- 相關(guān)推薦
初中數(shù)學(xué)整式的乘法教案優(yōu)秀
作為一名人民教師,時(shí)常需要編寫教案,教案是教材及大綱與課堂教學(xué)的紐帶和橋梁。快來參考教案是怎么寫的吧!下面是小編幫大家整理的初中數(shù)學(xué)整式的乘法教案優(yōu)秀,希望對(duì)大家有所幫助。
初中數(shù)學(xué)整式的乘法教案優(yōu)秀1
總體說明:
完全平方公式則是對(duì)多項(xiàng)式乘法中出現(xiàn)的較為特殊的算式的一種歸納、總結(jié)。同時(shí),完全平方公式的推導(dǎo)是初中數(shù)學(xué)中運(yùn)用推理方法進(jìn)行代數(shù)式恒等變形的開端,通過完全平方公式的學(xué)習(xí)對(duì)簡化某些整式的運(yùn)算、培養(yǎng)學(xué)生的求簡意識(shí)有較大好處。而且完全平方公式是后繼學(xué)習(xí)的必備基礎(chǔ),不僅對(duì)學(xué)生提高運(yùn)算速度、準(zhǔn)確率有較大作用,更是以后學(xué)習(xí)分解因式、分式運(yùn)算、解一元二次方程以及二次函數(shù)的恒等變形的重要基礎(chǔ),同時(shí)也具有培養(yǎng)學(xué)生逐漸養(yǎng)成嚴(yán)密的邏輯推理能力的作用。因此學(xué)好完全平方公式對(duì)于代數(shù)知識(shí)的后繼學(xué)習(xí)具有相當(dāng)重要的意義。
本節(jié)是北師大版七年級(jí)數(shù)學(xué)下冊(cè)第一章《整式的運(yùn)算》的第8小節(jié),占兩個(gè)課時(shí),這是第一課時(shí),它主要讓學(xué)生經(jīng)歷探索與推導(dǎo)完全平方公式的過程,培養(yǎng)學(xué)生的符號(hào)感與推理能力,讓學(xué)生進(jìn)一步體會(huì)數(shù)形結(jié)合的思想在數(shù)學(xué)中的作用。
一、學(xué)生學(xué)情分析
學(xué)生的技能基礎(chǔ):學(xué)生通過對(duì)本章前幾節(jié)課的學(xué)習(xí),已經(jīng)學(xué)習(xí)了整式的概念、整式的加減、冪的運(yùn)算、整式的乘法、平方差公式,這些基礎(chǔ)知識(shí)的學(xué)習(xí)為本節(jié)課的學(xué)習(xí)奠定了基礎(chǔ)。
學(xué)生活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在平方差公式一節(jié)的學(xué)習(xí)中,學(xué)生已經(jīng)經(jīng)歷了探索和應(yīng)用的過程,獲得了一些數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),培養(yǎng)了一定的符號(hào)感和推理能力;同時(shí)在相關(guān)知識(shí)的學(xué)習(xí)過程中,學(xué)生經(jīng)歷了很多探究學(xué)習(xí)的過程,具有了一定的獨(dú)立探究意識(shí)以及與同伴合作交流的能力。
二、教學(xué)目標(biāo)
知識(shí)與技能:
。1)讓學(xué)生會(huì)推導(dǎo)完全平方公式,并能進(jìn)行簡單的應(yīng)用。
。2)了解完全平方公式的幾何背景。
數(shù)學(xué)能力:
(1)由學(xué)生經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展學(xué)生的符號(hào)感與推理能力。
。2)發(fā)展學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想。
情感與態(tài)度:
將學(xué)生頭腦中的前概念暴露出來進(jìn)行分析,避免形成教學(xué)上的“相異構(gòu)想”。
三、教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):1、完全平方公式的推導(dǎo);
2、完全平方公式的應(yīng)用;
教學(xué)難點(diǎn):1、消除學(xué)生頭腦中的前概念,避免形成“相異構(gòu)想”;
2、完全平方公式結(jié)構(gòu)的認(rèn)知及正確應(yīng)用。
四、教學(xué)設(shè)計(jì)分析
本節(jié)課設(shè)計(jì)了十一個(gè)教學(xué)環(huán)節(jié):學(xué)生練習(xí)、暴露問題——驗(yàn)證——推廣到一般情況,形成公式——數(shù)形結(jié)合——進(jìn)一步拓廣——總結(jié)口訣——公式應(yīng)用——學(xué)生反饋——學(xué)生PK——學(xué)生反思——鞏固練習(xí)。
第一環(huán)節(jié):學(xué)生練習(xí)、暴露問題
活動(dòng)內(nèi)容:計(jì)算:(a+2)2
設(shè)想學(xué)生的做法有以下幾種可能:
、(a+2)2=a2+22
、(a+2)2=a2+2a+22
③正確做法;
針對(duì)這幾種結(jié)果都將a=1代入計(jì)算,得出①②都是錯(cuò)誤的,但③的'做法是否一定正確呢?怎么驗(yàn)證?
