- 勾股定理教案 推薦度:
- 勾股定理教案 推薦度:
- 勾股定理教案 推薦度:
- 勾股定理教案 推薦度:
- 勾股定理教案 推薦度:
- 相關(guān)推薦
(經(jīng)典)勾股定理教案20篇
作為一名無私奉獻的老師,常常需要準備教案,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當(dāng)?shù)慕虒W(xué)方法。那要怎么寫好教案呢?下面是小編精心整理的(經(jīng)典)勾股定理教案20篇,歡迎大家分享。
勾股定理教案 1
教學(xué)目標:
能運用勾股定理及直角三角形的判定條件解決實際問題。
在運用勾股定理解決實際問題的過程中,感受數(shù)學(xué)的“轉(zhuǎn)化” 思想(把解斜三角形問題轉(zhuǎn)化為解直角三角形的問題),進一步發(fā)展有條理思考和有條理表達的能力,體會數(shù)學(xué)的應(yīng)用價值。
教學(xué)準備
《數(shù)學(xué)學(xué)與練》
集體備課意見和主要參考資料
教學(xué)過程
一.新課導(dǎo)入
本課時的教學(xué)內(nèi)容是勾股定理在實際中的應(yīng)用。除課本提供的情境外,教學(xué)中可以根據(jù)實際情況另行設(shè)計一些具體情境,也利用課本提供的素材組織數(shù)學(xué)活動。比如,把課本例2改編為開放式的問題情境:
一架長為10m的梯子斜靠在墻上,梯子的頂端距地面的垂直距離為8m,如果梯子的頂端下滑0.5m,你認為梯子的底端會發(fā)生什么變化?與同學(xué)交流。
創(chuàng)設(shè)學(xué)生身邊的問題情境,為每一個學(xué)生提供探索的空間,有利于發(fā)揮學(xué)生的主體性;這樣的問題學(xué)生常常會從自己的生活經(jīng)驗出發(fā),產(chǎn)生不同的思考方法和結(jié)論(教學(xué)中學(xué)生可能的結(jié)論有:
底端也滑動0.5m;如果梯子的頂端滑到地面上,梯子的頂端則滑動8m,估計梯子底端的滑動小于8m,所以梯子的頂端下滑0.5m,它的底端的滑動小于0.5m;構(gòu)造直角三角形,運用勾股定理計算梯子滑動前、后底端到墻的垂直距離的差,得出梯子底端滑動約0.61m的結(jié)論等)。
通過與同學(xué)交流,完善各自的想法,有利于學(xué)生主動地把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,從中感受用數(shù)學(xué)的眼光審視客觀世界的樂趣。
二.新課講授
問題一在上面的情境中,如果梯子的頂端下滑1m,那么梯子的底端滑動多少米?
組織學(xué)生嘗試用勾股定理解決問題,對有困難的學(xué)生教師給予及時的幫助和指導(dǎo)。
問題二從上面所獲得的信息中,你對梯子下滑的變化過程有進一步的思考嗎?與同學(xué)交流。
設(shè)計問題二促使學(xué)生能主動積極地從數(shù)學(xué)的角度思考實際問題,教學(xué)中學(xué)生可能會有多種思考,比如:
①這個變化過程中,梯子底端滑動的距離總比頂端下滑的距離大;
、谝驗樘葑禹敹讼禄降孛鏁r,頂端下滑了8m,而底端只滑動4m,所以這個變化過程中,梯子底端滑動的距離不一定比頂端下滑的距離大;
、塾晒垂蓴(shù)可知,當(dāng)梯子頂端下滑到離地面的垂直距離為6m,即頂端下滑2m時,底端到墻的垂直距離是8m,即底端電滑動2m等。
教學(xué)中不要把尋找規(guī)律作為這個探索活動的目標,應(yīng)讓學(xué)生進行充分的交流,使學(xué)生逐步學(xué)會運用數(shù)學(xué)的眼光去審視客觀世界,從不同的角度去思考問題,獲得一些研究問題的經(jīng)驗和方法。
3.例題教學(xué)
課本的`例1是勾股定理的簡單應(yīng)用,教學(xué)中可根據(jù)教學(xué)的實際情況補充一些實際應(yīng)用問題,把課本習(xí)題2.7第4題作為補充例題,通過這個問題的討論,把“32+b2=c2”看作一個方程,設(shè)折斷處離地面x尺,依據(jù)問題給出的條件就把它轉(zhuǎn)化為熟悉的會解的一元二次方程32+x2=(10—x)2,從中可以讓學(xué)生感受數(shù)學(xué)的“轉(zhuǎn)化”思想,進一步了解勾股定理的悠久歷史和我國古代人民的聰明才智。
三.鞏固練習(xí)
甲、乙兩人同時從同一地點出發(fā),甲往東走了4km,乙往南走了6km,這時甲、乙兩人相距__________km。
