- 相關(guān)推薦
數(shù)學(xué)高中必背知識(shí)點(diǎn)總結(jié)
在平凡的學(xué)習(xí)生活中,是不是聽到知識(shí)點(diǎn),就立刻清醒了?知識(shí)點(diǎn)是傳遞信息的基本單位,知識(shí)點(diǎn)對(duì)提高學(xué)習(xí)導(dǎo)航具有重要的作用。那么,都有哪些知識(shí)點(diǎn)呢?以下是小編為大家收集的數(shù)學(xué)高中必背知識(shí)點(diǎn)總結(jié),僅供參考,歡迎大家閱讀。
數(shù)學(xué)高中必背知識(shí)點(diǎn)總結(jié)1
簡(jiǎn)單隨機(jī)抽樣
(1)總體和樣本
①在統(tǒng)計(jì)學(xué)中,把研究對(duì)象的全體叫做總體。
②把每個(gè)研究對(duì)象叫做個(gè)體。
③把總體中個(gè)體的總數(shù)叫做總體容量。
④為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:x1,x2,…,xx研究,我們稱它為樣本。其中個(gè)體的個(gè)數(shù)稱為樣本容量。
(2)簡(jiǎn)單隨機(jī)抽樣,也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨
機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的`每個(gè)單位完全獨(dú)立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡(jiǎn)單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。
(3)簡(jiǎn)單隨機(jī)抽樣常用的方法:
、俪楹灧;
②隨機(jī)數(shù)表法;
、塾(jì)算機(jī)模擬法;
③使用統(tǒng)計(jì)軟件直接抽取。
在簡(jiǎn)單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:
、倏傮w變異情況;
、谠试S誤差范圍;
、鄹怕时WC程度。
(4)抽簽法:
、俳o調(diào)查對(duì)象群體中的每一個(gè)對(duì)象編號(hào);
、跍(zhǔn)備抽簽的工具,實(shí)施抽簽;
、蹖(duì)樣本中的每一個(gè)個(gè)體進(jìn)行測(cè)量或調(diào)查
數(shù)學(xué)高中必背知識(shí)點(diǎn)總結(jié)2
空間兩條直線只有三種位置關(guān)系:平行、相交、異面
1、按是否共面可分為兩類:
(1)共面:平行、相交
(2)異面:
異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線。
兩異面直線所成的角:范圍為(0°,90°)esp?臻g向量法
兩異面直線間距離:公垂線段(有且只有一條)esp?臻g向量法
2、若從有無公共點(diǎn)的角度看可分為兩類:
(1)有且僅有一個(gè)公共點(diǎn)——相交直線;
(2)沒有公共點(diǎn)——平行或異面
直線和平面的位置關(guān)系:
直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行
、僦本在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn)
②直線和平面相交——有且只有一個(gè)公共點(diǎn)
直線與平面所成的角:平面的'一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。
數(shù)學(xué)高中必背知識(shí)點(diǎn)總結(jié)3
函數(shù)與導(dǎo)數(shù)。主要考查集合運(yùn)算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。
平面向量與三角函數(shù)、三角變換及其應(yīng)用。這一部分是高考的重點(diǎn)但不是難點(diǎn),主要出一些基礎(chǔ)題或中檔題。
數(shù)列及其應(yīng)用。這部分是高考的重點(diǎn)而且是難點(diǎn),主要出一些綜合題。
不等式。主要考查不等式的求解和證明,而且很少單獨(dú)考查,主要是在解答題中比較大小。是高考的重點(diǎn)和難點(diǎn)。
概率和統(tǒng)計(jì)。這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。
空間位置關(guān)系的定性與定量分析。主要是證明平行或垂直,求角和距離。主要考察對(duì)定理的熟悉程度、運(yùn)用程度。
解析幾何。高考的難點(diǎn),運(yùn)算量大,一般含參數(shù)。
高考對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的考查,既全面又突出重點(diǎn),扎實(shí)的數(shù)學(xué)基礎(chǔ)是成功解題的`關(guān)鍵。
掌握分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,并能用它們分析和解決一些簡(jiǎn)單的應(yīng)用問題。
理解排列的意義,掌握排列數(shù)計(jì)算公式,并能用它解決一些簡(jiǎn)單的應(yīng)用問題。
理解組合的意義,掌握組合數(shù)計(jì)算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡(jiǎn)單的應(yīng)用問題。
掌握二項(xiàng)式定理和二項(xiàng)展開式的性質(zhì),并能用它們計(jì)算和證明一些簡(jiǎn)單的問題。
了解隨機(jī)事件的發(fā)生存在著規(guī)律性和隨機(jī)事件概率的意義。
了解等可能性事件的概率的意義,會(huì)用排列組合的基本公式計(jì)算一些等可能性事件的概率。
了解互斥事件、相互獨(dú)立事件的意義,會(huì)用互斥事件的概率加法公式與相互獨(dú)立事件的概率乘法公式計(jì)算一些事件的概率。
會(huì)計(jì)算事件在n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率。
