高中數(shù)學(xué)高二知識(shí)點(diǎn)總結(jié)
漫長(zhǎng)的學(xué)習(xí)生涯中,大家對(duì)知識(shí)點(diǎn)應(yīng)該都不陌生吧?知識(shí)點(diǎn)是知識(shí)中的最小單位,最具體的內(nèi)容,有時(shí)候也叫“考點(diǎn)”。掌握知識(shí)點(diǎn)是我們提高成績(jī)的關(guān)鍵!下面是小編為大家收集的高中數(shù)學(xué)高二知識(shí)點(diǎn)總結(jié),歡迎閱讀,希望大家能夠喜歡。
高中數(shù)學(xué)高二知識(shí)點(diǎn)總結(jié)1
一、導(dǎo)數(shù)的應(yīng)用
1.用導(dǎo)數(shù)研究函數(shù)的最值
確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開(kāi)區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點(diǎn),研究在零點(diǎn)左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點(diǎn)處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數(shù)取極小值。學(xué)習(xí)了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個(gè)有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來(lái)檢驗(yàn)下學(xué)習(xí)成果。
2.生活中常見(jiàn)的函數(shù)優(yōu)化問(wèn)題
1)費(fèi)用、成本最省問(wèn)題
2)利潤(rùn)、收益最大問(wèn)題
3)面積、體積最(大)問(wèn)題
二、推理與證明
1.歸納推理:歸納推理是高二數(shù)學(xué)的一個(gè)重點(diǎn)內(nèi)容,其難點(diǎn)就是有部分結(jié)論得到一般結(jié)論,破解的方法是充分考慮部分結(jié)論提供的信息,從中發(fā)現(xiàn)一般規(guī)律;類比推理的難點(diǎn)是發(fā)現(xiàn)兩類對(duì)象的相似特征,由其中一類對(duì)象的特征得出另一類對(duì)象的特征,破解的方法是利用已經(jīng)掌握的數(shù)學(xué)知識(shí),分析兩類對(duì)象之間的關(guān)系,通過(guò)兩類對(duì)象已知的相似特征得出所需要的相似特征。
2.類比推理:由兩類對(duì)象具有某些類似特征和其中一類對(duì)象的某些已知特征,推出另一類對(duì)象也具有這些特征的推理稱為類比推理,簡(jiǎn)而言之,類比推理是由特殊到特殊的推理。
三、不等式
對(duì)于含有參數(shù)的一元二次不等式解的討論
1)二次項(xiàng)系數(shù):如果二次項(xiàng)系數(shù)含有字母,要分二次項(xiàng)系數(shù)是正數(shù)、零和負(fù)數(shù)三種情況進(jìn)行討論。
2)不等式對(duì)應(yīng)方程的根:如果一元二次不等式對(duì)應(yīng)的方程的根能夠通過(guò)因式分解的'方法求出來(lái),則根據(jù)這兩個(gè)根的大小進(jìn)行分類討論,這時(shí),兩個(gè)根的大小關(guān)系就是分類標(biāo)準(zhǔn),如果一元二次不等式對(duì)應(yīng)的方程根不能通過(guò)因式分解的方法求出來(lái),則根據(jù)方程的判別式進(jìn)行分類討論。通過(guò)不等式練習(xí)題能夠幫助你更加熟練的運(yùn)用不等式的知識(shí)點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過(guò)程中總結(jié)出來(lái)。
拓展閱讀
說(shuō)明:以下內(nèi)容為本文主關(guān)鍵詞的百科內(nèi)容,一詞可能多意,僅作為參考閱讀內(nèi)容,下載的文檔不包含此內(nèi)容。每個(gè)關(guān)鍵詞后面會(huì)隨機(jī)推薦一個(gè)搜索引擎工具,方便用戶從多個(gè)垂直領(lǐng)域了解更多與本文相似的內(nèi)容。
