜。心不靜就會導(dǎo)致思維不清晰,而思維不清晰就會促使復(fù)習(xí)沒有效率。建議大家在開始一個學(xué)科的復(fù)習(xí)之前,先靜下心來認(rèn)真想一想接下來需要復(fù)習(xí)哪一塊兒,需要做多少事情,然后認(rèn)真去做,同時需要很高的注意力,只有這樣才會有很好的效果。
。3)在第一輪復(fù)習(xí)階段,學(xué)習(xí)的重心應(yīng)該轉(zhuǎn)移到基礎(chǔ)復(fù)習(xí)上來。
因此,建議廣大同學(xué)在一輪復(fù)習(xí)的時候千萬不要急于求成,一定要靜下心來,認(rèn)真的揣摩每個知識點,弄清每一個原理。只有這樣,一輪復(fù)習(xí)才能顯出成效。
二、注重教材、注重基礎(chǔ),忌盲目做題
要把書本中的常規(guī)題型做好,所謂做好就是要用最少的時間把題目做對。部分同學(xué)在第一輪復(fù)習(xí)時對基礎(chǔ)題不予以足夠的重視,認(rèn)為題目看上去會做就可以不加訓(xùn)練,結(jié)果常在一些“不該錯的地方錯了”,最終把原因簡單的歸結(jié)為粗心,從而忽視了對基本概念的'掌握,對基本結(jié)論和公式的記憶及基本計算的訓(xùn)練和常規(guī)方法的積累,造成了實際成績與心理感覺的偏差。
可見,數(shù)學(xué)的基本概念、定義、公式,數(shù)學(xué)知識點的聯(lián)系,基本的數(shù)學(xué)解題思路與方法,是第一輪復(fù)習(xí)的重中之重。不妨以既是重點也是難點的函數(shù)部分為例,就必須掌握函數(shù)的概念,建立函數(shù)關(guān)系式,掌握定義域、值域與最值、奇偶性、單調(diào)性、周期性、對稱性等性質(zhì),學(xué)會利用圖像即數(shù)形結(jié)合。
每個同學(xué)在數(shù)學(xué)學(xué)習(xí)上遇到的問題有共同點,更有不同點。在復(fù)習(xí)課上,老師只能針對性去解決共同點,而同學(xué)們自己的個別問題則需要通過自己的思考,與同學(xué)們的討論,并向老師提問來解決問題,我們提倡同學(xué)多問老師,要敢于問。每個同學(xué)必須了解自己掌握了什么,還有哪些問題沒有解決,要明確只有把漏洞一一補(bǔ)上才能提高。復(fù)習(xí)的過程,實質(zhì)就是解決問題的過程,問題解決了,復(fù)習(xí)的效果就實現(xiàn)了。同時,也請同學(xué)們注意:在你問問題之前先經(jīng)過自己思考,不要把不經(jīng)過思考的問題就直接去問,因為這并不能起到更大作用。
高三的復(fù)習(xí)一定是有計劃、有目標(biāo)的,所以千萬不要盲目做題。第一輪復(fù)習(xí)非常具有針對性,對于所有知識點的地毯式轟炸,一定要做到不缺不漏。因此,僅靠簡單做題是達(dá)不到一輪復(fù)習(xí)應(yīng)該具有的效果。而且盲目做題沒有針對性,更不會有全面性。在概念模糊的情況下一定要回歸課本,注意教材上最清晰的概念與原理,注重對知識點運用方法的總結(jié)。
三、在平時做題中要養(yǎng)成良好的解題習(xí)慣,忌不思
1、樹立信心,養(yǎng)成良好的運算習(xí)慣。部分同學(xué)平時學(xué)習(xí)過程中自信心不足,做作業(yè)時免不了互相對答案,也不認(rèn)真找出錯誤原因并加以改正。“會而不對”是高三數(shù)學(xué)學(xué)習(xí)的大忌,常見的有審題失誤、計算錯誤等,平時都以為是粗心,其實這就是一種非常不好的習(xí)慣,必須在第一輪復(fù)習(xí)中逐步克服,否則,后患無窮。可結(jié)合平時解題中存在的具體問題,逐題找出原因,看其是行為習(xí)慣方面的原因,還是知識方面的缺陷,再有針對性加以解決。必要時作些記錄,也就是錯題本,每位同學(xué)必備的,以便以后查詢。
2、做好解題后的開拓引申,培養(yǎng)一題多解和舉一反三的能力。解題能力的培養(yǎng)可以從一題多解和舉一反三中得到提高,因而解完題后,需要再回味和引申,它包括對解題方法的開拓引申,即一道數(shù)學(xué)題從不同的角度去考慮去分析,可以有不同的思路,不同的解法。
考慮的愈廣泛愈深刻,獲得的思路愈廣闊,解法愈多樣;及對題目做開拓引申,引申出新題和新解法,有利于培養(yǎng)同學(xué)們的發(fā)散思維,激發(fā)創(chuàng)造精神,提高解題能力:
。1)把題目條件開拓引申。
、侔烟厥鈼l件一般化;
、诎岩话銞l件特殊化;
、郯烟厥鈼l件和一般條件交替變化。
。2)把題目結(jié)論開拓引申。
。3)把題型開拓引申,同一個題目,給出不同的提法,可以變成不同的題型。俗稱為“一題多變”但其解法仍類似,按其解法而言,這些題又可稱為“多題一解”或“一法多用”。
3、提高解題速度,掌握解題技巧。提高解題速度的主要因素有二:一是解題方法的巧妙與簡捷;二是對常規(guī)解法的掌握是否達(dá)到高度的熟練程度。
四、學(xué)會總結(jié)、歸納,訓(xùn)練到位,忌題量不足
我在暑期上課的時候發(fā)現(xiàn),很多同學(xué)都是一看到題目就開始做題,這也是一輪復(fù)習(xí)應(yīng)該避免的地方。做題如果不注重思路的分析,知識點的運用,效果可想而知。因此建議同學(xué)們在做題前要把老師上課時復(fù)習(xí)的知識再回顧一下,梳理知識體系,回顧各個知識點,對所學(xué)的知識結(jié)構(gòu)要有一個完整清楚的認(rèn)識,認(rèn)真分析題目考查的知識,思想,以及方法,還要學(xué)會總結(jié)歸納不留下任何知識的盲點,在一輪復(fù)習(xí)中要注意對各個知識點的細(xì)化。這個過程不需要很長的時間,而且到了后續(xù)階段會越來越熟練。因此,養(yǎng)成良好的做題習(xí)慣,有助于訓(xùn)練自己的解題思維,提高自己的解題能力。
實踐出真知,充足的題量是把理論轉(zhuǎn)化為能力的一種保障,在足夠的題目的練習(xí)下不僅可以更扎實的掌握知識點,還可以更深入的了解知識點,避免出現(xiàn)“會而不對、對而不全”的現(xiàn)象。由于高考依然是以做題為主,所以解題能力是高考分?jǐn)?shù)的一個直接反映,尤其是數(shù)學(xué)試題。而解題能力不是三兩道題就能提升的,而是要大量的反復(fù)的訓(xùn)練、認(rèn)真細(xì)致的推敲才會有較大的提升。有句話說的好,“量變導(dǎo)致質(zhì)變”,因此,同學(xué)們在每章復(fù)習(xí)的時候,一定要做足夠的題,才能夠充分的理解這一章的內(nèi)容,才能夠做到對這一章知識點的熟練運用。
但是,大量訓(xùn)練絕對不是題海戰(zhàn)術(shù)。因為針對每章節(jié)做題都有目標(biāo),同時做題訓(xùn)練都需要不斷的總結(jié),既要橫向總結(jié),也要縱向深入。只要在每章節(jié)做題做到一定程度的時候都能感覺到這一章的知識點有哪些,典型題型有哪些,方法和技巧有哪些,換句話說,如果隨機(jī)抽取一些近幾年關(guān)于這一章的高考題都會做,那我認(rèn)為就可以了。
五、解析幾何
這部分內(nèi)容說起來容易做起來難,需要掌握幾類問題,第一類直線和曲線的位置關(guān)系,要掌握它的通法;第二類動點問題;第三類是弦長問題;第四類是對稱問題;第五類重點問題,這類題往往覺得有思路卻沒有一個清晰的答案,但需要要掌握比較好的算法,來提高做題的準(zhǔn)確度。
六、壓軸題
同學(xué)們在最后的備考復(fù)習(xí)中,還應(yīng)該把重點放在不等式計算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時多做些壓軸題真題,爭取能解題就解題,能思考就思考。