四.小結(jié)
我們知道勾股定理揭示了直角三角形的三邊之間的數(shù)量關(guān)系,已知直角三角形中的任意兩邊就可以依據(jù)勾股定理求出第三邊,從應(yīng)用勾股定理解決實際問題中,我們進一步認識到把直角三角形中三邊關(guān)系“a2+b2=c2”看成一個方程,只要依據(jù)問題的條件把它轉(zhuǎn)化為我們會解的方程,就把解實際問題轉(zhuǎn)化為解方程。
勾股定理教案 2
學(xué)習(xí)目標
1、通過拼圖,用面積的方法說明勾股定理的正確性。
2、探索勾股定理的過程,發(fā)展合情推理的能力,體會數(shù)型結(jié)合的思想。
重點難點
重點:用面積的.方法說明勾股定理的正確。
學(xué)習(xí)難點:勾股定理的應(yīng)用。
學(xué)習(xí)過程
教師
二次備課欄
自學(xué)準備與知識導(dǎo)學(xué):
這是1955年希臘為紀念一位數(shù)學(xué)家曾經(jīng)發(fā)行的郵票。
郵票上的圖案是根據(jù)一個著名的數(shù)學(xué)定理設(shè)計的。
學(xué)習(xí)交流與問題研討:
1、探索
問題:分別以圖中的直角三角形三邊為邊向三角形外
作正方形,小方格的面積看做1,求這三個正方形的面積?
S
正方形BCED=S
正方形ACFG=S
正方形ABHI=
發(fā)現(xiàn):
2、實驗
略
練習(xí)檢測與拓展延伸:
求下列直角三角形中未知邊的長
檢測:
1、在Rt△ABC中,∠C=90°
(1)若a=5,b=12,則c=________;
(2)b=8,c=17,則S△ABC=________。
2、在Rt△ABC中,∠C=90,周長為60,斜邊與一條直角邊之比為13∶5,則這個三角形三邊長分別是()
A、5、4、3、;B、13、12、5;C、10、8、6;D、26、24、10
3、若等腰三角形中相等的兩邊長為10cm,第三邊長為16cm,那么第三邊上的高為()
A.12cmB.10cmC.8cmD.6cm
4、要登上8m高的建筑物,為了安全需要,需使梯子底端離建筑物6m,至少需要多長的梯子?
5、飛機在空中水平飛行,某一時刻剛好飛到一個男孩頭頂正上方4千米處,過了20秒,飛機距離這個男孩5千米,飛機每小時飛行多少千米?
課后反思或經(jīng)驗總結(jié):
1、什么叫勾股定理;
2、什么樣的三角形的三邊滿足勾股定理;
3、用勾股定理解決一些實際問題。
勾股定理教案 3
學(xué)習(xí)目標:
1、通過拼圖,用面積的方法說明勾股定理的正確性。
2、通過實例應(yīng)用勾股定理,培養(yǎng)學(xué)生的知識應(yīng)用技能。
學(xué)習(xí)重點:
1.用面積的方法說明勾股定理的正確。
2.勾股定理的'應(yīng)用。
學(xué)習(xí)難點:
勾股定理的應(yīng)用。
學(xué)習(xí)過程:
一、學(xué)前準備:
閱讀課本第46頁到第47頁,完成下列問題:略
二、合作探究:
(一)自學(xué)、相信自己:
。ǘ┧妓、交流:
略
(三)應(yīng)用、探究:
略
(四)鞏固練習(xí):
略
三、學(xué)習(xí)體會:
本節(jié)課我們進一步認識了勾股定理,并用兩種方法證明了這個定理,在應(yīng)用此定理解決問題時,應(yīng)注意只有直角三角形的三邊才有這樣的關(guān)系,如果不是直角三角形應(yīng)該構(gòu)造直角三角形來解決。
四、自我測試:
略
五、自我提高:
略
勾股定理教案 4
重點、難點分析
本節(jié)內(nèi)容的重點是勾股定理的逆定理及其應(yīng)用。它可用邊的關(guān)系判斷一個三角形是否為直角三角形。為判斷三角形的形狀提供了一個有力的依據(jù)。
本節(jié)內(nèi)容的難點是勾股定理的逆定理的應(yīng)用。在用勾股定理的逆定理時,分不清哪一條邊作斜邊,因此在用勾股定理的逆定理判斷三角形的形狀時而出錯;另外,在解決有關(guān)綜合問題時,要將給的邊的數(shù)量關(guān)系經(jīng)過代數(shù)變化,最后達到一個目標式,這種“轉(zhuǎn)化”對學(xué)生來講也是一個困難的地方。
教法建議:
本節(jié)課教學(xué)模式主要采用“互動式”教學(xué)模式及“類比”的教學(xué)方法。通過前面所學(xué)的垂直平分線定理及其逆定理,做類比對象,讓學(xué)生自己提出問題并解決問題。在課堂教學(xué)中營造輕松、活潑的課堂氣氛。通過師生互動、生生互動、學(xué)生與教材之間的互動,造成“情意共鳴,溝通信息,反饋流暢,思維活躍”,達到培養(yǎng)學(xué)生思維能力的目的。具體說明如下:
。1)讓學(xué)生主動提出問題
利用類比的學(xué)習(xí)方法,由學(xué)生將上節(jié)課所學(xué)習(xí)的勾股定理的逆命題書寫出來。這里分別找學(xué)生口述文字;用符號、圖形的形式板書逆命題的內(nèi)容。所有這些都由學(xué)生自己完成,估計學(xué)生不會感到困難。這樣設(shè)計主要是培養(yǎng)學(xué)生善于提出問題的習(xí)慣及能力。
。2)讓學(xué)生自己解決問題
判斷上述逆命題是否為真命題?對這一問題的解決,學(xué)生會感到有些困難,這里教師可做適當(dāng)?shù)狞c撥,但要盡可能的讓學(xué)生的發(fā)現(xiàn)和探索,找到解決問題的思路。
。3)通過實際問題的解決,培養(yǎng)學(xué)生的數(shù)學(xué)意識。
教學(xué)目標:
1、知識目標:
(1)理解并會證明勾股定理的逆定理;
。2)會應(yīng)用勾股定理的逆定理判定一個三角形是否為直角三角形;
。3)知道什么叫勾股數(shù),記住一些覺見的勾股數(shù)。
2、能力目標:
。1)通過勾股定理與其逆定理的比較,提高學(xué)生的辨析能力;
。2)通過勾股定理及以前的知識聯(lián)合起來綜合運用,提高綜合運用知識的能力。
3、情感目標:
。1)通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受;
。2)通過知識的`縱橫遷移感受數(shù)學(xué)的辯證特征。
教學(xué)重點:
勾股定理的逆定理及其應(yīng)用
教學(xué)難點:
勾股定理的逆定理及其應(yīng)用
教學(xué)用具:
直尺,微機
教學(xué)方法:
以學(xué)生為主體的討論探索法
教學(xué)過程:
1、新課背景知識復(fù)習(xí)(投影)
勾股定理的內(nèi)容
文字敘述(投影顯示)
符號表述
圖形(畫在黑板上)
2、逆定理的獲得
(1)讓學(xué)生用文字語言將上述定理的逆命題表述出來
。2)學(xué)生自己證明
逆定理:如果三角形的三邊長 有下面關(guān)系:
那么這個三角形是直角三角形
強調(diào)說明:
(1)勾股定理及其逆定理的區(qū)別
勾股定理是直角三角形的性質(zhì)定理,逆定理是直角三角形的判定定理。
(2)判定直角三角形的方法:
、俳菫椋
、诖怪保
③勾股定理的逆定理
3、定理的應(yīng)用(投影顯示題目上)
略
4、課堂小結(jié):
。1)逆定理應(yīng)用時易出現(xiàn)的錯誤:分不清哪一條邊作斜邊(最大邊)
(2)判定是否為直角三角形的一種方法:結(jié)合勾股定理和代數(shù)式、方程綜合運用。
5、布置作業(yè):
書面作業(yè)P131#9
求證:△DEF是等腰三角形
勾股定理教案 5
教學(xué)目標
1、知識與技能目標
學(xué)會觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念。
2、過程與方法
(1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力。
(2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想。
3、情感態(tài)度與價值觀
(1)通過有趣的問題提高學(xué)習(xí)數(shù)學(xué)的興趣。
(2)在解決實際問題的過程中,體驗數(shù)學(xué)學(xué)習(xí)的實用性。
教學(xué)重點:
探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題。
教學(xué)難點:
利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實際問題。
教學(xué)準備:
多媒體
教學(xué)過程:
第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課(3分鐘,學(xué)生觀察、猜想)
情景:
在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?