1、數(shù)學(xué):數(shù)學(xué),是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念的一門學(xué)科。數(shù)學(xué)是人類對(duì)事物的抽象結(jié)構(gòu)與模式進(jìn)行嚴(yán)格描述的一種通用手段,可以應(yīng)用于現(xiàn)實(shí)世界的任何問(wèn)題,所有的數(shù)學(xué)對(duì)象本質(zhì)上都是人為定義的。從這個(gè)意義上,數(shù)學(xué)屬于形式科學(xué),而不是自然科學(xué)。不同的數(shù)學(xué)家和哲學(xué)家對(duì)數(shù)學(xué)的確切范圍和定義有一系列的看法。在人類歷史發(fā)展和社會(huì)生活中,數(shù)學(xué)發(fā)揮著不可替代的作用,同時(shí)也是學(xué)習(xí)和研究現(xiàn)代科學(xué)技術(shù)必不可少的基本工具。數(shù)學(xué)史數(shù)理邏輯與數(shù)學(xué)基礎(chǔ)a:演繹邏輯學(xué)(也稱符號(hào)邏輯學(xué)),b:證明論(也稱元數(shù)學(xué)),c:遞歸論,d:模型論,e:公理集合論,f:數(shù)學(xué)基礎(chǔ),g:數(shù)理邏輯與數(shù)學(xué)基礎(chǔ)其他學(xué)科。數(shù)論a:初等數(shù)論,b:解析數(shù)論,c:代數(shù)數(shù)論,d:超越數(shù)論,e:丟番圖逼近,f:數(shù)的幾何,g:概率數(shù)論,h:計(jì)算數(shù)論,i:數(shù)論其他學(xué)科。代數(shù)學(xué)a:線性代數(shù),b:群論,c:域論,d:李群,e:李代數(shù),f:Kac-Moody代數(shù),g:環(huán)論(包括交換環(huán)與交換代數(shù),...頭條搜索更多高二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)
2、類比推理:類比推理亦稱“類推”。推理的一種形式。根據(jù)兩個(gè)對(duì)象在某些屬性上相同或相似,通過(guò)比較而推斷出它們?cè)谄渌麑傩陨弦蚕嗤耐评磉^(guò)程。它是從觀察個(gè)別現(xiàn)象開(kāi)始的,因而近似歸納推理。但它又不是由特殊到一般,而是由特殊到特殊,因而又不同于歸納推理。分完全類推和不完全類推兩種形式。完全類推是兩個(gè)或兩類事物在進(jìn)行比較的方面完全相同時(shí)的類推;不完全類推是兩個(gè)或兩類事物在進(jìn)行比較的方面不完全相同時(shí)的類推。這是科學(xué)研究中常用的方法之一。它是從特殊推向特殊的推理。類比推理是根據(jù)兩個(gè)或兩類對(duì)象有部分屬性相同,從而推出它們的其他屬性也相同的推理。簡(jiǎn)稱類推、類比。以關(guān)于兩個(gè)事物某些屬性相同的判斷為前提,推出兩個(gè)事物的其他屬性相同的結(jié)論的推理。如聲和光有不少屬性相同--直線傳播,有反射、折射和干擾等現(xiàn)象;由此推出:既然聲有波動(dòng)性質(zhì),光也有波動(dòng)性質(zhì)。這就是類比推理。類比推理具有或然性。如果前提中確認(rèn)的共同屬性很少,而且共同屬性和推出來(lái)的屬性沒(méi)有什么關(guān)系,這樣的類比推...谷歌搜索更多高二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)
3、總結(jié):總結(jié)是事后對(duì)某一階段的工作或某項(xiàng)工作的完成情況,包括取得的成績(jī)、存在的問(wèn)題及得到的經(jīng)驗(yàn)和教訓(xùn)加以回顧和分析,為今后的工作提供幫助和借鑒的一種書(shū)面材料。(1)自身性?偨Y(jié)都是以第一人稱,從自身出發(fā)。它是單位或個(gè)人自身實(shí)踐活動(dòng)的反映,其內(nèi)容行文來(lái)自自身實(shí)踐,其結(jié)論也為指導(dǎo)今后自身實(shí)踐。(2)指導(dǎo)性?偨Y(jié)以回顧思考的方式對(duì)自身以往實(shí)踐做理性認(rèn)識(shí),找出事物本質(zhì)和發(fā)展規(guī)律,取得經(jīng)驗(yàn),避免失誤,以指導(dǎo)未來(lái)工作。(3)理論性。總結(jié)是理論的升華,是對(duì)前一階段工作的經(jīng)驗(yàn)、教訓(xùn)的分析研究,借此上升到理論的高度,并從中提煉出有規(guī)律性的東西,從而提高認(rèn)識(shí),以正確的認(rèn)識(shí)來(lái)把握客觀事物,更好地指導(dǎo)今后的實(shí)際工作。(4)客觀性?偨Y(jié)是對(duì)實(shí)際工作再認(rèn)識(shí)的過(guò)程,是對(duì)前一階段工作的回顧?偨Y(jié)的內(nèi)容必須要完全忠于自身的客觀實(shí)踐,其材料必須以客觀事實(shí)為依據(jù),不允許東拼西湊,要真實(shí)、客觀地分析情況、總結(jié)經(jīng)驗(yàn)。(1)綜合性總結(jié)。對(duì)某一單位、某一部門工作進(jìn)行全面性總結(jié),既反...頭條搜索更多高二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)