高考數(shù)學(xué)直線方程知識點:什么是直線方程
從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標(biāo)系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯(lián)立求解,當(dāng)這個聯(lián)立方程組無解時,兩直線平行;有無窮多解時,兩直線重合;只有一解時,兩直線相交于一點。常用直線向上方向與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對于X軸)的傾斜程度?梢酝ㄟ^斜率來判斷兩條直線是否互相平行或互相垂直,也可計算它們的交角。直線與某個坐標(biāo)軸的交點在該坐標(biāo)軸上的坐標(biāo),稱為直線在該坐標(biāo)軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。在空間,兩個平面相交時,交線為一條直線。因此,在空間直角坐標(biāo)系中,用兩個表示平面的三元一次方程聯(lián)立,作為它們相交所得直線的方程。
高中數(shù)學(xué)知識點總結(jié)5
平均值等于每個小長方形面積(即概率)乘每組橫坐標(biāo)的中點,然后加和。
平均數(shù),首先得直方圖應(yīng)該歸一化,也就是說所有矩形的面積之和為1,然后每個矩形的面積代表其底邊中點橫坐標(biāo)的數(shù)的頻率,那么面積乘以橫坐標(biāo)就相當(dāng)于頻率乘以橫坐標(biāo),得到的當(dāng)然是平均數(shù)。
頻率直方圖中是沒有樣本數(shù)據(jù)的在某一個分組里,分布在這個分組的樣本數(shù)據(jù)沒法找得出來,然后也分布不均勻,所以就用這個組的中點的橫坐標(biāo)來表示這個分組的樣本數(shù)據(jù)的平均值。
而每一個小長方形的面積是表示相應(yīng)的頻率,(相當(dāng)于相應(yīng)數(shù)據(jù)的百分比)所以平均數(shù)等于每個小長方形的面積乘以相應(yīng)的分組的底邊中點橫坐標(biāo)的之和。
頻率分布直方圖的運用
頻率分布直方圖能清楚顯示各組頻數(shù)分布情況又易于顯示各組之間頻數(shù)的差別。它主要是為了將我們獲取的數(shù)據(jù)直觀、形象地表示出來,讓我們能夠更好了解數(shù)據(jù)的分布情況,因此其中組距、組數(shù)起關(guān)鍵作用。
分組過少,數(shù)據(jù)就非常集中;分組過多,數(shù)據(jù)就非常分散,這就掩蓋了分布的特征。當(dāng)數(shù)據(jù)在100以內(nèi)時,一般分5~12組為宜。
從頻率分布直方圖可以估計出的幾個數(shù)據(jù):
眾數(shù):頻率分布直方圖中最高矩形的'底邊中點的橫坐標(biāo) 。
算術(shù)平均數(shù):頻率分布直方圖每組數(shù)值的中間值乘以頻率后相加。
加權(quán)平均數(shù):加權(quán)平均數(shù)就是所有的頻率乘以數(shù)值后的和相加。
中位數(shù):把頻率分布直方圖分成兩個面積相等部分的平行于Y軸的直線橫坐標(biāo)。
高中數(shù)學(xué)知識點總結(jié)6
。1)不等關(guān)系
感受在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,了解不等式(組)的實際背景。
。2)一元二次不等式
、俳(jīng)歷從實際情境中抽象出一元二次不等式模型的過程。
②通過函數(shù)圖象了解一元二次不等式與相應(yīng)函數(shù)、方程的'聯(lián)系。
、蹠庖辉尾坏仁,對給定的一元二次不等式,嘗試設(shè)計求解的程序框圖。
。3)二元一次不等式組與簡單線性規(guī)劃問題
、購膶嶋H情境中抽象出二元一次不等式組。
、诹私舛淮尾坏仁降膸缀我饬x,能用平面區(qū)域表示二元一次不等式組(參見例2)。
、蹚膶嶋H情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決(參見例3)。
。4)基本不等式
①探索并了解基本不等式的證明過程。
②會用基本不等式解決簡單的(小)值問題。
高中數(shù)學(xué)知識點總結(jié)7
高考數(shù)學(xué)導(dǎo)數(shù)知識點
。ㄒ唬⿲(dǎo)數(shù)第一定義
設(shè)函數(shù)y = f(x)在點x0的某個領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有增量△x(x0 + △x也在該鄰域內(nèi))時,相應(yīng)地函數(shù)取得增量△y = f(x0 + △x)— f(x0);如果△y與△x之比當(dāng)△x→0時極限存在,則稱函數(shù)y = f(x)在點x0處可導(dǎo),并稱這個極限值為函數(shù)y = f(x)在點x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第一定義
。ǘ⿲(dǎo)數(shù)第二定義
設(shè)函數(shù)y = f(x)在點x0的某個領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有變化△x(x — x0也在該鄰域內(nèi))時,相應(yīng)地函數(shù)變化△y = f(x)— f(x0);如果△y與△x之比當(dāng)△x→0時極限存在,則稱函數(shù)y = f(x)在點x0處可導(dǎo),并稱這個極限值為函數(shù)y = f(x)在點x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第二定義
。ㄈ⿲(dǎo)函數(shù)與導(dǎo)數(shù)
如果函數(shù)y = f(x)在開區(qū)間I內(nèi)每一點都可導(dǎo),就稱函數(shù)f(x)在區(qū)間I內(nèi)可導(dǎo)。這時函數(shù)y = f(x)對于區(qū)間I內(nèi)的每一個確定的x值,都對應(yīng)著一個確定的導(dǎo)數(shù),這就構(gòu)成一個新的函數(shù),稱這個函數(shù)為原來函數(shù)y = f(x)的導(dǎo)函數(shù),記作y',f'(x),dy/dx,df(x)/dx。導(dǎo)函數(shù)簡稱導(dǎo)數(shù)。
。ㄋ模﹩握{(diào)性及其應(yīng)用
1。利用導(dǎo)數(shù)研究多項式函數(shù)單調(diào)性的一般步驟
。1)求f¢(x)
。2)確定f¢(x)在(a,b)內(nèi)符號(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)
2。用導(dǎo)數(shù)求多項式函數(shù)單調(diào)區(qū)間的一般步驟
。1)求f¢(x)
。2)f¢(x)>0的解集與定義域的交集的對應(yīng)區(qū)間為增區(qū)間;f¢(x)<0的解集與定義域的交集的對應(yīng)區(qū)間為減區(qū)間
高中數(shù)學(xué)重難點知識點
高中數(shù)學(xué)包含5本必修、2本選修,(理)包含5本必修、3本選修,每學(xué)期學(xué)習(xí)兩本書。