活動(dòng)目的:在很多學(xué)生的頭腦中,認(rèn)為兩數(shù)和的完全平方與兩數(shù)的平方和等同,即:
(a+2)2=a2+22,如果不將這種定式思維,就很難建立起一個(gè)正確的概念;這一環(huán)節(jié)的目的就是讓學(xué)生的這種錯(cuò)誤或其它錯(cuò)誤充分暴露出來,并讓學(xué)生充分認(rèn)識(shí)到自己原有的定式思維是錯(cuò)誤的,為下一步構(gòu)建新的思維模式埋下伏筆。
第二環(huán)節(jié):驗(yàn)證(a+2)2=a2–4a+22
活動(dòng)內(nèi)容:(a+2)2=(a+2)(a+2)=a2+2a+2a+22
活動(dòng)目的:在前一環(huán)節(jié)已經(jīng)打破了學(xué)生的原有的思維定式的基礎(chǔ)上,給學(xué)生建立正確的思維方法,避免形成“相異構(gòu)想”。
第三環(huán)節(jié):推廣到一般情況,形成公式
活動(dòng)內(nèi)容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2
活動(dòng)目的:讓學(xué)生經(jīng)歷從特殊到一般的探究過程,體驗(yàn)到發(fā)現(xiàn)的快樂。
第四環(huán)節(jié):數(shù)形結(jié)合
活動(dòng)內(nèi)容:設(shè)問:在多項(xiàng)式的乘法中,很多公式都都可以用幾何圖形進(jìn)行解釋,那么完全平方公式怎樣用幾何圖形解釋呢?
展示動(dòng)畫,用幾何圖形詮釋完全平方公式的幾何意義。
學(xué)生思考:還有沒有其它的方法來詮釋完全平方公式?(課后思考)
活動(dòng)目的:讓學(xué)生進(jìn)一步認(rèn)識(shí)到數(shù)與形都不是孤立存在的,數(shù)與形是可以有機(jī)地結(jié)合在一起,從而發(fā)展學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想。
第五環(huán)節(jié):進(jìn)一步拓廣
活動(dòng)內(nèi)容:推導(dǎo)兩數(shù)差的完全平方公式:(a–b)2=a2–2ab+b2
方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2
方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2
活動(dòng)目的:讓學(xué)生經(jīng)歷由兩數(shù)和的完全平方公式拓廣到兩數(shù)差的完全平方公式的過程,體會(huì)到符號(hào)差異帶來的結(jié)果差異,由第二種推導(dǎo)方法體會(huì)到兩數(shù)差的完全平方公式是兩數(shù)和的完全平方公式的應(yīng)用。
第六環(huán)節(jié):總結(jié)口訣、認(rèn)識(shí)特征
活動(dòng)內(nèi)容:比較兩個(gè)公式的共同點(diǎn)與不同點(diǎn):(a+b)2=a2+2ab+b2
(a–b)2=a2–2ab+b2
特征:①左邊都是一個(gè)二項(xiàng)式的完全平方,兩者僅有一個(gè)符號(hào)不同;右邊都是二次三項(xiàng)式,其中第一、三項(xiàng)是公式左邊二項(xiàng)式中每一項(xiàng)的平方,中間一項(xiàng)是左邊二項(xiàng)式中兩項(xiàng)乘積的兩倍,兩者也僅一個(gè)符號(hào)不同;
、诠街械腶、b可以是任意一個(gè)代數(shù)式(數(shù)、字母、單項(xiàng)式、多項(xiàng)式)
口訣:首平方,尾平方,首尾相乘的兩倍在中央。
活動(dòng)目的:認(rèn)識(shí)完全平方公式的特征,總結(jié)出完全平方公式的口訣,便于學(xué)生理解與記憶,避免學(xué)生在應(yīng)用該公式中出現(xiàn)錯(cuò)誤。
第七環(huán)節(jié):公式應(yīng)用
活動(dòng)內(nèi)容:例:計(jì)算:①(2x–3)2;②(4x+)2
解:①(2x–3)2=(2x)2–2(2x)3+32=4x2–12x+9
、冢4x+)2=(4x)2+2(4x)()+()2=16x2+2xy+
活動(dòng)目的:在前幾個(gè)環(huán)節(jié)中,學(xué)生對(duì)完全平方公式已經(jīng)有了感性認(rèn)識(shí),通過本環(huán)節(jié)的講解以及下一環(huán)節(jié)的練習(xí),使學(xué)生逐步經(jīng)歷認(rèn)識(shí)——模仿——再認(rèn)識(shí)。從而上升到理性認(rèn)識(shí)的階段。