4、因式分解:把一個(gè)多項(xiàng)式在一個(gè)范圍(如實(shí)數(shù)范圍內(nèi)分解,即所有項(xiàng)均為實(shí)數(shù))化為幾個(gè)整式的積的形式,這種式子變形叫做這個(gè)多項(xiàng)式的因式分解,也叫作把這個(gè)多項(xiàng)式分解因式。把一個(gè)多項(xiàng)式在一個(gè)范圍化為幾個(gè)整式的積的形式,這種式子變形叫做這個(gè)多項(xiàng)式的因式分解,也叫作把這個(gè)多項(xiàng)式分解因式。因式分解是中學(xué)數(shù)學(xué)中最重要的恒等變形之一,它被廣泛地應(yīng)用于初等數(shù)學(xué)之中,在數(shù)學(xué)求根作圖、解一元二次方程方面也有很廣泛的應(yīng)用,是解決許多數(shù)學(xué)問(wèn)題的有力工具。因式分解方法靈活,技巧性強(qiáng)。學(xué)習(xí)這些方法與技巧,不僅是掌握因式分解內(nèi)容所需的,而且對(duì)于培養(yǎng)解題技能、發(fā)展思維能力都有著十分獨(dú)特的作用。學(xué)習(xí)它,既可以復(fù)習(xí)整式的四則運(yùn)算,又為學(xué)習(xí)分式打好基礎(chǔ);學(xué)好它,既可以培養(yǎng)學(xué)生的觀察、思維發(fā)展性、運(yùn)算能力,又可以提高綜合分析和解決問(wèn)題的能力;窘Y(jié)論:分解因式為整式乘法的逆過(guò)程。高級(jí)結(jié)論:在高等代數(shù)上,因式分解有一些重要結(jié)論,在初等代數(shù)層面上證明很困難,但是理解很容易。
高中數(shù)學(xué)高二知識(shí)點(diǎn)總結(jié)2
1、直線的傾斜角的概念:當(dāng)直線l與x軸相交時(shí),取x軸作為基準(zhǔn),x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角.特別地,當(dāng)直線l與x軸平行或重合時(shí),規(guī)定α=0°.
2、傾斜角α的取值范圍:0°≤α<180°.
當(dāng)直線l與x軸垂直時(shí),α=90°.
3、直線的斜率:
一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是k=tanα
⑴當(dāng)直線l與x軸平行或重合時(shí),α=0°,k=tan0°=0;
、飘(dāng)直線l與x軸垂直時(shí),α=90°,k不存在.
由此可知,一條直線l的傾斜角α一定存在,但是斜率k不一定存在.
4、直線的斜率公式:
給定兩點(diǎn)P1(x1,y1),P2(x2,y2),x1≠x2,用兩點(diǎn)的`坐標(biāo)來(lái)表示直線P1P2的斜率:
斜率公式:
3.1.2兩條直線的平行與垂直
1、兩條直線都有斜率而且不重合,如果它們平行,那么它們的斜率相等;反之,如果它們的斜率相等,那么它們平行,即
注意:上面的等價(jià)是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個(gè)前提,結(jié)論并不成立.即如果k1=k2,那么一定有L1∥L2
2、兩條直線都有斜率,如果它們互相垂直,那么它們的斜率互為負(fù)倒數(shù);反之,如果它們的斜率互為負(fù)倒數(shù),那么它們互相垂直,即
3.2.1直線的點(diǎn)斜式方程
1、直線的點(diǎn)斜式方程:直線經(jīng)過(guò)點(diǎn)且斜率為
2、、直線的斜截式方程:已知直線的斜率為
3.2.2直線的兩點(diǎn)式方程
1、直線的兩點(diǎn)式方程:已知兩點(diǎn)
2、直線的截距式方程:已知直線
3.2.3直線的一般式方程
1、直線的一般式方程:關(guān)于x、y的二元一次方程
(A,B不同時(shí)為0)
2、各種直線方程之間的互化。
3.3直線的交點(diǎn)坐標(biāo)與距離公式
3.3.1兩直線的交點(diǎn)坐標(biāo)
1、給出例題:兩直線交點(diǎn)坐標(biāo)
L1:3x+4y-2=0
L1:2x+y+2=0
解:解方程組
得x=-2,y=2
所以L1與L2的交點(diǎn)坐標(biāo)為M(-2,2)
3.3.2兩點(diǎn)間距離
兩點(diǎn)間的距離公式
3.3.3點(diǎn)到直線的距離公式
1.點(diǎn)到直線距離公式:
2、兩平行線間的距離公式:
高中數(shù)學(xué)高二知識(shí)點(diǎn)總結(jié)3
1.1柱、錐、臺(tái)、球的結(jié)構(gòu)特征
1.2空間幾何體的三視圖和直觀圖
11三視圖:
正視圖:從前往后
側(cè)視圖:從左往右
俯視圖:從上往下
22畫(huà)三視圖的原則:
長(zhǎng)對(duì)齊、高對(duì)齊、寬相等
33直觀圖:斜二測(cè)畫(huà)法
44斜二測(cè)畫(huà)法的步驟:
(1).平行于坐標(biāo)軸的線依然平行于坐標(biāo)軸;
(2).平行于y軸的線長(zhǎng)度變半,平行于x,z軸的線長(zhǎng)度不變;
(3).畫(huà)法要寫好。
5用斜二測(cè)畫(huà)法畫(huà)出長(zhǎng)方體的步驟:(1)畫(huà)軸(2)畫(huà)底面(3)畫(huà)側(cè)棱(4)成圖
1.3空間幾何體的表面積與體積
(一)空間幾何體的表面積
1棱柱、棱錐的表面積:各個(gè)面面積之和