第二環(huán)節(jié):合作探究(15分鐘,學(xué)生分組合作探究)
學(xué)生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導(dǎo)學(xué)生體會利用數(shù)學(xué)解決實際問題的`方法:建立數(shù)學(xué)模型,構(gòu)圖,計算。
學(xué)生匯總了四種方案:
學(xué)生很容易算出:情形(1)中A→B的路線長為:AA’+d,情形(2)中A→B的路線長為:AA’+πd/2所以情形(1)的路線比情形(2)要短。
學(xué)生在情形(3)和(4)的比較中出現(xiàn)困難,但還是有學(xué)生提出用剪刀沿母線AA’剪開圓柱得到矩形,前三種情形A→B是折線,而情形(4)是線段,故根據(jù)兩點之間線段最短可判斷(4)最短。
。1)中A→B的路線長為:AA’+d;
。2)中A→B的路線長為:AA’+A’B>AB;
。3)中A→B的路線長為:AO+OB>AB;
。4)中A→B的路線長為:AB。
得出結(jié)論:利用展開圖中兩點之間,線段最短解決問題,在這個環(huán)節(jié)中,可讓學(xué)生沿母線剪開圓柱體,具體觀察,接下來后提問:怎樣計算AB?
在Rt△AA′B中,利用勾股定理可得,若已知圓柱體高為12c,底面半徑為3c,π取3,則。
第三環(huán)節(jié):做一做(7分鐘,學(xué)生合作探究)
教材23頁
李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺,
。1)你能替他想辦法完成任務(wù)嗎?
。2)李叔叔量得AD長是30厘米,AB長是40厘米,BD長是50厘米,AD邊垂直于AB邊嗎?為什么?
。3)小明隨身只有一個長度為20厘米的刻度尺,他能有辦法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?
第四環(huán)節(jié):鞏固練習(xí)(10分鐘,學(xué)生獨立完成)
1.甲、乙兩位探險者到沙漠進行探險,某日早晨8:00甲先出發(fā),他以6/h的速度向正東行走,1小時后乙出發(fā),他以5/h的速度向正北行走,上午10:00, 甲、乙兩人相距多遠?
2.臺階A處的螞蟻要爬到B處搬運食物,它怎么走最近?并求出最近距離.
3.有一個高為1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分為0.5米,問這根鐵棒有多長?
第五環(huán)節(jié) 課堂小結(jié)(3分鐘,師生問答)
內(nèi)容:
如何利用勾股定理及逆定理解決最短路程問題?
第六環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)
內(nèi)容:
作業(yè):1.課本習(xí)題1.5第1,2,3題.