必修一:1、集合與函數(shù)的概念(這部分知識抽象,較難理解)2、基本的初等函數(shù)(指數(shù)函數(shù)、對數(shù)函數(shù))3、函數(shù)的性質(zhì)及應(yīng)用(比較抽象,較難理解)
必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問題,包括線面角和面面角
這部分知識是高一學(xué)生的難點,比如:一個角實際上是一個銳角,但是在圖中顯示的鈍角等等一些問題,需要學(xué)生的立體意識較強(qiáng)。這部分知識高考占22———27分
2、直線方程:高考時不單獨命題,易和圓錐曲線結(jié)合命題
3、圓方程:
必修三:1、算法初步:高考必考內(nèi)容,5分(選擇或填空)2、統(tǒng)計:3、概率:高考必考內(nèi)容,09年理科占到15分,文科數(shù)學(xué)占到5分
必修四:1、三角函數(shù):(圖像、性質(zhì)、高中重難點,)必考大題:15———20分,并且經(jīng)常和其他函數(shù)混合起來考查
2、平面向量:高考不單獨命題,易和三角函數(shù)、圓錐曲線結(jié)合命題。09年理科占到5分,文科占到13分
必修五:1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數(shù)學(xué)占到13分左右2、數(shù)列:高考必考,17———22分3、不等式:(線性規(guī)劃,聽課時易理解,但做題較復(fù)雜,應(yīng)掌握技巧。高考必考5分)不等式不單獨命題,一般和函數(shù)結(jié)合求最值、解集。
高中數(shù)學(xué)知識點大全
一、集合與簡易邏輯
1、集合的元素具有確定性、無序性和互異性。
2、對集合,時,必須注意到“極端”情況:或;求集合的子集時是否注意到是任何集合的子集、是任何非空集合的真子集。
3、判斷命題的真假關(guān)鍵是“抓住關(guān)聯(lián)字詞”;注意:“不‘或’即‘且’,不‘且’即‘或’”。
4、“或命題”的真假特點是“一真即真,要假全假”;“且命題”的真假特點是“一假即假,要真全真”;“非命題”的真假特點是“一真一假”。
5、四種命題中“‘逆’者‘交換’也”、“‘否’者‘否定’也”。
原命題等價于逆否命題,但原命題與逆命題、否命題都不等價。反證法分為三步:假設(shè)、推矛、得果。
6、充要條件
二、函數(shù)
1、指數(shù)式、對數(shù)式,
2、(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一個集合中的元素必有像,但第二個集合中的元素不一定有原像(中元素的像有且僅有下一個,但中元素的原像可能沒有,也可任意個);函數(shù)是“非空數(shù)集上的映射”,其中“值域是映射中像集的子集”。
。2)函數(shù)圖像與軸垂線至多一個公共點,但與軸垂線的公共點可能沒有,也可任意個。
(3)函數(shù)圖像一定是坐標(biāo)系中的曲線,但坐標(biāo)系中的曲線不一定能成為函數(shù)圖像。
3、單調(diào)性和奇偶性
。1)奇函數(shù)在關(guān)于原點對稱的區(qū)間上若有單調(diào)性,則其單調(diào)性完全相同。
偶函數(shù)在關(guān)于原點對稱的區(qū)間上若有單調(diào)性,則其單調(diào)性恰恰相反。
。2)復(fù)合函數(shù)的單調(diào)性特點是:“同性得增,增必同性;異性得減,減必異性”。
復(fù)合函數(shù)的奇偶性特點是:“內(nèi)偶則偶,內(nèi)奇同外”。復(fù)合函數(shù)要考慮定義域的變化。(即復(fù)合有意義)
4、對稱性與周期性(以下結(jié)論要消化吸收,不可強(qiáng)記)
。1)函數(shù)與函數(shù)的圖像關(guān)于直線(軸)對稱。
推廣一:如果函數(shù)對于一切,都有成立,那么的圖像關(guān)于直線(由“和的一半確定”)對稱。
推廣二:函數(shù),的圖像關(guān)于直線對稱。
。2)函數(shù)與函數(shù)的圖像關(guān)于直線(軸)對稱。
。3)函數(shù)與函數(shù)的圖像關(guān)于坐標(biāo)原點中心對稱。
三、數(shù)列
1、數(shù)列的通項、數(shù)列項的項數(shù),遞推公式與遞推數(shù)列,數(shù)列的通項與數(shù)列的前項和公式的關(guān)系
2、等差數(shù)列中
。1)等差數(shù)列公差的取值與等差數(shù)列的單調(diào)性。
。2)也成等差數(shù)列。
。3)兩等差數(shù)列對應(yīng)項和(差)組成的新數(shù)列仍成等差數(shù)列。
。4)仍成等差數(shù)列。
。5)“首正”的遞等差數(shù)列中,前項和的最大值是所有非負(fù)項之和;“首負(fù)”的遞增等差數(shù)列中,前項和的最小值是所有非正項之和;
。6)有限等差數(shù)列中,奇數(shù)項和與偶數(shù)項和的存在必然聯(lián)系,由數(shù)列的總項數(shù)是偶數(shù)還是奇數(shù)決定。若總項數(shù)為偶數(shù),則“偶數(shù)項和“奇數(shù)項和=總項數(shù)的一半與其公差的積;若總項數(shù)為奇數(shù),則“奇數(shù)項和—偶數(shù)項和”=此數(shù)列的中項。
。7)兩數(shù)的等差中項惟一存在。在遇到三數(shù)或四數(shù)成等差數(shù)列時,?紤]選用“中項關(guān)系”轉(zhuǎn)化求解。
(8)判定數(shù)列是否是等差數(shù)列的主要方法有:定義法、中項法、通項法、和式法、圖像法(也就是說數(shù)列是等差數(shù)列的充要條件主要有這五種形式)。
3、等比數(shù)列中:
。1)等比數(shù)列的符號特征(全正或全負(fù)或一正一負(fù)),等比數(shù)列的首項、公比與等比數(shù)列的單調(diào)性。
。2)兩等比數(shù)列對應(yīng)項積(商)組成的新數(shù)列仍成等比數(shù)列。
。3)“首大于1”的正值遞減等比數(shù)列中,前項積的最大值是所有大于或等于1的項的積;“首小于1”的正值遞增等比數(shù)列中,前項積的最小值是所有小于或等于1的項的.積;
。4)有限等比數(shù)列中,奇數(shù)項和與偶數(shù)項和的存在必然聯(lián)系,由數(shù)列的總項數(shù)是偶數(shù)還是奇數(shù)決定。若總項數(shù)為偶數(shù),則“偶數(shù)項和”=“奇數(shù)項和”與“公比”的積;若總項數(shù)為奇數(shù),則“奇數(shù)項和“首項”加上“公比”與“偶數(shù)項和”積的和。
。5)并非任何兩數(shù)總有等比中項。僅當(dāng)實數(shù)同號時,實數(shù)存在等比中項。對同號兩實數(shù)的等比中項不僅存在,而且有一對。也就是說,兩實數(shù)要么沒有等比中項(非同號時),如果有,必有一對(同號時)。在遇到三數(shù)或四數(shù)成等差數(shù)列時,常優(yōu)先考慮選用“中項關(guān)系”轉(zhuǎn)化求解。
。6)判定數(shù)列是否是等比數(shù)列的方法主要有:定義法、中項法、通項法、和式法(也就是說數(shù)列是等比數(shù)列的充要條件主要有這四種形式)。
4、等差數(shù)列與等比數(shù)列的聯(lián)系
。1)如果數(shù)列成等差數(shù)列,那么數(shù)列(總有意義)必成等比數(shù)列。
(2)如果數(shù)列成等比數(shù)列,那么數(shù)列必成等差數(shù)列。