2圓柱的表面積3圓錐的表面積
4圓臺(tái)的表面積
5球的表面積
(二)空間幾何體的體積
1柱體的體積
2錐體的體積
3臺(tái)體的體積
4球體的體積
高二數(shù)學(xué)必修二知識(shí)點(diǎn):直線與平面的位置關(guān)系
2.1空間點(diǎn)、直線、平面之間的位置關(guān)系
2.1.1
1平面含義:平面是無(wú)限延展的
2平面的畫(huà)法及表示
(1)平面的畫(huà)法:水平放置的平面通常畫(huà)成一個(gè)平行四邊形,銳角畫(huà)成450,且橫邊畫(huà)成鄰邊的2倍長(zhǎng)(如圖)
(2)平面通常用希臘字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形的四個(gè)頂點(diǎn)或者相對(duì)的兩個(gè)頂點(diǎn)的大寫字母來(lái)表示,如平面AC、平面ABCD等。
3三個(gè)公理:
(1)公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi)
符號(hào)表示為
A∈L
B∈L=>Lα
A∈α
B∈α
公理1作用:判斷直線是否在平面內(nèi)
(2)公理2:過(guò)不在一條直線上的三點(diǎn),有且只有一個(gè)平面。
符號(hào)表示為:A、B、C三點(diǎn)不共線=>有且只有一個(gè)平面α,
使A∈α、B∈α、C∈α。
公理2作用:確定一個(gè)平面的依據(jù)。
(3)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線。
符號(hào)表示為:P∈α∩β=>α∩β=L,且P∈L
公理3作用:判定兩個(gè)平面是否相交的依據(jù)
2.1.2空間中直線與直線之間的位置關(guān)系
1空間的兩條直線有如下三種關(guān)系:
共面直線
相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);
平行直線:同一平面內(nèi),沒(méi)有公共點(diǎn);
異面直線:不同在任何一個(gè)平面內(nèi),沒(méi)有公共點(diǎn)。
2公理4:平行于同一條直線的兩條直線互相平行。
符號(hào)表示為:設(shè)a、b、c是三條直線
a∥b
c∥b
強(qiáng)調(diào):公理4實(shí)質(zhì)上是說(shuō)平行具有傳遞性,在平面、空間這個(gè)性質(zhì)都適用。
公理4作用:判斷空間兩條直線平行的依據(jù)。
3等角定理:空間中如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ)
4注意點(diǎn):
、賏與b所成的角的大小只由a、b的相互位置來(lái)確定,與O的選擇無(wú)關(guān),為了簡(jiǎn)便,點(diǎn)O一般取在兩直線中的一條上;
、趦蓷l異面直線所成的角θ∈(0,);
、郛(dāng)兩條異面直線所成的角是直角時(shí),我們就說(shuō)這兩條異面直線互相垂直,記作a⊥b;
、軆蓷l直線互相垂直,有共面垂直與異面垂直兩種情形;
⑤計(jì)算中,通常把兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線所成的角。
2.1.3—2.1.4空間中直線與平面、平面與平面之間的位置關(guān)系
1、直線與平面有三種位置關(guān)系:
(1)直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn)
(2)直線與平面相交——有且只有一個(gè)公共點(diǎn)
(3)直線在平面平行——沒(méi)有公共點(diǎn)
指出:直線與平面相交或平行的情況統(tǒng)稱為直線在平面外,可用aα來(lái)表示
aαa∩α=Aa∥α
2.2.直線、平面平行的判定及其性質(zhì)
2.2.1直線與平面平行的判定
1、直線與平面平行的判定定理:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。
簡(jiǎn)記為:線線平行,則線面平行。
符號(hào)表示:
aα
bβ=>a∥α
a∥b
2.2.2平面與平面平行的判定
1、兩個(gè)平面平行的判定定理:一個(gè)平面內(nèi)的`兩條交直線與另一個(gè)平面平行,則這兩個(gè)平面平行。
符號(hào)表示:
aβ
bβ
a∩b=Pβ∥α
a∥α
b∥α
2、判斷兩平面平行的方法有三種:
(1)用定義;
(2)判定定理;
(3)垂直于同一條直線的兩個(gè)平面平行。
2.2.3—2.2.4直線與平面、平面與平面平行的性質(zhì)
1、定理:一條直線與一個(gè)平面平行,則過(guò)這條直線的任一平面與此平面的交線與該直線平行。
簡(jiǎn)記為:線面平行則線線平行。
符號(hào)表示:
a∥α
aβa∥b
α∩β=b
作用:利用該定理可解決直線間的平行問(wèn)題。
2、定理:如果兩個(gè)平面同時(shí)與第三個(gè)平面相交,那么它們的交線平行。
符號(hào)表示:
α∥β
α∩γ=aa∥b
β∩γ=b
作用:可以由平面與平面平行得出直線與直線平行
2.3直線、平面垂直的判定及其性質(zhì)
2.3.1直線與平面垂直的判定
1、定義
如果直線L與平面α內(nèi)的任意一條直線都垂直,我們就說(shuō)直線L與平面α互相垂直,記作L⊥α,直線L叫做平面α的垂線,平面α叫做直線L的垂面。直線與平面垂直時(shí),它們公共點(diǎn)P叫做垂足。
2、判定定理:一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。
注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;
b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想。
2.3.2平面與平面垂直的判定
1、二面角的概念:表示從空間一直線出發(fā)的兩個(gè)半平面所組成的圖形
2、二面角的記法:二面角α-l-β或α-AB-β
3、兩個(gè)平面互相垂直的判定定理:一個(gè)平面過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面垂直。
2.3.3—2.3.4直線與平面、平面與平面垂直的性質(zhì)
1、定理:垂直于同一個(gè)平面的兩條直線平行。
2性質(zhì)定理:兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直。
高中數(shù)學(xué)高二知識(shí)點(diǎn)總結(jié)4
用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征
1、本均值:
2、樣本標(biāo)準(zhǔn)差:
3.用樣本估計(jì)總體時(shí),如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會(huì)有偏差。在隨機(jī)抽樣中,這種偏差是不可避免的。
雖然我們用樣本數(shù)據(jù)得到的分布、均值和標(biāo)準(zhǔn)差并不是總體的真正的分布、均值和標(biāo)準(zhǔn)差,而只是一個(gè)估計(jì),但這種估計(jì)是合理的,特別是當(dāng)樣本量很大時(shí),它們確實(shí)反映了總體的信息。
4.(1)如果把一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)共同的'常數(shù),標(biāo)準(zhǔn)差不變
(2)如果把一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)乘以一個(gè)共同的常數(shù)k,標(biāo)準(zhǔn)差變?yōu)樵瓉?lái)的k倍
(3)一組數(shù)據(jù)中的值和最小值對(duì)標(biāo)準(zhǔn)差的影響,區(qū)間的應(yīng)用;
“去掉一個(gè)分,去掉一個(gè)最低分”中的科學(xué)道理
高中數(shù)學(xué)高二知識(shí)點(diǎn)總結(jié)5
1、導(dǎo)數(shù)的定義:在點(diǎn)處的導(dǎo)數(shù)記作。
2。導(dǎo)數(shù)的幾何物理意義:曲線在點(diǎn)處切線的.斜率
、賙=f/(x0)表示過(guò)曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。
3、常見(jiàn)函數(shù)的導(dǎo)數(shù)公式:
4、導(dǎo)數(shù)的四則運(yùn)算法則:
5、導(dǎo)數(shù)的應(yīng)用:
(1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);
注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。
。2)求極值的步驟:
、偾髮(dǎo)數(shù);
、谇蠓匠痰母
、哿斜恚簷z驗(yàn)在方程根的左右的符號(hào),如果左正右負(fù),那么函數(shù)在這個(gè)根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個(gè)根處取得極小值;
(3)求可導(dǎo)函數(shù)值與最小值的步驟:
、∏蟮母虎迅c區(qū)間端點(diǎn)函數(shù)值比較,的為值,最小的是最小值。
高中數(shù)學(xué)高二知識(shí)點(diǎn)總結(jié)6
一、直線與圓:
1、直線的傾斜角 的范圍是
在平面直角坐標(biāo)系中,對(duì)于一條與 軸相交的直線 ,如果把 軸繞著交點(diǎn)按逆時(shí)針?lè)较蜣D(zhuǎn)到和直線 重合時(shí)所轉(zhuǎn)的最小正角記為, 就叫做直線的傾斜角。當(dāng)直線 與 軸重合或平行時(shí),規(guī)定傾斜角為0;
2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.