要求:A組(學(xué)優(yōu)生):1、2、3
B組(中等生):1、2
C組(后三分之一生):1
勾股定理教案 6
一、教學(xué)目標設(shè)置
知識與技能:
1、了解勾股定理的文化背景,體驗勾股定理的探索過程,了解利用拼圖驗證勾股定理的方法。
2、了解勾股定理的內(nèi)容。
3、能利用已知兩邊求直角三角形另一邊的長。
過程與方法:
1、通過拼圖活動,體驗數(shù)學(xué)思維的嚴謹性,發(fā)展形象思維。
2、在探索活動中,學(xué)會與人合作,并能與他人交流思維的過程和探索的結(jié)果。
情感與態(tài)度:
1、通過對勾股定理歷史的了解,對比介紹我國古代和西方數(shù)學(xué)家關(guān)于勾股定理的研究,激發(fā)學(xué)生熱愛祖國悠久文化的情感,激勵學(xué)生奮發(fā)學(xué)習(xí)。
2、在探索勾股定理的過程中,體驗獲得結(jié)論的快樂,鍛煉克服困難的勇氣,培養(yǎng)合作意識和探索精神。
二、教學(xué)重、難點
重點:探索和證明勾股定理
難點:用拼圖方法證明勾股定理
三、學(xué)情分析
學(xué)生對幾何圖形的觀察,幾何圖形的分析能力已初步形成。部分學(xué)生解題思維能力比較高,能夠正確歸納所學(xué)知識,通過學(xué)習(xí)小組討論交流,能夠形成解決問題的思路。
四、教學(xué)策略
本節(jié)課采用探究發(fā)現(xiàn)式教學(xué),由淺入深,由特殊到一般地提出問題,鼓勵學(xué)生采用觀察分析、自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生經(jīng)歷數(shù)學(xué)知識的形成與應(yīng)用過程。
五、教學(xué)過程
教學(xué)環(huán)節(jié)
教學(xué)內(nèi)容
活動和意圖
創(chuàng)設(shè)情境導(dǎo)入新課
以“航天員在太空中遇到外星人時,用什么語言進行溝通”導(dǎo)入新課,讓孩子們盡情發(fā)揮他們的想象,而華羅庚建議可以用勾股定理的圖形進行和外星人溝通,為什么呢?通過一段VCR說明原因。
[設(shè)計意圖]激發(fā)學(xué)生對勾股定理的興趣,從而較自然的引入課題。
新知探究
畢達哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的三邊的某種數(shù)量關(guān)系。
通過講述故事來進一步激發(fā)學(xué)生學(xué)習(xí)興趣,使學(xué)生在不知不覺中進入學(xué)習(xí)的最佳狀態(tài)。
每個小方格代表1個單位面積,我們分別以a,b,c三邊為邊長作正方形。
回答以下內(nèi)容:
(1)想一想,怎樣利用小方格計算正方形A、B、C面積?
(2)怎樣求出正方形面積C?
(3)觀察所得的各組數(shù)據(jù),你有什么發(fā)現(xiàn)?
(4)將正方形A,B,C分別移開,你能發(fā)現(xiàn)直角三角形邊長a,b,c有何數(shù)量關(guān)系?
引導(dǎo)學(xué)生將邊不在格線上的圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計算圖形面積.
問題是思維的起點”,通過層層設(shè)問,引導(dǎo)學(xué)生發(fā)現(xiàn)新知。
探究交流歸納
拼圖驗證加深理解
每個小方格代表1個單位面積,我們分別以a,b,c三邊為邊長作正方形。
回答以下內(nèi)容:
(1)想一想,怎樣利用小方格計算正方形P、Q、R的面積?
(2)怎樣求出正方形面積R?
(3)觀察所得的各組數(shù)據(jù),你有什么發(fā)現(xiàn)?
(4)將正方形P,Q,R分別移開,你能發(fā)現(xiàn)直角三角形邊長a,b,c有何數(shù)量關(guān)系?
由以上兩問題可得猜想:
直角三角形兩直角邊的平方和等于斜邊的平方。
而猜想要通過證明才能成為定理
活動探究:
(1)讓學(xué)生利用學(xué)具進行拼圖
(2)多媒體課件展示拼圖過程及證明過程理解數(shù)學(xué)的嚴密性。
從特殊的等腰直角三角形過渡到一般的直角三角形。
滲透從特殊到一般的數(shù)學(xué)思想,為學(xué)生提供參與數(shù)學(xué)活動的時間和空間,發(fā)揮學(xué)生的主體作用;培養(yǎng)學(xué)生的'類比遷移能力及探索問題的能力,使學(xué)生在相互欣賞、爭辯、互助中得到提高。
通過這些實際操作,學(xué)生進行一步加深對數(shù)形結(jié)合的理解,拼圖也會產(chǎn)生感性認識,也為論證勾股定理做好準備。
利用分組討論,加強合作意識。
1、經(jīng)歷所拼圖形與多媒體展示圖形的聯(lián)系與區(qū)別。
2、加強數(shù)學(xué)嚴密教育,從而更好地理解代數(shù)與圖形相結(jié)合
應(yīng)用新知解決問題
在應(yīng)用新知這個環(huán)節(jié),我把以往的單純求解邊長之類的題目換成了幾個運用勾股定理來解決問題的古算題。
把生活中的實物抽象成幾何圖形,讓學(xué)生了解豐富變幻的圖形世界,培養(yǎng)了學(xué)生抽象思維能力,特別注重培養(yǎng)學(xué)生認識事物,探索問題,解決實際的能力。
回顧小結(jié)整體感知
在最后的小結(jié)中,不但對知識進行小結(jié)更對方法要進行小節(jié),還可向?qū)W生介紹了美麗的圖案畢達哥拉斯樹,讓學(xué)生切身感受到其實數(shù)學(xué)與生活是緊密聯(lián)系的,進一步發(fā)現(xiàn)數(shù)學(xué)的另一種美。
學(xué)生通過對學(xué)習(xí)過程的小結(jié),領(lǐng)會其中的數(shù)學(xué)思想方法;通過梳理所學(xué)內(nèi)容,形成完整知識結(jié)構(gòu),培養(yǎng)歸納概括能力。
布置作業(yè)鞏固加深
必做題:
1.完成課本習(xí)題1,2,3題。
2.分別以直角三角形的三邊為直徑作三個半圓,這三個半圓之間面積有何關(guān)系?為什么?