。3)如果數(shù)列既成等差數(shù)列又成等比數(shù)列,那么數(shù)列是非零常數(shù)數(shù)列;但數(shù)列是常數(shù)數(shù)列僅是數(shù)列既成等差數(shù)列又成等比數(shù)列的必要非充分條件。
。4)如果兩等差數(shù)列有公共項,那么由他們的公共項順次組成的新數(shù)列也是等差數(shù)列,且新等差數(shù)列的公差是原兩等差數(shù)列公差的最小公倍數(shù)。
如果一個等差數(shù)列與一個等比數(shù)列有公共項順次組成新數(shù)列,那么常選用“由特殊到一般的方法”進(jìn)行研討,且以其等比數(shù)列的項為主,探求等比數(shù)列中那些項是他們的公共項,并構(gòu)成新的數(shù)列。
5、數(shù)列求和的常用方法:
。1)公式法:①等差數(shù)列求和公式(三種形式),
②等比數(shù)列求和公式(三種形式),
。2)分組求和法:在直接運用公式法求和有困難時,常將“和式”中“同類項”先合并在一起,再運用公式法求和。
。3)倒序相加法:在數(shù)列求和中,若和式中到首尾距離相等的兩項和有其共性或數(shù)列的通項與組合數(shù)相關(guān)聯(lián),則?煽紤]選用倒序相加法,發(fā)揮其共性的作用求和(這也是等差數(shù)列前和公式的推導(dǎo)方法)。
。4)錯位相減法:如果數(shù)列的通項是由一個等差數(shù)列的通項與一個等比數(shù)列的通項相乘構(gòu)成,那么常選用錯位相減法,將其和轉(zhuǎn)化為“一個新的的等比數(shù)列的和”求解(注意:一般錯位相減后,其中“新等比數(shù)列的項數(shù)是原數(shù)列的項數(shù)減一的差”。ㄟ@也是等比數(shù)列前和公式的推導(dǎo)方法之一)。
。5)裂項相消法:如果數(shù)列的通項可“分裂成兩項差”的形式,且相鄰項分裂后相關(guān)聯(lián),那么常選用裂項相消法求和
。6)通項轉(zhuǎn)換法。
四、三角函數(shù)
1、終邊與終邊相同(的終邊在終邊所在射線上)。
終邊與終邊共線(的終邊在終邊所在直線上)。
終邊與終邊關(guān)于軸對稱
終邊與終邊關(guān)于軸對稱
終邊與終邊關(guān)于原點對稱
一般地:終邊與終邊關(guān)于角的終邊對稱。
與的終邊關(guān)系由“兩等分各象限、一二三四”確定。
2、弧長公式:,扇形面積公式:1弧度(1rad)。
3、三角函數(shù)符號特征是:一是全正、二正弦正、三是切正、四余弦正。
4、三角函數(shù)線的特征是:正弦線“站在軸上(起點在軸上)”、余弦線“躺在軸上(起點是原點)”、正切線“站在點處(起點是)”。務(wù)必重視“三角函數(shù)值的大小與單位圓上相應(yīng)點的坐標(biāo)之間的關(guān)系,‘正弦’‘縱坐標(biāo)’、‘余弦’‘橫坐標(biāo)’、‘正切’‘縱坐標(biāo)除以橫坐標(biāo)之商’”;務(wù)必記。簡挝粓A中角終邊的變化與值的大小變化的關(guān)系為銳角
5、三角函數(shù)同角關(guān)系中,平方關(guān)系的運用中,務(wù)必重視“根據(jù)已知角的范圍和三角函數(shù)的取值,精確確定角的范圍,并進(jìn)行定號”;
6、三角函數(shù)誘導(dǎo)公式的本質(zhì)是:奇變偶不變,符號看象限。
7、三角函數(shù)變換主要是:角、函數(shù)名、次數(shù)、系數(shù)(常值)的變換,其核心是“角的變換”!
角的變換主要有:已知角與特殊角的變換、已知角與目標(biāo)角的變換、角與其倍角的變換、兩角與其和差角的變換。
8、三角函數(shù)性質(zhì)、圖像及其變換:
。1)三角函數(shù)的定義域、值域、單調(diào)性、奇偶性、有界性和周期性
注意:正切函數(shù)、余切函數(shù)的定義域;絕對值對三角函數(shù)周期性的影響:一般說來,某一周期函數(shù)解析式加絕對值或平方,其周期性是:弦減半、切不變。既為周期函數(shù)又是偶函數(shù)的函數(shù)自變量加絕對值,其周期性不變;其他不定。如的周期都是,但的周期為,y=|tanx|的周期不變,問函數(shù)y=cos|x|,,y=cos|x|是周期函數(shù)嗎?
。2)三角函數(shù)圖像及其幾何性質(zhì):
。3)三角函數(shù)圖像的變換:兩軸方向的平移、伸縮及其向量的平移變換。
。4)三角函數(shù)圖像的作法:三角函數(shù)線法、五點法(五點橫坐標(biāo)成等差數(shù)列)和變換法。
9、三角形中的三角函數(shù):
。1)內(nèi)角和定理:三角形三角和為,任意兩角和與第三個角總互補(bǔ),任意兩半角和與第三個角的半角總互余。銳角三角形三內(nèi)角都是銳角三內(nèi)角的余弦值為正值任兩角和都是鈍角任意兩邊的平方和大于第三邊的平方。
(2)正弦定理:(R為三角形外接圓的半徑)。
。3)余弦定理:常選用余弦定理鑒定三角形的類型。
五、向量
1、向量運算的幾何形式和坐標(biāo)形式,請注意:向量運算中向量起點、終點及其坐標(biāo)的特征。
2、幾個概念:零向量、單位向量(與共線的單位向量是,平行(共線)向量(無傳遞性,是因為有)、相等向量(有傳遞性)、相反向量、向量垂直、以及一個向量在另一向量方向上的投影(在上的投影是)。
3、兩非零向量平行(共線)的充要條件
4、平面向量的基本定理:如果e1和e2是同一平面內(nèi)的兩個不共線向量,那么對該平面內(nèi)的任一向量a,有且只有一對實數(shù),使a= e1+ e2。
5、三點共線;
6、向量的數(shù)量積:
六、不等式
1、(1)解不等式是求不等式的解集,最后務(wù)必有集合的形式表示;不等式解集的端點值往往是不等式對應(yīng)方程的根或不等式有意義范圍的端點值。
。2)解分式不等式的一般解題思路是什么?(移項通分,分子分母分解因式,x的系數(shù)變?yōu)檎,?biāo)根及奇穿過偶彈回);
。3)含有兩個絕對值的不等式如何去絕對值?(一般是根據(jù)定義分類討論、平方轉(zhuǎn)化或換元轉(zhuǎn)化);
。4)解含參不等式常分類等價轉(zhuǎn)化,必要時需分類討論。注意:按參數(shù)討論,最后按參數(shù)取值分別說明其解集,但若按未知數(shù)討論,最后應(yīng)求并集。
2、利用重要不等式以及變式等求函數(shù)的最值時,務(wù)必注意a,b(或a,b非負(fù)),且“等號成立”時的條件是積ab或和a+b其中之一應(yīng)是定值(一正二定三等四同時)。
3、常用不等式有:(根據(jù)目標(biāo)不等式左右的運算結(jié)構(gòu)選用)
a、b、c R,(當(dāng)且僅當(dāng)時,取等號)
4、比較大小的方法和證明不等式的方法主要有:差比較法、商比較法、函數(shù)性質(zhì)法、綜合法、分析法
5、含絕對值不等式的性質(zhì):
6、不等式的恒成立,能成立,恰成立等問題
(1)恒成立問題
若不等式在區(qū)間上恒成立,則等價于在區(qū)間上
若不等式在區(qū)間上恒成立,則等價于在區(qū)間上
(2)能成立問題
。3)恰成立問題
若不等式在區(qū)間上恰成立,則等價于不等式的解集為。
若不等式在區(qū)間上恰成立,則等價于不等式的解集為,
七、直線和圓
1、直線傾斜角與斜率的存在性及其取值范圍;直線方向向量的意義(或)及其直線方程的向量式((為直線的方向向量))。應(yīng)用直線方程的點斜式、斜截式設(shè)直線方程時,一般可設(shè)直線的斜率為k,但你是否注意到直線垂直于x軸時,即斜率k不存在的情況?