數(shù)學(xué)高中必背知識(shí)點(diǎn)總結(jié)4
(一)導(dǎo)數(shù)第一定義
設(shè)函數(shù)y=f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有增量△x(x0+△x也在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)取得增量△y=f(x0+△x)-f(x0);如果△y與△x之比當(dāng)△x→0時(shí)極限存在,則稱函數(shù)y=f(x)在點(diǎn)x0處可導(dǎo),并稱這個(gè)極限值為函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f(x0),即導(dǎo)數(shù)第一定義
(二)導(dǎo)數(shù)第二定義
設(shè)函數(shù)y=f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有變化△x(x-x0也在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)變化△y=f(x)-f(x0);如果△y與△x之比當(dāng)△x→0時(shí)極限存在,則稱函數(shù)y=f(x)在點(diǎn)x0處可導(dǎo),并稱這個(gè)極限值為函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f(x0),即導(dǎo)數(shù)第二定義
(三)導(dǎo)函數(shù)與導(dǎo)數(shù)
如果函數(shù)y=f(x)在開區(qū)間I內(nèi)每一點(diǎn)都可導(dǎo),就稱函數(shù)f(x)在區(qū)間I內(nèi)可導(dǎo)。這時(shí)函數(shù)y=f(x)對(duì)于區(qū)間I內(nèi)的每一個(gè)確定的x值,都對(duì)應(yīng)著一個(gè)確定的.導(dǎo)數(shù),這就構(gòu)成一個(gè)新的函數(shù),稱這個(gè)函數(shù)為原來函數(shù)y=f(x)的導(dǎo)函數(shù),記作y,f(x),dy/dx,df(x)/dx。導(dǎo)函數(shù)簡(jiǎn)稱導(dǎo)數(shù)。
(四)單調(diào)性及其應(yīng)用
1、利用導(dǎo)數(shù)研究多項(xiàng)式函數(shù)單調(diào)性的一般步驟
(1)求f(x)
(2)確定f(x)在(a,b)內(nèi)符號(hào)(3)若f(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)
2、用導(dǎo)數(shù)求多項(xiàng)式函數(shù)單調(diào)區(qū)間的一般步驟
(1)求f(x)
(2)f(x)>0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為增區(qū)間;f(x)<0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為減區(qū)間
學(xué)習(xí)了導(dǎo)數(shù)基礎(chǔ)知識(shí)點(diǎn),接下來可以學(xué)習(xí)高二數(shù)學(xué)中涉及到的導(dǎo)數(shù)應(yīng)用的部分。
數(shù)學(xué)高中必背知識(shí)點(diǎn)總結(jié)5
一、高中數(shù)列基本公式:
1、一般數(shù)列的通項(xiàng)an與前n項(xiàng)和Sn的關(guān)系:an=
2、等差數(shù)列的通項(xiàng)公式:an=a1+(n-1)dan=ak+(n-k)d(其中a1為首項(xiàng)、ak為已知的第k項(xiàng))當(dāng)d≠0時(shí),an是關(guān)于n的一次式;當(dāng)d=0時(shí),an是一個(gè)常數(shù)。
3、等差數(shù)列的前n項(xiàng)和公式:Sn=
Sn=
Sn=
當(dāng)d≠0時(shí),Sn是關(guān)于n的'二次式且常數(shù)項(xiàng)為0;當(dāng)d=0時(shí)(a1≠0),Sn=na1是關(guān)于n的正比例式。
4、等比數(shù)列的通項(xiàng)公式:an=a1qn-1an=akqn-k
(其中a1為首項(xiàng)、ak為已知的第k項(xiàng),an≠0)
5、等比數(shù)列的前n項(xiàng)和公式:當(dāng)q=1時(shí),Sn=na1(是關(guān)于n的正比例式);
當(dāng)q≠1時(shí),Sn=
Sn=
二、高中數(shù)學(xué)中有關(guān)等差、等比數(shù)列的結(jié)論
1、等差數(shù)列{an}的任意連續(xù)m項(xiàng)的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m-S3m、……仍為等差數(shù)列。
2、等差數(shù)列{an}中,若m+n=p+q,則
3、等比數(shù)列{an}中,若m+n=p+q,則
4、等比數(shù)列{an}的任意連續(xù)m項(xiàng)的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m-S3m、……仍為等比數(shù)列。
5、兩個(gè)等差數(shù)列{an}與{bn}的和差的數(shù)列{an+bn}、{an-bn}仍為等差數(shù)列。
6、兩個(gè)等比數(shù)列{an}與{bn}的積、商、倒數(shù)組成的數(shù)列仍為等比數(shù)列。
7、等差數(shù)列{an}的任意等距離的項(xiàng)構(gòu)成的數(shù)列仍為等差數(shù)列。
8、等比數(shù)列{an}的任意等距離的項(xiàng)構(gòu)成的數(shù)列仍為等比數(shù)列。
9、三個(gè)數(shù)成等差數(shù)列的設(shè)法:a-d,a,a+d;四個(gè)數(shù)成等差的設(shè)法:a-3d,a-d,a+d,a+3d
10、三個(gè)數(shù)成等比數(shù)列的設(shè)法:a/q,a,aq;
四個(gè)數(shù)成等比的錯(cuò)誤設(shè)法:a/q3,a/q,aq,aq3(為什么?)