選做題:
3.課后收集勾股定理的證明方法,下節(jié)課展示。
針對學(xué)生認知的差異設(shè)計了有層次的作業(yè)題,既使學(xué)生鞏固知識,形成技能,讓感興趣的學(xué)生課后探索,感受數(shù)學(xué)證明的靈活、優(yōu)美與精巧,感受勾股定理的豐富文化。
勾股定理教案 7
一、教學(xué)目標
(一)知識目標
1、創(chuàng)設(shè)情境引出問題,激起學(xué)生探索直角三角形三邊的關(guān)系的興趣。
2、讓學(xué)生帶著問題體驗勾股定理的探索過程,并正確運用勾股定理解決相關(guān)問題。
(二)能力目標
1、培養(yǎng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識和能力。
2、能把已有的數(shù)學(xué)知識運用于勾股定理的探索過程。
3、能熟練掌握勾股定理及其變形公式,并會根據(jù)圖形找出直角三角形及其三邊,從而正確運用勾股定理及其變形公式于圖形解決相關(guān)問題。
(三)情感目標
1、培養(yǎng)學(xué)生的自主探索精神,提高學(xué)生合作交流能力和解決問題的能力。
2、讓學(xué)生感受數(shù)學(xué)文化的價值和中國傳統(tǒng)數(shù)學(xué)的成就,激發(fā)學(xué)生的愛國熱情,培養(yǎng)學(xué)生的民族自豪感,教育學(xué)生奮發(fā)圖強、努力學(xué)習(xí)。
二、教學(xué)重點
通過圖形找出直角三角形三邊之間的關(guān)系,并正確運用勾股定理及其變形公式解決相關(guān)問題。
三、教學(xué)難點
運用已掌握的相關(guān)數(shù)學(xué)知識探索勾股定理。
四、教學(xué)過程
(一)創(chuàng)設(shè)情境,引出問題
想一想:
小明媽媽買了一部29英寸(74厘米)的電視機,小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的.想法嗎?你能解釋這是為什么嗎?
要解決這個問題,必須掌握這節(jié)課的內(nèi)容。這節(jié)課我們要探討的是直角三角形的三邊有什么關(guān)系。
(二)探索交流,得出新知
探討之前我們一起來回憶一下直角三角形的三邊:
在Rt △ABC 中,∠C=90° ∠C 所對的邊AB :斜邊c ∠A 所對的邊BC :直角邊a ∠B 所對的邊AC :直角邊b
問題:在直角三角形中,a 、b 、c 三條邊之間到底存在著怎樣的關(guān)系呢?
我們先來探討等腰直角三角形的三邊之間的關(guān)系。
這個關(guān)系2500年前已經(jīng)有數(shù)學(xué)家發(fā)現(xiàn)了,今天我們把當(dāng)時的情景重現(xiàn):
請同學(xué)們也來看一看、找一找。
數(shù)學(xué)家畢達哥拉斯的發(fā)現(xiàn):S A +SB =SC
即:a 2+b2=c2
也就是說:在等腰直角三角形中,兩直角邊的平方和等于斜邊的平方。
議一議:如果是一般的直角三角形,兩直角邊的平方和是否還會等于斜邊的平方? 如
分析: SA +SB =SC 是否成立?