過(guò)兩點(diǎn)(x1,y1),(x2,y2)的直線的斜率k=( y2-y1)/(x2-x1),另外切線的斜率用求導(dǎo)的方法。
3、直線方程:⑴點(diǎn)斜式:直線過(guò)點(diǎn) 斜率為 ,則直線方程為 ,
、菩苯厥剑褐本在 軸上的截距為 和斜率,則直線方程為
4、直線 與直線 的位置關(guān)系:
(1)平行 A1/A2=B1/B2 注意檢驗(yàn)(2)垂直 A1A2+B1B2=0
5、點(diǎn) 到直線 的距離公式 ;
兩條平行線 與 的距離是
6、圓的標(biāo)準(zhǔn)方程: .⑵圓的一般方程:
注意能將標(biāo)準(zhǔn)方程化為一般方程
7、過(guò)圓外一點(diǎn)作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.
8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長(zhǎng)問(wèn)題.① 相離 ② 相切 ③ 相交
9、解決直線與圓的關(guān)系問(wèn)題時(shí),要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長(zhǎng)、弦心距構(gòu)成直角三角形) 直線與圓相交所得弦長(zhǎng)
二、圓錐曲線方程:
1、橢圓: ①方程 (a>b>0)注意還有一個(gè);②定義: PF1+PF2=2a>2c; ③ e= ④長(zhǎng)軸長(zhǎng)為2a,短軸長(zhǎng)為2b,焦距為2c; a2=b2+c2 ;
2、雙曲線:①方程 (a,b>0) 注意還有一個(gè);②定義: PF1-PF2=2a<2c; ③e= ;④實(shí)軸長(zhǎng)為2a,虛軸長(zhǎng)為2b,焦距為2c;漸進(jìn)線 或 c2=a2+b2
3、拋物線 :①方程y2=2px注意還有三個(gè),能區(qū)別開(kāi)口方向; ②定義:PF=d焦點(diǎn)F( ,0),準(zhǔn)線x=- ;③焦半徑 ; 焦點(diǎn)弦=x1+x2+p;
4、直線被圓錐曲線截得的弦長(zhǎng)公式:
5、注意解析幾何與向量結(jié)合問(wèn)題:1、 , . (1) ;(2) .
2、數(shù)量積的定義:已知兩個(gè)非零向量a和b,它們的夾角為θ,則數(shù)量abcosθ叫做a與b的數(shù)量積,記作a·b,即
3、模的計(jì)算:a= . 算?梢韵人阆蛄康钠椒
4、向量的運(yùn)算過(guò)程中完全平方公式等照樣適用:
三、直線、平面、簡(jiǎn)單幾何體:
1、學(xué)會(huì)三視圖的分析:
2、斜二測(cè)畫(huà)法應(yīng)注意的地方:
(1)在已知圖形中取互相垂直的軸Ox、Oy。畫(huà)直觀圖時(shí),把它畫(huà)成對(duì)應(yīng)軸 ox、oy、使∠x(chóng)oy=45°(或135° ); (2)平行于x軸的線段長(zhǎng)不變,平行于y軸的線段長(zhǎng)減半.(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.