第八環(huán)節(jié):隨堂練習(xí)
活動(dòng)內(nèi)容:計(jì)算:①;②;③(n+1)2–n2
活動(dòng)目的:通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對(duì)完全平方公式的理解是否到位,完全平方公式的應(yīng)用是否得當(dāng),以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏。
第九環(huán)節(jié):學(xué)生PK
活動(dòng)內(nèi)容:每個(gè)學(xué)生各出五道完全平方公式的計(jì)算題給自己的同桌解答,比一比誰的準(zhǔn)確性率高,速度快。
活動(dòng)目的:活躍課堂氣氛,激起學(xué)生的好勝心,進(jìn)一步鞏固學(xué)生對(duì)完全平方公式的理解與應(yīng)用。
第十環(huán)節(jié):學(xué)生反思
活動(dòng)內(nèi)容:通過今天這堂課的學(xué)習(xí),你有哪些收獲?
收獲1:認(rèn)識(shí)了完全平方公式,并能簡單應(yīng)用;
收獲2:了解了兩數(shù)和與兩數(shù)差的完全平方公式之間的差異;
收獲3:感受到數(shù)形結(jié)合的數(shù)學(xué)思想在數(shù)學(xué)中的作用。
活動(dòng)目的:通過對(duì)一堂課的歸納與總結(jié),鞏固學(xué)生對(duì)完全平方公式的認(rèn)識(shí),體會(huì)數(shù)學(xué)思想的精妙。
第十一環(huán)節(jié):布置作業(yè):
課本P43習(xí)題1.13
初中數(shù)學(xué)整式的乘法教案優(yōu)秀2
教學(xué)目標(biāo)
1、知識(shí)與技能:體會(huì)公式的發(fā)現(xiàn)和推導(dǎo)過程,了解公式的幾何背景,理解公式的本質(zhì),會(huì)應(yīng)用公式進(jìn)行簡單的計(jì)算。
2、過程與方法:通過讓學(xué)生經(jīng)歷探索完全平方公式的過程,培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展推理能力和有條理的表達(dá)能力。培養(yǎng)學(xué)生的數(shù)形結(jié)合能力。
3、情感態(tài)度價(jià)值觀:體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索性和創(chuàng)造性,并在數(shù)學(xué)活動(dòng)中獲得成功的體驗(yàn)與喜悅,樹立學(xué)習(xí)自信心。
教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):
1、對(duì)公式的理解,包括它的推導(dǎo)過程、結(jié)構(gòu)特點(diǎn)、語言表述(學(xué)生自己的語言)、幾何解釋。
2、會(huì)運(yùn)用公式進(jìn)行簡單的計(jì)算。
教學(xué)難點(diǎn):
1、完全平方公式的推導(dǎo)及其幾何解釋。
2、完全平方公式的結(jié)構(gòu)特點(diǎn)及其應(yīng)用。
教學(xué)工具
課件
教學(xué)過程
一、復(fù)習(xí)舊知、引入新知
問題1:請(qǐng)說出平方差公式,說說它的結(jié)構(gòu)特點(diǎn)。
問題2:平方差公式是如何推導(dǎo)出來的?
問題3:平方差公式可用來解決什么問題,舉例說明。
問題4:想一想、做一做,說出下列各式的結(jié)果。
(1)(a+b)2(2)(a-b)2
(此時(shí),教師可讓學(xué)生分別說說理由,并且不直接給出正確評(píng)價(jià),還要繼續(xù)激發(fā)學(xué)生的學(xué)習(xí)興趣。)
二、創(chuàng)設(shè)問題情境、探究新知
一塊邊長為a米的正方形實(shí)驗(yàn)田,因需要將其邊長增加b米,形成四塊實(shí)驗(yàn)田,以種植不同的新品種。
。1)四塊面積分別為_____;
。2)兩種形式表示實(shí)驗(yàn)田的總面積:_____
、僬w看:邊長為的大正方形,S=_____;
、诓糠挚矗核膲K面積的.和,S=_____。
總結(jié):通過以上探索你發(fā)現(xiàn)了什么?