(1)正方形A 中含有 個小方格,即S A = 個單位面積。
(2)正方形B 中含有 個小方格,即S B = 個單位面積。
(3)由上可得:S A +SB = 個單位面積
問題:正方形C 的面積要如何求呢?與同伴進行交流。
方法一:
“補”成一個邊長為整數(shù)格的大正方形,再減去四個直角邊為整數(shù)格的三角形
方法二:分割成四個直角邊為整數(shù)格的三角形,再加上一個小方格。
也就是說:在一般的直角三角形中,兩直角邊的平方和等于斜邊的平方。
概括:
勾股定理:在直角三角形中,兩直角邊的平方和等于斜邊的平方
數(shù)學(xué)語言描述:
在Rt △ABC 中,a 2+b2=c2
(用多媒體簡單介紹勾股定理的名稱由來、中國古代的數(shù)學(xué)成就及勾股定理的“無字證明”)
(三)應(yīng)用新知,解決問題
略
(四)歸納總結(jié)
(1)這節(jié)課你學(xué)到了什么知識?
、俟垂啥ɡ恚褐苯侨切蝺芍苯沁叺钠椒胶偷扔谛边叺钠椒。
、谠谥苯侨切沃校我庖阎獌蛇,可以用勾股定理求第三邊。
(2)運用“勾股定理”應(yīng)注意什么問題?
、僖脠D形找到未知邊所在的直角三角形;
、诳辞逦粗吺撬谥苯侨切蔚哪囊贿;
、酃垂啥ɡ硪脤Α
(五)練習(xí)鞏固
略
(六)作業(yè)
1.A、B 、C 組:課本第69、70頁,習(xí)題18.1 第1,2,3題
2. A、B :練習(xí)冊33、34頁
3.A :課本第71頁“閱讀與思考”,了解勾股定理的多種證法。
勾股定理教案 8
教學(xué)目標:
1、知識目標:
。1)掌握勾股定理;
。2)學(xué)會利用勾股定理進行計算、證明與作圖;
(3)了解有關(guān)勾股定理的歷史。
2、能力目標:
。1)在定理的證明中培養(yǎng)學(xué)生的拼圖能力;
(2)通過問題的解決,提高學(xué)生的運算能力
3、情感目標:
(1)通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受;
(2)通過有關(guān)勾股定理的歷史講解,對學(xué)生進行德育教育。
教學(xué)重點:
勾股定理及其應(yīng)用
教學(xué)難點:
通過有關(guān)勾股定理的歷史講解,對學(xué)生進行德育教育
教學(xué)用具:
直尺,微機
教學(xué)方法:
以學(xué)生為主體的`討論探索法
教學(xué)過程:
1、新課背景知識復(fù)習(xí)
。1)三角形的三邊關(guān)系
(2)問題:(投影顯示)
直角三角形的三邊關(guān)系,除了滿足一般關(guān)系外,還有另外的特殊關(guān)系嗎?
2、定理的獲得
讓學(xué)生用文字語言將上述問題表述出來。
勾股定理:直角三角形兩直角邊 的平方和等于斜邊的平方
強調(diào)說明:
。1)勾――最短的邊、股――較長的直角邊、弦――斜邊
。2)學(xué)生根據(jù)上述學(xué)習(xí),提出自己的問題(待定)
學(xué)習(xí)完一個重要知識點,給學(xué)生留有一定的時間和機會,提出問題,然后大家共同分析討論。
3、定理的證明方法
4、定理與逆定理的應(yīng)用
5、課堂小結(jié):
。1)勾股定理的內(nèi)容
(2)勾股定理的作用
已知直角三角形的兩邊求第三邊
已知直角三角形的一邊,求另兩邊的關(guān)系
6、布置作業(yè):
a、書面作業(yè)P130#1、2、3
b、上交作業(yè)P132#1、3
勾股定理教案 9
教學(xué)目標
知識與技能:
了解勾股定理的一些證明方法,會簡單應(yīng)用勾股定理解決問題
過程與方法:
在充分觀察、歸納、猜想的基礎(chǔ)上,探究勾股定理,在探究的過程中,發(fā)展合情推理,體會數(shù)形結(jié)合、從特殊到一般等數(shù)學(xué)思想。
情感態(tài)度價值觀:
通過對我國古代研究勾股定理的成就介紹,培養(yǎng)學(xué)生的民族自豪感。
教學(xué)過程
1、創(chuàng)設(shè)情境
問題1國際數(shù)學(xué)家大會是最高水平的全球性數(shù)學(xué)學(xué)科學(xué)術(shù)會議,被譽為數(shù)學(xué)界的“奧運會”。2002年在北京召開了第24屆國際數(shù)學(xué)家大會。下圖就是大會會徽的圖案。你見過這個圖案嗎?它由哪些我們學(xué)習(xí)過的基本圖形組成?這個圖案有什么特別的含義?