2、知直線縱截距,常設(shè)其方程為或;知直線橫截距,常設(shè)其方程為(直線斜率k存在時,為k的倒數(shù))或知直線過點,常設(shè)其方程為。
(2)直線在坐標(biāo)軸上的截距可正、可負(fù)、也可為0。直線兩截距相等直線的斜率為—1或直線過原點;直線兩截距互為相反數(shù)直線的斜率為1或直線過原點;直線兩截距絕對值相等直線的斜率為或直線過原點。
(3)在解析幾何中,研究兩條直線的位置關(guān)系時,有可能這兩條直線重合,而在立體幾何中一般提到的兩條直線可以理解為它們不重合。
3、相交兩直線的夾角和兩直線間的到角是兩個不同的概念:夾角特指相交兩直線所成的較小角,范圍是。而其到角是帶有方向的角,范圍是
4、線性規(guī)劃中幾個概念:約束條件、可行解、可行域、目標(biāo)函數(shù)、最優(yōu)解。
5、圓的方程:最簡方程;標(biāo)準(zhǔn)方程;
6、解決直線與圓的關(guān)系問題有“函數(shù)方程思想”和“數(shù)形結(jié)合思想”兩種思路,等價轉(zhuǎn)化求解,重要的是發(fā)揮“圓的平面幾何性質(zhì)(如半徑、半弦長、弦心距構(gòu)成直角三角形,切線長定理、割線定理、弦切角定理等等)的作用!”
。1)過圓上一點圓的切線方程
過圓上一點圓的切線方程
過圓上一點圓的切線方程
如果點在圓外,那么上述直線方程表示過點兩切線上兩切點的“切點弦”方程。
如果點在圓內(nèi),那么上述直線方程表示與圓相離且垂直于(為圓心)的直線方程,(為圓心到直線的距離)。
7、曲線與的交點坐標(biāo)方程組的解;
過兩圓交點的圓(公共弦)系為,當(dāng)且僅當(dāng)無平方項時,為兩圓公共弦所在直線方程。
八、圓錐曲線
1、圓錐曲線的兩個定義,及其“括號”內(nèi)的限制條件,在圓錐曲線問題中,如果涉及到其兩焦點(兩相異定點),那么將優(yōu)先選用圓錐曲線第一定義;如果涉及到其焦點、準(zhǔn)線(一定點和不過該點的一定直線)或離心率,那么將優(yōu)先選用圓錐曲線第二定義;涉及到焦點三角形的問題,也要重視焦半徑和三角形中正余弦定理等幾何性質(zhì)的應(yīng)用。
。1)注意:①圓錐曲線第一定義與配方法的綜合運用;
、趫A錐曲線第二定義是:“點點距為分子、點線距為分母”,橢圓點點距除以點線距商是小于1的正數(shù),雙曲線點點距除以點線距商是大于1的正數(shù),拋物線點點距除以點線距商是等于1。
2、圓錐曲線的幾何性質(zhì):圓錐曲線的對稱性、圓錐曲線的范圍、圓錐曲線的特殊點線、圓錐曲線的變化趨勢。其中,橢圓中、雙曲線中。
重視“特征直角三角形、焦半徑的最值、焦點弦的最值及其‘頂點、焦點、準(zhǔn)線等相互之間與坐標(biāo)系無關(guān)的幾何性質(zhì)’”,尤其是雙曲線中焦半徑最值、焦點弦最值的特點。
3、在直線與圓錐曲線的位置關(guān)系問題中,有“函數(shù)方程思想”和“數(shù)形結(jié)合思想”兩種思路,等價轉(zhuǎn)化求解。特別是:
、僦本與圓錐曲線相交的必要條件是他們構(gòu)成的方程組有實數(shù)解,當(dāng)出現(xiàn)一元二次方程時,務(wù)必“判別式≥0”,尤其是在應(yīng)用韋達(dá)定理解決問題時,必須先有“判別式≥0”。
②直線與拋物線(相交不一定交于兩點)、雙曲線位置關(guān)系(相交的四種情況)的特殊性,應(yīng)謹(jǐn)慎處理。
、墼谥本與圓錐曲線的位置關(guān)系問題中,常與“弦”相關(guān),“平行弦”問題的關(guān)鍵是“斜率”、“中點弦”問題關(guān)鍵是“韋達(dá)定理”或“小小直角三角形”或“點差法”、“長度(弦長)”問題關(guān)鍵是長度(弦長)公式
、苋绻谝粭l直線上出現(xiàn)“三個或三個以上的點”,那么可選擇應(yīng)用“斜率”為橋梁轉(zhuǎn)化。
4、要重視常見的尋求曲線方程的方法(待定系數(shù)法、定義法、直譯法、代點法、參數(shù)法、交軌法、向量法等),以及如何利用曲線的方程討論曲線的幾何性質(zhì)(定義法、幾何法、代數(shù)法、方程函數(shù)思想、數(shù)形結(jié)合思想、分類討論思想和等價轉(zhuǎn)化思想等),這是解析幾何的兩類基本問題,也是解析幾何的基本出發(fā)點。
注意:①如果問題中涉及到平面向量知識,那么應(yīng)從已知向量的特點出發(fā),考慮選擇向量的幾何形式進(jìn)行“摘帽子或脫靴子”轉(zhuǎn)化,還是選擇向量的代數(shù)形式進(jìn)行“摘帽子或脫靴子”轉(zhuǎn)化。
、谇與曲線方程、軌跡與軌跡方程是兩個不同的概念,尋求軌跡或軌跡方程時應(yīng)注意軌跡上特殊點對軌跡的“完備性與純粹性”的影響。
、墼谂c圓錐曲線相關(guān)的綜合題中,常借助于“平面幾何性質(zhì)”數(shù)形結(jié)合(如角平分線的雙重身份)、“方程與函數(shù)性質(zhì)”化解析幾何問題為代數(shù)問題、“分類討論思想”化整為零分化處理、“求值構(gòu)造等式、求變量范圍構(gòu)造不等關(guān)系”等等。
九、直線、平面、簡單多面體
1、計算異面直線所成角的關(guān)鍵是平移(補(bǔ)形)轉(zhuǎn)化為兩直線的夾角計算
2、計算直線與平面所成的角關(guān)鍵是作面的垂線找射影,或向量法(直線上向量與平面法向量夾角的余角),三余弦公式(最小角定理),或先運用等積法求點到直線的距離,后虛擬直角三角形求解。注:一斜線與平面上以斜足為頂點的角的兩邊所成角相等斜線在平面上射影為角的平分線。
3、空間平行垂直關(guān)系的證明,主要依據(jù)相關(guān)定義、公理、定理和空間向量進(jìn)行,請重視線面平行關(guān)系、線面垂直關(guān)系(三垂線定理及其逆定理)的橋梁作用。注意:書寫證明過程需規(guī)范。
4、直棱柱、正棱柱、平行六面體、長方體、正方體、正四面體、棱錐、正棱錐關(guān)于側(cè)棱、側(cè)面、對角面、平行于底的截面的幾何體性質(zhì)。
如長方體中:對角線長,棱長總和為,全(表)面積為,(結(jié)合可得關(guān)于他們的等量關(guān)系,結(jié)合基本不等式還可建立關(guān)于他們的不等關(guān)系式),
如三棱錐中:側(cè)棱長相等(側(cè)棱與底面所成角相等)頂點在底上射影為底面外心,側(cè)棱兩兩垂直(兩對對棱垂直)頂點在底上射影為底面垂心,斜高長相等(側(cè)面與底面所成相等)且頂點在底上在底面內(nèi)頂點在底上射影為底面內(nèi)心。
5、求幾何體體積的常規(guī)方法是:公式法、割補(bǔ)法、等積(轉(zhuǎn)換)法、比例(性質(zhì)轉(zhuǎn)換)法等。注意:補(bǔ)形:三棱錐三棱柱平行六面體
6、多面體是由若干個多邊形圍成的幾何體。棱柱和棱錐是特殊的多面體。
正多面體的每個面都是相同邊數(shù)的正多邊形,以每個頂點為其一端都有相同數(shù)目的棱,這樣的多面體只有五種,即正四面體、正六面體、正八面體、正十二面體、正二十面體。
7、球體積公式。球表面積公式,是兩個關(guān)于球的幾何度量公式。它們都是球半徑及的函數(shù)。
十、導(dǎo)數(shù)
1、導(dǎo)數(shù)的意義:曲線在該點處的切線的斜率(幾何意義)、瞬時速度、邊際成本(成本為因變量、產(chǎn)量為自變量的函數(shù)的導(dǎo)數(shù),C為常數(shù))
2、多項式函數(shù)的導(dǎo)數(shù)與函數(shù)的單調(diào)性
在一個區(qū)間上(個別點取等號)在此區(qū)間上為增函數(shù)。
在一個區(qū)間上(個別點取等號)在此區(qū)間上為減函數(shù)。
3、導(dǎo)數(shù)與極值、導(dǎo)數(shù)與最值:
。1)函數(shù)處有且“左正右負(fù)”在處取極大值;
函數(shù)在處有且左負(fù)右正”在處取極小值。
注意:①在處有是函數(shù)在處取極值的必要非充分條件。
②求函數(shù)極值的方法:先找定義域,再求導(dǎo),找出定義域的分界點,列表求出極值。特別是給出函數(shù)極大(小)值的條件,一定要既考慮,又要考慮驗“左正右負(fù)”(“左負(fù)右正”)的轉(zhuǎn)化,否則條件沒有用完,這一點一定要切記。
、蹎握{(diào)性與最值(極值)的研究要注意列表!