問題1:通過以上探索學(xué)習(xí),同學(xué)們應(yīng)該知道我們提出的問題4正確的結(jié)果是什么了吧?
問題2:如果還有同學(xué)不認(rèn)同這個(gè)結(jié)果,我們?cè)倏聪旅娴膯栴},繼續(xù)探索。(a+b)2表示的意義是什么?請(qǐng)你用多項(xiàng)式的乘法法則加以驗(yàn)證。
。ń虒W(xué)過程中教師要有意識(shí)地提到猜想、感覺得到的不一定正確,只有再通過驗(yàn)證才能得出真知,但還是要鼓勵(lì)學(xué)生大膽猜想,發(fā)表見解,但要驗(yàn)證)
問題3:你能說說(a+b)2=a2+2ab+b2
這個(gè)等式的結(jié)構(gòu)特點(diǎn)嗎?用自己的語言敘述。
。ńY(jié)構(gòu)特點(diǎn):右邊是二項(xiàng)式(兩數(shù)和)的平方,右邊有三項(xiàng),是兩數(shù)的平方和加上這兩數(shù)乘積的二倍)
問題4:你能根據(jù)以上等式的結(jié)構(gòu)特點(diǎn)說出(a-b)2等于什么嗎?請(qǐng)你再用多項(xiàng)式的乘法法則加以驗(yàn)證。
總結(jié):我們把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2稱為完全平方公式。
問題:
、龠@兩個(gè)公式有何相同點(diǎn)與不同點(diǎn)?
②你能用自己的語言敘述這兩個(gè)公式嗎?
語言描述:兩數(shù)和(或差)的平方等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的2倍。
強(qiáng)化記憶:首平方,尾平方,首尾二倍放中央,和是加來差是減。
三、例題講解,鞏固新知
例1:利用完全平方公式計(jì)算
(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2
解:(2x-3)2=(2x)2-2o(2x)o3+32
=4x2-12x+9
(4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2
=16x2+40xy+25y2
(mn-a)2=(mn)2-2o(mn)oa+a2
=m2n2-2mna+a2
交流總結(jié):運(yùn)用完全平方公式計(jì)算的一般步驟
。1)確定首、尾,分別平方;
。2)確定中間系數(shù)與符號(hào),得到結(jié)果。
四、練習(xí)鞏固
練習(xí)1:利用完全平方公式計(jì)算
練習(xí)2:利用完全平方公式計(jì)算
練習(xí)3:
(練習(xí)可采用多種形式,學(xué)生上黑板板演,師生共同評(píng)價(jià)。也可學(xué)生獨(dú)立完成后,學(xué)生互相批改,力求使學(xué)生對(duì)公式完全掌握,如有學(xué)生出現(xiàn)問題,學(xué)生、教師應(yīng)及時(shí)幫助。)
五、變式練習(xí)
六、暢談收獲,歸納總結(jié)
1、本節(jié)課我們學(xué)習(xí)了乘法的完全平方公式。
2、我們?cè)谶\(yùn)用公式時(shí),要注意以下幾點(diǎn):
。1)公式中的字母a、b可以是任意代數(shù)式;
。2)公式的結(jié)果有三項(xiàng),不要漏項(xiàng)和寫錯(cuò)符號(hào);
。3)可能出現(xiàn)①②這樣的錯(cuò)誤。也不要與平方差公式混在一起。
七、作業(yè)設(shè)置
【初中數(shù)學(xué)整式的乘法教案優(yōu)秀】相關(guān)文章:
初中數(shù)學(xué)整式的乘法的知識(shí)點(diǎn)03-20
整式的乘法初中數(shù)學(xué)知識(shí)點(diǎn)03-22
整式的乘法說課稿05-27
初中整式教案02-25
小學(xué)數(shù)學(xué)整式的加減教案03-15
初中數(shù)學(xué)整式知識(shí)點(diǎn)03-24
初中數(shù)學(xué)整式的加減知識(shí)歸納03-23