3、表(側(cè))面積與體積公式:
、胖w:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)= ;③體積:V=S底h
、棋F體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)= ;③體積:V= S底h:
⑶臺(tái)體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=
、惹蝮w:①表面積:S= ;②體積:V=
4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書(shū)寫
(1)直線與平面平行:①線線平行線面平行;②面面平行 線面平行。
(2)平面與平面平行:①線面平行面面平行。
(3)垂直問(wèn)題:線線垂直 線面垂直 面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線
5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)
、女惷嬷本所成角的求法:平移法:平移直線,構(gòu)造三角形;
、浦本與平面所成的角:直線與射影所成的'角
四、導(dǎo)數(shù):
1、導(dǎo)數(shù)的定義: 在點(diǎn) 處的導(dǎo)數(shù)記作 .
2. 導(dǎo)數(shù)的幾何物理意義:曲線 在點(diǎn) 處切線的斜率
、賙=f/(x0)表示過(guò)曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t) 表示即時(shí)速度。a=v/(t) 表示加速度。
3.常見(jiàn)函數(shù)的導(dǎo)數(shù)公式: ① ;② ;③ ;
4.導(dǎo)數(shù)的四則運(yùn)算法則:
5.導(dǎo)數(shù)的應(yīng)用:
(1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù) 在某個(gè)區(qū)間內(nèi)可導(dǎo),如果 ,那么 為增函數(shù);如果 ,那么為減函數(shù);
注意:如果已知 為減函數(shù)求字母取值范圍,那么不等式 恒成立。
(2)求極值的步驟:
、偾髮(dǎo)數(shù) ;
②求方程 的根;
、哿斜恚簷z驗(yàn) 在方程 根的左右的符號(hào),如果左正右負(fù),那么函數(shù) 在這個(gè)根處取得極大值;如果左負(fù)右正,那么函數(shù) 在這個(gè)根處取得極小值;
(3)求可導(dǎo)函數(shù)最大值與最小值的步驟:
?求 的根; ?把根與區(qū)間端點(diǎn)函數(shù)值比較,最大的為最大值,最小的是最小值。
五、常用邏輯用語(yǔ):
1、四種命題:
、旁}:若p則q;⑵逆命題:若q則p;⑶否命題:若 p則 q;⑷逆否命題:若 q則 p
注:
1、原命題與逆否命題等價(jià);逆命題與否命題等價(jià)。判斷命題真假時(shí)注意轉(zhuǎn)化。
2、注意命題的否定與否命題的區(qū)別:命題否定形式是 ;否命題是 .命題“ 或 ”的否定是“ 且 ”;“ 且 ”的否定是“ 或 ”.
3、邏輯聯(lián)結(jié)詞:
、徘(and) :命題形式 p q; p q p q p q p
、苹(or):命題形式 p q; 真 真 真 真 假
、欠(not):命題形式 p . 真 假 假 真 假
假 真 假 真 真
假 假 假 假 真
“或命題”的真假特點(diǎn)是“一真即真,要假全假”;
“且命題”的真假特點(diǎn)是“一假即假,要真全真”;
“非命題”的真假特點(diǎn)是“一真一假”
4、充要條件
由條件可推出結(jié)論,條件是結(jié)論成立的充分條件;由結(jié)論可推出條件,則條件是結(jié)論成立的必要條件。
5、全稱命題與特稱命題:
短語(yǔ)“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,并用符號(hào)表示。含有全體量詞的命題,叫做全稱命題。
短語(yǔ)“有一個(gè)”或“有些”或“至少有一個(gè)”在陳述中表示所述事物的個(gè)體或部分,邏輯中通常叫做存在量詞,并用符號(hào) 表示,含有存在量詞的命題,叫做存在性命題。
全稱命題p: ; 全稱命題p的否定 p:。
特稱命題p: ; 特稱命題p的否定 p:
高中數(shù)學(xué)高二知識(shí)點(diǎn)總結(jié)7
分層抽樣
先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟,然后再在各個(gè)類型或?qū)哟沃胁捎煤?jiǎn)單隨機(jī)抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來(lái)構(gòu)成總體的樣本。
兩種方法
1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。
2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。
2.分層抽樣是把異質(zhì)性較強(qiáng)的總體分成一個(gè)個(gè)同質(zhì)性較強(qiáng)的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。
分層標(biāo)準(zhǔn)
(1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標(biāo)準(zhǔn)。
(2)以保證各層內(nèi)部同質(zhì)性強(qiáng)、各層之間異質(zhì)性強(qiáng)、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。
(3)以那些有明顯分層區(qū)分的變量作為分層變量。
分層的比例問(wèn)題
