當前位置:育文網(wǎng)>高中>高中數(shù)學> 高中概率數(shù)學知識點

高中概率數(shù)學知識點

時間:2022-05-29 13:23:13 高中數(shù)學

高中概率數(shù)學知識點

  在平日的學習中,看到知識點,都是先收藏再說吧!知識點有時候特指教科書上或考試的知識。哪些知識點能夠真正幫助到我們呢?以下是小編為大家收集的高中概率數(shù)學知識點,供大家參考借鑒,希望可以幫助到有需要的朋友。

高中概率數(shù)學知識點

高中概率數(shù)學知識點1

  一.算法,概率和統(tǒng)計

  1.算法初步(約12課時)

  (1)算法的含義、程序框圖

  ①通過對解決具體問題過程與步驟的分析(如,二元一次方程組求解等問題),體會算法的思想,了解算法的含義。

  ②通過模仿、操作、探索,經(jīng)歷通過設計程序框圖表達解決問題的過程。在具體問題的解決過程中(如,三元一次方程組求解等問題),理解程序框圖的三種基本邏輯結構:順序、條件分支、循環(huán)。

 。2)基本算法語句

  經(jīng)歷將具體問題的程序框圖轉化為程序語句的過程,理解幾種基本算法語句--輸入語句、輸出語句、賦值語句、條件語句、循環(huán)語句,進一步體會算法的基本思想。

 。3)通過閱讀中國古代數(shù)學中的算法案例,體會中國古代數(shù)學對世界數(shù)學發(fā)展的貢獻。

  3.概率(約8課時)

  (1)在具體情境中,了解隨機事件發(fā)生的不確定性和頻率的穩(wěn)定性,進一步了解概率的意義以及頻率與概率的區(qū)別。

  (2)通過實例,了解兩個互斥事件的概率加法公式。

  (3)通過實例,理解古典概型及其概率計算公式,會用列舉法計算一些隨機事件所含的基本事件數(shù)及事件發(fā)生的概率。

 。4)了解隨機數(shù)的意義,能運用模擬方法(包括計算器產(chǎn)生隨機數(shù)來進行模擬)估計概率,初步體會幾何概型的意義(參見例3)。

  (5)通過閱讀材料,了解人類認識隨機現(xiàn)象的過程。

  2.統(tǒng)計(約16課時)

 。1)隨機抽樣

  ①能從現(xiàn)實生活或其他學科中提出具有一定價值的統(tǒng)計問題。

  ②結合具體的實際問題情境,理解隨機抽樣的必要性和重要性。

 、墼趨⑴c解決統(tǒng)計問題的過程中,學會用簡單隨機抽樣方法從總體中抽取樣本;通過對實例的分析,了解分層抽樣和系統(tǒng)抽樣方法。

 、苣芡ㄟ^試驗、查閱資料、設計調查問卷等方法收集數(shù)據(jù)。

  (2)用樣本估計總體

 、偻ㄟ^實例體會分布的意義和作用,在表示樣本數(shù)據(jù)的過程中,學會列頻率分布表、畫頻率分布直方圖、頻率折線圖、莖葉圖(參見例1),體會他們各自的特點。

 、谕ㄟ^實例理解樣本數(shù)據(jù)標準差的意義和作用,學會計算數(shù)據(jù)標準差。

  ③能根據(jù)實際問題的需求合理地選取樣本,從樣本數(shù)據(jù)中提取基本的數(shù)字特征(如平均數(shù)、標準差),并作出合理的`解釋。

 、茉诮鉀Q統(tǒng)計問題的過程中,進一步體會用樣本估計總體的思想,會用樣本的頻率分布估計總體分布,會用樣本的基本數(shù)字特征估計總體的基本數(shù)字特征;初步體會樣本頻率分布和數(shù)字特征的隨機性。

 、輹秒S機抽樣的基本方法和樣本估計總體的思想,解決一些簡單的實際問題;能通過對數(shù)據(jù)的分析為合理的決策提供一些依據(jù),認識統(tǒng)計的作用,體會統(tǒng)計思維與確定性思維的差異。