(2)函數(shù)在一閉區(qū)間上的最大值是此函數(shù)在此區(qū)間上的極大值與其端點值中的“最大值”
函數(shù)在一閉區(qū)間上的最小值是此函數(shù)在此區(qū)間上的極小值與其端點值中的“最小值”;
注意:利用導(dǎo)數(shù)求最值的步驟:先找定義域再求出導(dǎo)數(shù)為0及導(dǎo)數(shù)不存在的的點,然后比較定義域的端點值和導(dǎo)數(shù)為0的點對應(yīng)函數(shù)值的大小,其中最大的就是最大值,最小就為最小。
高中數(shù)學(xué)知識點總結(jié)8
函數(shù)與導(dǎo)數(shù)。主要考查集合運算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。
平面向量與三角函數(shù)、三角變換及其應(yīng)用。這一部分是高考的重點但不是難點,主要出一些基礎(chǔ)題或中檔題。
數(shù)列及其應(yīng)用。這部分是高考的重點而且是難點,主要出一些綜合題。
不等式。主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。
概率和統(tǒng)計。這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。
空間位置關(guān)系的定性與定量分析。主要是證明平行或垂直,求角和距離。主要考察對定理的熟悉程度、運用程度。
解析幾何。高考的難點,運算量大,一般含參數(shù)。
高考對數(shù)學(xué)基礎(chǔ)知識的考查,既全面又突出重點,扎實的數(shù)學(xué)基礎(chǔ)是成功解題的關(guān)鍵。
掌握分類計數(shù)原理與分步計數(shù)原理,并能用它們分析和解決一些簡單的應(yīng)用問題。
理解排列的意義,掌握排列數(shù)計算公式,并能用它解決一些簡單的應(yīng)用問題。
理解組合的意義,掌握組合數(shù)計算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡單的應(yīng)用問題。
掌握二項式定理和二項展開式的`性質(zhì),并能用它們計算和證明一些簡單的問題。
了解隨機(jī)事件的發(fā)生存在著規(guī)律性和隨機(jī)事件概率的意義。
了解等可能性事件的概率的意義,會用排列組合的基本公式計算一些等可能性事件的概率。
了解互斥事件、相互獨立事件的意義,會用互斥事件的概率加法公式與相互獨立事件的概率乘法公式計算一些事件的概率。
會計算事件在n次獨立重復(fù)試驗中恰好發(fā)生k次的概率。
高中數(shù)學(xué)知識點總結(jié)9
1.求函數(shù)的單調(diào)性:
利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù).
利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導(dǎo)數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間.
反過來,也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),
。1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);
(2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);
。3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立.
2.求函數(shù)的極值:
設(shè)函數(shù)yf(x)在x0及其附近有定義,如果對x0附近的所有的`點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值).
可導(dǎo)函數(shù)的極值,可通過研究函數(shù)的單調(diào)性求得,基本步驟是:
。1)確定函數(shù)f(x)的定義域;(2)求導(dǎo)數(shù)f(x);(3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區(qū)間,并列表:x變化時,f(x)和f(x)值的變化情況:
(4)檢查f(x)的符號并由表格判斷極值.
3.求函數(shù)的值與最小值:
如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數(shù)在定義域上的值.函數(shù)在定義域內(nèi)的極值不一定,但在定義域內(nèi)的最值是的.
求函數(shù)f(x)在區(qū)間[a,b]上的值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值;
。2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的值與最小值.
4.解決不等式的有關(guān)問題:
。1)不等式恒成立問題(絕對不等式問題)可考慮值域.
f(x)(xA)的值域是[a,b]時,
不等式f(x)0恒成立的充要條件是f(x)max0,即b0;
不等式f(x)0恒成立的充要條件是f(x)min0,即a0.
f(x)(xA)的值域是(a,b)時,
不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0.
。2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0.
5.導(dǎo)數(shù)在實際生活中的應(yīng)用:
實際生活求解(。┲祮栴},通常都可轉(zhuǎn)化為函數(shù)的最值.在利用導(dǎo)數(shù)來求函數(shù)最值時,一定要注意,極值點的單峰函數(shù),極值點就是最值點,在解題時要加以說明.
高中數(shù)學(xué)知識點總結(jié)10
一、圓及圓的相關(guān)量的定義
1.平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。
2.圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經(jīng)過圓心的弦叫
做直徑。
3.頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。
4.過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓心稱為內(nèi)心。
5.直線與圓有3種位置關(guān)系:無公共點為相離;有2個公共點為相交;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。
6.兩圓之間有5種位置關(guān)系:無公共點的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。
7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。
二、有關(guān)圓的字母表示方法
圓--⊙ 半徑—r 弧--⌒ 直徑—d
扇形弧長/圓錐母線—l 周長—C 面積—S三、有關(guān)圓的基本性質(zhì)與定理(27個)
1.點P與圓O的位置關(guān)系(設(shè)P是一點,則PO是點到圓心的距離):
P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO
2.圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。
3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定
理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。
4.在同圓或等圓中,如果2個圓心角,2個圓周角,2條弧,2條弦中有一組量相等,那么他們所對應(yīng)的其余各組量都分別相等。
5.一條弧所對的圓周角等于它所對的圓心角的一半。
6.直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。
7.不在同一直線上的3個點確定一個圓。
8.一個三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形3個頂點距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的`交點,到三角形3邊距離相等。
9.直線AB與圓O的位置關(guān)系(設(shè)OP⊥AB于P,則PO是AB到圓心的距
離):
AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO
10.圓的切線垂直于過切點的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個圓的切線。
11.圓與圓的位置關(guān)系(設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為P):
外離P>R+r;外切P=R+r;相交R-r
三、有關(guān)圓的計算公式
1.圓的周長C=2πr=πd
2.圓的面積S=s=πr?