數(shù)學(xué)高中必背知識(shí)點(diǎn)總結(jié)6
考點(diǎn)一、映射的概念
1、了解對(duì)應(yīng)大千世界的對(duì)應(yīng)共分四類,分別是:一對(duì)一多對(duì)一一對(duì)多多對(duì)多
2、映射:設(shè)A和B是兩個(gè)非空集合,如果按照某種對(duì)應(yīng)關(guān)系f,對(duì)于集合A中的任意一個(gè)元素x,在集合B中都存在的一個(gè)元素y與之對(duì)應(yīng),那么,就稱對(duì)應(yīng)f:A→B為集合A到集合B的一個(gè)映射(mapping)。映射是特殊的對(duì)應(yīng),簡(jiǎn)稱“對(duì)一”的對(duì)應(yīng)。包括:一對(duì)一多對(duì)一
考點(diǎn)二、函數(shù)的概念
1、函數(shù):設(shè)A和B是兩個(gè)非空的數(shù)集,如果按照某種確定的對(duì)應(yīng)關(guān)系f,對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都存在確定的數(shù)y與之對(duì)應(yīng),那么,就稱對(duì)應(yīng)f:A→B為集合A到集合B的一個(gè)函數(shù)。記作y=f(x),xA。其中x叫自變量,x的取值范圍A叫函數(shù)的定義域;與x的值相對(duì)應(yīng)的y的值函數(shù)值,函數(shù)值的集合叫做函數(shù)的值域。函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射。
2函、數(shù)的三要素:定義域、值域、對(duì)應(yīng)關(guān)系。這是判斷兩個(gè)函數(shù)是否為同一函數(shù)的依據(jù)。
3、區(qū)間的概念:設(shè)a,bR,且a
、伲╝,b)={xa
、荩╝,+∞)={>a}⑥[a,+∞)={≥a}⑦(—∞,b)={
考點(diǎn)三、函數(shù)的表示方法
1、函數(shù)的三種表示方法列表法圖象法解析法
2、分段函數(shù):定義域的不同部分,有不同的對(duì)應(yīng)法則的函數(shù)。注意兩點(diǎn):①分段函數(shù)是一個(gè)函數(shù),不要誤認(rèn)為是幾個(gè)函數(shù)。②分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集。
考點(diǎn)四、求定義域的幾種情況
、偃鬴(x)是整式,則函數(shù)的定義域是實(shí)數(shù)集R;
②若f(x)是分式,則函數(shù)的定義域是使分母不等于0的`實(shí)數(shù)集;
、廴鬴(x)是二次根式,則函數(shù)的定義域是使根號(hào)內(nèi)的式子大于或等于0的實(shí)數(shù)集合;
④若f(x)是對(duì)數(shù)函數(shù),真數(shù)應(yīng)大于零。
、菀?yàn)榱愕牧愦蝺鐩]有意義,所以底數(shù)和指數(shù)不能同時(shí)為零。
、奕鬴(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,則函數(shù)的定義域是使各部分式子都有意義的實(shí)數(shù)集合;
、呷鬴(x)是由實(shí)際問題抽象出來的函數(shù),則函數(shù)的定義域應(yīng)符合實(shí)際問題
【數(shù)學(xué)高中必背知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
高中數(shù)學(xué)必背知識(shí)點(diǎn)03-05
初中數(shù)學(xué)必背知識(shí)點(diǎn)總結(jié)04-25
高中總復(fù)習(xí)生物必背知識(shí)點(diǎn)12-08
初中生物會(huì)考必背知識(shí)點(diǎn)歸納12-13
高中合格數(shù)學(xué)知識(shí)點(diǎn)總結(jié)04-25
數(shù)學(xué)高中必修一知識(shí)點(diǎn)總結(jié)04-25
高中數(shù)學(xué)全部知識(shí)點(diǎn)總結(jié)04-25