  ⑥形成對數(shù)據(jù)處理過程進行初步評價的意識。

  (3)變量的相關性

 、偻ㄟ^收集現(xiàn)實問題中兩個有關聯(lián)變量的數(shù)據(jù)作出散點圖,并利用散點圖直觀認識變量間的相關關系。

 、诮(jīng)歷用不同估算方法描述兩個變量線性相關的過程。知道最小二乘法的思想,能根據(jù)給出的線性回歸方程系數(shù)公式建立線性回歸方程。

  二.常用邏輯用語

  1。命題及其關系

 、倭私饷}的逆命題、否命題與逆否命題。

  ②理解必要條件、充分條件與充要條件的意義,會分析四種命題的相互關系。

 。2)簡單的邏輯聯(lián)結詞

  通過數(shù)學實例,了解"或"、"且"、"非"的含義。

 。3)全稱量詞與存在量詞

  ①通過生活和數(shù)學中的豐富實例,理解全稱量詞與存在量詞的意義。

 、谀苷_地對含有一個量詞的命題進行否定。

  3.導數(shù)及其應用(約16課時)

 。1)導數(shù)概念及其幾何意義

  ①通過對大量實例的分析,經(jīng)歷由平均變化率過渡到瞬時變化率的過程,了解導數(shù)概念的實際背景,知道瞬時變化率就是導數(shù),體會導數(shù)的思想及其內(nèi)涵(參見例2、例3)。

 、谕ㄟ^函數(shù)圖像直觀地理解導數(shù)的幾何意義。

  (2)導數(shù)的運算

 、倌芨鶕(jù)導數(shù)定義,求函數(shù)y=c,y=x,y=x2,y=1/x的導數(shù)。

  ②能利用給出的基本初等函數(shù)的導數(shù)公式和導數(shù)的四則運算法則求簡單函數(shù)的導數(shù)。

 、蹠褂脤(shù)公式表。

 。3)導數(shù)在研究函數(shù)中的應用

 、俳Y合實例,借助幾何直觀探索并了解函數(shù)的單調性與導數(shù)的關系(參見例4);能利用導數(shù)研究函數(shù)的單調性,會求不超過三次的多項式函數(shù)的單調區(qū)間。

 、诮Y合函數(shù)的圖像,了解函數(shù)在某點取得極值的必要條件和充分條件;會用導數(shù)求不超過三次的多項式函數(shù)的極大值、極小值,以及在給定區(qū)間上不超過三次的多項式函數(shù)的最大值、最小值。2.圓錐曲線與方程(約12課時)

 。1)了解圓錐曲線的實際背景,感受圓錐曲線在刻畫現(xiàn)實世界和解決實際問題中的作用。

 。2)經(jīng)歷從具體情境中抽象出橢圓模型的過程(參見例1),掌握橢圓的定義、標準方程及簡單幾何性質。

  (3)了解拋物線、雙曲線的定義、幾何圖形和標準方程,知道它們的簡單幾何性質。

  (4)通過圓錐曲線與方程的學習,進一步體會數(shù)形結合的思想。

 。5)了解圓錐曲線的簡單應用。

  三.統(tǒng)計案例(約14課時)

  通過典型案例,學習下列一些常見的統(tǒng)計方法,并能初步應用這些方法解決一些實際問題。

 、偻ㄟ^對典型案例(如"肺癌與吸煙有關嗎"等)的探究,了解獨立性檢驗(只要求2×2列聯(lián)表)的基本思想、方法及初步應用。

 、谕ㄟ^對典型案例(如"質量控制"、"新藥是否有效"等)的探究,了解實際推斷原理和假設檢驗的基本思想、方法及初步應用(參見例1)。

 、弁ㄟ^對典型案例(如"昆蟲分類"等)的探究,了解聚類分析的基本思想、方法及初步應用。

 、芡ㄟ^對典型案例(如"人的體重與身高的關系"等)的探究,進一步了解回歸的基本思想、方法及初步應用。

  2.推理與證明(約10課時)

  (1)合情推理與演繹推理

 、俳Y合已學過的數(shù)學實例和生活中的實例,了解合情推理的含義,能利用歸納和類比等進行簡單的推理,體會并認識合情推理在數(shù)學發(fā)現(xiàn)中的作用(參見例2、例3)。