3.扇形弧長l=nπr/180
4.扇形面積S=nπr? /360=rl/2
5.圓錐側(cè)面積S=πrl
四、圓的方程
1.圓的標(biāo)準(zhǔn)方程
在平面直角坐標(biāo)系中,以點O(a,b)為圓心,以r為半徑的圓的標(biāo)準(zhǔn)方程是
。▁-a)^2+(y-b)^2=r^2
2.圓的一般方程
把圓的標(biāo)準(zhǔn)方程展開,移項,合并同類項后,可得圓的一般方程是
x^2+y^2+Dx+Ey+F=0
和標(biāo)準(zhǔn)方程對比,其實D=-2a,E=-2b,F=a^2+b^2
相關(guān)知識:圓的離心率e=0.在圓上任意一點的曲率半徑都是r.
五、圓與直線的位置關(guān)系判斷
平面內(nèi),直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是
討論如下2種情況:
(1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],
代入x^2+y^2+Dx+Ey+F=0,即成為一個關(guān)于x的一元二次方程f(x)=0.
利用判別式b^2-4ac的符號可確定圓與直線的位置關(guān)系如下:
如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交
如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切
如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離
(2)如果B=0即直線為Ax+C=0,即x=-C/A.它平行于y軸(或垂直于x軸)
將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2
令y=b,求出此時的兩個x值x1,x2,并且我們規(guī)定x1
當(dāng)x=-C/Ax2時,直線與圓相離
當(dāng)x1
當(dāng)x=-C/A=x1或x=-C/A=x2時,直線與圓相切
圓的定理:
1.不在同一直線上的三點確定一個圓。
2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1.①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2.圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對稱中心的中心對稱圖形
4.圓是定點的距離等于定長的點的集合
5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合
6.圓的外部可以看作是圓心的距離大于半徑的點的集合
7.同圓或等圓的半徑相等
8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等
10.推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等
11.定理 圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它 的內(nèi)對角
12.①直線L和⊙O相交 d
②直線L和⊙O相切 d=r
、壑本L和⊙O相離 d>r
13.切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑
15.推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點
16.推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
17.切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對邊的和相等 外角等于內(nèi)對角
19.如果兩個圓相切,那么切點一定在連心線上
20.①兩圓外離 d>R+r ②兩圓外切 d=R+r
、蹆蓤A相交 R-rr)
、軆蓤A內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含dr)
21.定理 相交兩圓的連心線垂直平分兩圓的公共弦
22.定理 把圓分成n(n≥3):
。1)依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形
(2)經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
23.定理 任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓
24.正n邊形的每個內(nèi)角都等于(n-2)×180°/n
25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
27.正三角形面積√3a/4 a表示邊長
28.如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
29.弧長計算公式:L=n兀R/180
30.扇形面積公式:S扇形=n兀R^2/360=LR/2
31.內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)
32.定理 一條弧所對的圓周角等于它所對的圓心角的一半
33.推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
34.推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑
35.弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r
高中數(shù)學(xué)知識點總結(jié)11
1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補(bǔ)角相等?4同角或等角的余角相等
5過一點有且只有一條直線和已知直線垂直6直線外一點與直線上各點連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內(nèi)錯角相等,兩直線平行11同旁內(nèi)角互補(bǔ),兩直線平行12兩直線平行,同位角相等13兩直線平行,內(nèi)錯角相等14兩直線平行,同旁內(nèi)角互補(bǔ)
15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊17三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°18推論1直角三角形的兩個銳角互余19推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和20推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角21全等三角形的對應(yīng)邊、對應(yīng)角相等
22邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等24推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等25邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個三角形全等26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等27定理1在角的平分線上的點到這個角的兩邊的距離相等
28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上29角的平分線是到角的兩邊距離相等的所有點的集合
30等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個角都等于60°34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)35推論1三個角都相等的三角形是等邊三角形36推論2有一個角等于60°的等腰三角形是等邊三角形
37在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半38直角三角形斜邊上的中線等于斜邊上的一半
39定理線段垂直平分線上的點和這條線段兩個端點的距離相等
40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上41線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42定理1關(guān)于某條直線對稱的兩個圖形是全等形43定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線44定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上45逆定理如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2,那么這個三角形是直角三角形48定理四邊形的內(nèi)角和等于360°49四邊形的外角和等于360°
50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°51推論任意多邊的外角和等于360°52平行四邊形性質(zhì)定理1平行四邊形的對角相等53平行四邊形性質(zhì)定理2平行四邊形的對邊相等54推論夾在兩條平行線間的平行線段相等55平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分
56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形
60矩形性質(zhì)定理1矩形的四個角都是直角61矩形性質(zhì)定理2矩形的對角線相等
62矩形判定定理1有三個角是直角的四邊形是矩形63矩形判定定理2對角線相等的平行四邊形是矩形64菱形性質(zhì)定理1菱形的四條邊都相等
65菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角66菱形面積=對角線乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形
68菱形判定定理2對角線互相垂直的平行四邊形是菱形
69正方形性質(zhì)定理1正方形的四個角都是直角,四條邊都相等
70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角71定理1關(guān)于中心對稱的兩個圖形是全等的
72定理2關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分73逆定理如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個角相等75等腰梯形的兩條對角線相等
76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形77對角線相等的梯形是等腰梯形
78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79推論1經(jīng)過梯形一腰的中點與底平行的`直線,必平分另一腰
80推論2經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h
83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:dwc/S??
84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例
88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似
91相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)94判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)
95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似
96性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比
97性質(zhì)定理2相似三角形周長的比等于相似比
98性質(zhì)定理3相似三角形面積的比等于相似比的平方99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
101圓是定點的距離等于定長的點的集合
102圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合103圓的外部可以看作是圓心的距離大于半徑的點的集合104同圓或等圓的半徑相等
105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109定理不在同一直線上的三點確定一個圓。
110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱中心的中心對稱圖形
114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等
116定理一條弧所對的圓周角等于它所對的圓心角的一半117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
120定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r
122切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線123切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑124推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點125推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
126切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等
128弦切角定理弦切角等于它所夾的弧對的圓周角
129推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等
130相交弦定理圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項
132切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134如果兩個圓相切,那么切點一定在連心線上135①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-r<d<R+r(R>r)
、軆蓤A內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含d<R-r(R>r)136定理相交兩圓的連心線垂直平分兩圓的公*弦137定理把圓分成n(n≥3):
、乓来芜B結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓139正n邊形的每個內(nèi)角都等于(n-2)×180°/n
140定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長142正三角形面積√3a/4a表示邊長
143如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4144弧長撲愎劍=n兀R/180
145扇形面積公式:S扇形=n兀R^2/360=LR/2146內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)(還有一些,大家?guī)脱a(bǔ)充吧)實用工具:常用數(shù)學(xué)公式公式分類公式表達(dá)式
乘法與因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2)a^3-b^3=(a-b(a^2+ab+b^2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b^2-4ac)/2a-b-√(b^2-4ac)/2a根與系數(shù)的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達(dá)定理判別式
b^2-4ac=0注:方程有兩個相等的實根b^2-4ac>0注:方程有兩個不等的實根b^2-4ac拋物線標(biāo)準(zhǔn)方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c"*h
正棱錐側(cè)面積S=1/2c*h"正棱臺側(cè)面積S=1/2(c+c")h"圓臺側(cè)面積S=1/2(c+c")l=pi(R+r)l球的表面積S=4pi*r2圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l
弧長公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h斜棱柱體積V=S"L注:其中,S"是直截面面積,L是側(cè)棱長柱體體積公式V=s*h圓柱體V=pi*r2h
高中數(shù)學(xué)知識點總結(jié)12
空間中的垂直問題
。1)線線、面面、線面垂直的定義
、賰蓷l異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。
、诰面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直。
、燮矫婧推矫娲怪保喝绻麅蓚平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。
(2)垂直關(guān)系的判定和性質(zhì)定理
、倬面垂直判定定理和性質(zhì)定理
判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面。
性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。
②面面垂直的判定定理和性質(zhì)定理
判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。
性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面。
棱錐
棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的`幾何體叫做棱錐
棱錐的性質(zhì):
(1)側(cè)棱交于一點。側(cè)面都是三角形
。2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方
正棱錐
正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
。1)各側(cè)棱交于一點且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(2)多個特殊的直角三角形
esp:
a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
高中數(shù)學(xué)知識點總結(jié)13
導(dǎo)數(shù)的應(yīng)用
1.用導(dǎo)數(shù)研究函數(shù)的最值
確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點,研究在零點左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點處函數(shù)取極小值。學(xué)習(xí)了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來檢驗下學(xué)習(xí)成果。
2.生活中常見的函數(shù)優(yōu)化問題
1)費用、成本最省問題
2)利潤、收益問題
3)面積、體積最(大)問題
分層抽樣
先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟,然后再在各個類型或?qū)哟沃胁捎煤唵坞S機(jī)抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本。
兩種方法
1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。
2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。
3.分層抽樣是把異質(zhì)性較強(qiáng)的總體分成一個個同質(zhì)性較強(qiáng)的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。
分層標(biāo)準(zhǔn)
(1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標(biāo)準(zhǔn)。
(2)以保證各層內(nèi)部同質(zhì)性強(qiáng)、各層之間異質(zhì)性強(qiáng)、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。
(3)以那些有明顯分層區(qū)分的變量作為分層變量。
函數(shù)的奇偶性
1、函數(shù)的奇偶性的定義:對于函數(shù)f(x),如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù)).