(1)按比例分層抽樣:根據(jù)各種類型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來(lái)抽取子樣本的方法。
(2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會(huì)非常少,此時(shí)采用該方法,主要是便于對(duì)不同層次的子總體進(jìn)行專門研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時(shí),則需要先對(duì)各層的數(shù)據(jù)資料進(jìn)行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復(fù)到總體中各層實(shí)際的比例結(jié)構(gòu)。
(1)定義:
對(duì)于函數(shù)y=f(x)(x∈D),把使f(x)=0成立的實(shí)數(shù)x叫做函數(shù)y=f(x)(x∈D)的零點(diǎn)。
(2)函數(shù)的零點(diǎn)與相應(yīng)方程的根、函數(shù)的圖象與x軸交點(diǎn)間的關(guān)系:
方程f(x)=0有實(shí)數(shù)根?函數(shù)y=f(x)的圖象與x軸有交點(diǎn)?函數(shù)y=f(x)有零點(diǎn)。
(3)函數(shù)零點(diǎn)的判定(零點(diǎn)存在性定理):
如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)·f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也就是方程f(x)=0的根。
二二次函數(shù)y=ax2+bx+c(a>0)的圖象與零點(diǎn)的關(guān)系
三二分法
對(duì)于在區(qū)間[a,b]上連續(xù)不斷且f(a)·f(b)<0的函數(shù)y=f(x),通過(guò)不斷地把函數(shù)f(x)的零點(diǎn)所在的區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法。
1、函數(shù)的零點(diǎn)不是點(diǎn):
函數(shù)y=f(x)的零點(diǎn)就是方程f(x)=0的實(shí)數(shù)根,也就是函數(shù)y=f(x)的圖象與x軸交點(diǎn)的橫坐標(biāo),所以函數(shù)的`零點(diǎn)是一個(gè)數(shù),而不是一個(gè)點(diǎn).在寫函數(shù)零點(diǎn)時(shí),所寫的一定是一個(gè)數(shù)字,而不是一個(gè)坐標(biāo)。
2、對(duì)函數(shù)零點(diǎn)存在的判斷中,必須強(qiáng)調(diào):
(1)、f(x)在[a,b]上連續(xù);
(2)、f(a)·f(b)<0;
(3)、在(a,b)內(nèi)存在零點(diǎn)。
這是零點(diǎn)存在的一個(gè)充分條件,但不必要。
3、對(duì)于定義域內(nèi)連續(xù)不斷的函數(shù),其相鄰兩個(gè)零點(diǎn)之間的所有函數(shù)值保持同號(hào)。
利用函數(shù)零點(diǎn)的存在性定理判斷零點(diǎn)所在的區(qū)間時(shí),首先看函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是否連續(xù)不斷,再看是否有f(a)·f(b)<0.若有,則函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)必有零點(diǎn)。
四判斷函數(shù)零點(diǎn)個(gè)數(shù)的常用方法
1、解方程法:
令f(x)=0,如果能求出解,則有幾個(gè)解就有幾個(gè)零點(diǎn)。
2、零點(diǎn)存在性定理法:
利用定理不僅要判斷函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性、周期性、對(duì)稱性)才能確定函數(shù)有多少個(gè)零點(diǎn)。
3、數(shù)形結(jié)合法:
轉(zhuǎn)化為兩個(gè)函數(shù)的圖象的交點(diǎn)個(gè)數(shù)問(wèn)題.先畫(huà)出兩個(gè)函數(shù)的圖象,看其交點(diǎn)的個(gè)數(shù),其中交點(diǎn)的個(gè)數(shù),就是函數(shù)零點(diǎn)的個(gè)數(shù)。
已知函數(shù)有零點(diǎn)(方程有根)求參數(shù)取值常用的方法
1、直接法:
直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過(guò)解不等式確定參數(shù)范圍。
2、分離參數(shù)法:
先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問(wèn)題加以解決。
3、數(shù)形結(jié)合法:
先對(duì)解析式變形,在同一平面直角坐標(biāo)系中,畫(huà)出函數(shù)的圖象,然后數(shù)形結(jié)合求解。
【高中數(shù)學(xué)高二知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)04-07
高中數(shù)學(xué)導(dǎo)數(shù)知識(shí)點(diǎn)總結(jié)05-09
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11-12
高中數(shù)學(xué)全部知識(shí)點(diǎn)總結(jié)04-25
高中數(shù)學(xué)統(tǒng)計(jì)知識(shí)點(diǎn)總結(jié)10-21
高中數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)總結(jié)11-18
高中數(shù)學(xué)必修2知識(shí)點(diǎn)總結(jié)11-22