  ②結合已學過的數(shù)學實例和生活中的實例,體會演繹推理的重要性,掌握演繹推理的基本方法,并能運用它們進行一些簡單推理。

  ③通過具體實例,了解合情推理和演繹推理之間的聯(lián)系和差異。

 。2)直接證明與間接證明

  ①結合已經(jīng)學過的數(shù)學實例,了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過程、特點。

 、诮Y合已經(jīng)學過的數(shù)學實例,了解間接證明的一種基本方法--反證法;了解反證法的思考過程、特點。

高中概率數(shù)學知識點2

  概率

  3.1.1 —3.1.2隨機事件的概率及概率的意義

  1、基本概念:

  (1)必然事件:在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件;

  (2)不可能事件:在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件;

  (3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件;

  (4)隨機事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機事件;

  (5)頻數(shù)與頻率:在相同的條件S下重復n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=為事件A出現(xiàn)的概率:對于給定的隨機事件A,如果隨著試驗次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作P(A),稱為事件A的.概率。

  (6)頻率與概率的區(qū)別與聯(lián)系:隨機事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗總次數(shù)n的比值,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機事件的概率,概率從數(shù)量上反映了隨機事件發(fā)生的可能性的大小。頻率在大量重復試驗的前提下可以近似地作為這個事件的概率

  3.1.3概率的基本性質

  1、基本概念:

  (1)事件的包含、并事件、交事件、相等事件

  (2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;

  (3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對立事件;

  (4)當事件A與B互斥時,滿足加法公式:P(A∪B)= P(A)+ P(B);若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)

  2、概率的基本性質:

  1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;

  2)當事件A與B互斥時,滿足加法公式:P(A∪B)= P(A)+ P(B);

  3)若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);

  4)互斥事件與對立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗中不會同時發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時不發(fā)生,而對立事件是指事件A與事件B有且僅有一個發(fā)生,其包括兩種情形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對立事件互斥事件的特殊情形。

  3.2.1 —3.2.2古典概型及隨機數(shù)的產(chǎn)生

  1、(1)古典概型的使用條件:試驗結果的有限性和所有結果的等可能性。

  (2)古典概型的解題步驟;

 、偾蟪隹偟幕臼录䲠(shù);

 、谇蟪鍪录嗀所包含的基本事件數(shù),然后利用公式P(A)=

  3.3.1—3.3.2幾何概型及均勻隨機數(shù)的產(chǎn)生

  1、基本概念:

  (1)幾何概率模型:如果每個事件發(fā)生的概率只與構成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型;

  (2)幾何概型的概率公式:

  P(A)= ;

  (3)幾何概型的特點:1)試驗中所有可能出現(xiàn)的結果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等。

  如何細心地發(fā)掘概念和公式

  很多同學對概念和公式不夠重視,這類問題反映在三個方面:一是,對概念的理解只是停留在文字表面,對概念的特殊情況重視不夠。例如,在代數(shù)式的概念(用字母或數(shù)字表示的式子是代數(shù)式)中,很多同學忽略了“單個字母或數(shù)字也是代數(shù)式”。

  二是,對概念和公式一味的死記硬背,缺乏與實際題目的聯(lián)系。這樣就不能很好的將學到的知識點與解題聯(lián)系起來。三是,一部分同學不重視對數(shù)學公式的記憶。記憶是理解的基礎。如果你不能將公式爛熟于心,又怎能夠在題目中熟練應用呢?

  我們的建議是:更細心一點(觀察特例),更深入一點(了解它在題目中的常見考點),更熟練一點(無論它以什么面目出現(xiàn),我們都能夠應用自如)。

  數(shù)學中的判定

  判定多用于數(shù)學的證明概念,通過事物的本質屬性反映出的本質性質,以此作為依據(jù)推知下一步結論,這個行為叫做判定。

  例如:兩組對邊分別平行的四邊形,叫做平行四邊形,這個作為已證明的定理,揭示了本質,可以說是“永遠成立”。

  以此作為判定依據(jù),這個依據(jù)叫判定定理,我發(fā)現(xiàn)一個四邊形的一組對邊平行且相等,那么可以斷定此四邊形就是平行四邊形,這個行為叫判定