正確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點:(1)定義域在數(shù)軸上關(guān)于原點對稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恒等式.(奇偶性是函數(shù)定義域上的整體性質(zhì)).
2、奇偶函數(shù)的定義是判斷函數(shù)奇偶性的主要依據(jù)。為了便于判斷函數(shù)的奇偶性,有時需要將函數(shù)化簡或應(yīng)用定義的等價形式:
注意如下結(jié)論的運用:
(1)不論f(x)是奇函數(shù)還是偶函數(shù),f(|x|)總是偶函數(shù);
(2)f(x)、g(x)分別是定義域D1、D2上的奇函數(shù),那么在D1∩D2上,f(x)+g(x)是奇函數(shù),f(x)·g(x)是偶函數(shù),類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;
(3)奇偶函數(shù)的復(fù)合函數(shù)的`奇偶性通常是偶函數(shù);
(4)奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù),偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù)。
3、有關(guān)奇偶性的幾個性質(zhì)及結(jié)論
(1)一個函數(shù)為奇函數(shù)的充要條件是它的圖象關(guān)于原點對稱;一個函數(shù)為偶函數(shù)的充要條件是它的圖象關(guān)于y軸對稱.
(2)如要函數(shù)的定義域關(guān)于原點對稱且函數(shù)值恒為零,那么它既是奇函數(shù)又是偶函數(shù).
(3)若奇函數(shù)f(x)在x=0處有意義,則f(0)=0成立.
(4)若f(x)是具有奇偶性的區(qū)間單調(diào)函數(shù),則奇(偶)函數(shù)在正負(fù)對稱區(qū)間上的單調(diào)性是相同(反)的。
(5)若f(x)的定義域關(guān)于原點對稱,則F(x)=f(x)+f(-x)是偶函數(shù),G(x)=f(x)-f(-x)是奇函數(shù).
(6)奇偶性的推廣
函數(shù)y=f(x)對定義域內(nèi)的任一x都有f(a+x)=f(a-x),則y=f(x)的圖象關(guān)于直線x=a對稱,即y=f(a+x)為偶函數(shù).函數(shù)y=f(x)對定義域內(nèi)的任-x都有f(a+x)=-f(a-x),則y=f(x)的圖象關(guān)于點(a,0)成中心對稱圖形,即y=f(a+x)為奇函數(shù).
二項式定理
、(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn
特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn
、谥饕再|(zhì)和主要結(jié)論:對稱性Cnm=Cnn-m
二項式系數(shù)在中間。(要注意n為奇數(shù)還是偶數(shù),答案是中間一項還是中間兩項)
所有二項式系數(shù)的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n
奇數(shù)項二項式系數(shù)的和=偶數(shù)項而是系數(shù)的和
Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1
、弁棡榈趓+1項:Tr+1=Cnran-rbr作用:處理與指定項、特定項、常數(shù)項、有理項等有關(guān)問題。
高中數(shù)學(xué)知識點總結(jié)14
1.一些基本概念:
(1)向量:既有大小,又有方向的量.
(2)數(shù)量:只有大小,沒有方向的量.
(3)有向線段的三要素:起點、方向、長度.
(4)零向量:長度為0的向量.
(5)單位向量:長度等于1個單位的.向量.
(6)平行向量(共線向量):方向相同或相反的非零向量.
※零向量與任一向量平行.
(7)相等向量:長度相等且方向相同的向量.
2.向量加法運算:
⑴三角形法則的特點:首尾相連.
、破叫兴倪呅畏▌t的特點:共起點
高中數(shù)學(xué)知識點總結(jié)15
一、集合有關(guān)概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
1)元素的確定性;
2)元素的互異性;
3)元素的無序性。
說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
。3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
。4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的表示:{…}如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}
1)用拉丁字母表示集合:A={我校的籃球隊員}B={12345}。
2)集合的表示方法:列舉法與描述法。
注意啊:常用數(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N_或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R
關(guān)于“屬于”的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a:A。
列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。
、僬Z言描述法:例:{不是直角三角形的三角形}
②數(shù)學(xué)式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}
4、集合的分類:
1)有限集含有有限個元素的集合。
2)無限集含有無限個元素的集合。
3)空集不含任何元素的集合例:{x|x2=—5}。
二、集合間的基本關(guān)系
1、“包含”關(guān)系子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B或集合B不包含集合A記作AB或BA。
2、“相等”關(guān)系(5≥5,且5≤5,則5=5)
實例:設(shè)A={x|x2—1=0}B={—11}“元素相同”
結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B。
、偃魏我粋集合是它本身的子集。AA
、谡孀蛹喝绻鸄?B且A?B那就說集合A是集合B的真子集,記作AB(或BA)
、廴绻鸄BBC那么AC
④如果AB同時BA那么A=B
3、不含任何元素的集合叫做空集,記為Φ。
規(guī)定:空集是任何集合的'子集,空集是任何非空集合的真子集。
三、集合的運算
1、交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合叫做AB的交集。
記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}。
2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做AB的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}。
3、交集與并集的性質(zhì):A∩A=AA∩φ=φA∩B=B∩A,A∪A=A,A∪φ=AA∪B=B∪A。
4、全集與補(bǔ)集
。1)補(bǔ)集:設(shè)S是一個集合,A是S的一個子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)
記作:CSA即CSA={x?x?S且x?A}。
。2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。
(3)性質(zhì):⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U。
【高中數(shù)學(xué)知識點總結(jié)】相關(guān)文章:
高中數(shù)學(xué)統(tǒng)計知識點總結(jié)10-21
高中數(shù)學(xué)知識點的總結(jié)03-07
高中數(shù)學(xué)導(dǎo)數(shù)知識點總結(jié)04-10
高中數(shù)學(xué)復(fù)數(shù)知識點總結(jié)05-10
高中數(shù)學(xué)基本的知識點總結(jié)05-17
高中數(shù)學(xué)求切線知識點總結(jié)10-27
高中數(shù)學(xué)重點知識點總結(jié)11-18