師生活動:教師引導(dǎo)學(xué)生尋找圖形中的直角三角形和正方形等,并引導(dǎo)學(xué)生發(fā)現(xiàn)直角三角形的全等關(guān)系,指出通過今天的學(xué)習(xí),就能理解會徽圖案的含義。
設(shè)計意圖:本節(jié)課是本章的起始課,重視引言教學(xué),從國際數(shù)學(xué)家大會的會徽說起,設(shè)置懸念,引入課題。
2、探究勾股定理
觀看洋蔥數(shù)學(xué)中關(guān)于勾股定理引入的視頻,讓我們一起走進神奇的數(shù)學(xué)世界
問題2相傳2500多年前,畢達哥拉斯有一次在朋友家作客時,發(fā)現(xiàn)朋友家用轉(zhuǎn)鋪成的地面圖案反應(yīng)了直角三角形三邊的某種數(shù)量關(guān)系,請你觀察下圖,你從中發(fā)現(xiàn)了什么數(shù)量關(guān)系?
師生活動:學(xué)生先獨立觀察思考一分鐘后,小組交流合作分析圖形中兩個藍色正方形與橙色正方形有哪些數(shù)量關(guān)系,教師參與學(xué)生的討論
追問:由這三個正方形的邊長構(gòu)成的等腰直角三角形三條邊長之間又有怎么樣的關(guān)系?
師生活動:教師引導(dǎo)學(xué)生發(fā)現(xiàn)正方形的面積等于邊長的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的`平方。
設(shè)計意圖:從最特殊的等腰直角三角形入手,便于學(xué)生觀察得到結(jié)論
問題3:數(shù)學(xué)研究遵循從特殊到一般的數(shù)學(xué)思想,既然我們得到了等腰直角三角形三邊的這種特殊的數(shù)量關(guān)系,那我們不妨大膽猜測在一般的直角三角形(在下圖的方格紙中,每個方格的面積是1)中,這種特殊的數(shù)量關(guān)系也同樣成立。
師生活動:學(xué)生獨立思考后小組討論,難點是如何證明求以斜邊為邊長的正方形的面積,可由師生共同總結(jié)得出可以通過割、補兩種方法,求出其面積。
勾股定理教案 10
教學(xué)目標:
(1)理解通分的意義,理解最簡公分母的意義;
(2)掌握分式的通分法則,能熟練掌握通分運算。
教學(xué)重點:
分式通分的理解和掌握。
教學(xué)難點:
分式通分中最簡公分母的確定。
教學(xué)工具:
投影儀
教學(xué)方法:
啟發(fā)式、討論式
教學(xué)過程 :
。ㄒ唬┮
(1)如何計算:
由此讓學(xué)生復(fù)習(xí)分數(shù)通分的意義、通分的根據(jù)、通分的法則以及最簡公分母的概念。
。2)如何計算:
(3)何計算:
引導(dǎo)學(xué)生思考,猜想如何求解?
(二)新課
1、類比分數(shù)的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分。
注意:通分保證
。1)各分式與原分式相等;
(2)各分式分母相等。
2、通分的依據(jù):分式的基本性質(zhì)。
3、通分的關(guān)鍵:確定幾個分式的.最簡公分母。
通常取各分母的所有因式的最高次冪的積作最簡公分母,這樣的公分母叫做最簡公分母
由學(xué)生歸納最簡公分母的思路。
分式通分中求最簡公分母概括為:
。1)取各分母系數(shù)的最小公倍數(shù);
。2)凡出現(xiàn)的字母為底的冪的因式都要取;
(3)相同字母的冪的因式取指數(shù)最大的。
取這些因式的積就是最簡公分母。
勾股定理教案 11
[教學(xué)分析]
勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時在實際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際操作,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進行正確的應(yīng)用。
本節(jié)教科書從畢達哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學(xué)生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的`正方形的面積,從而發(fā)現(xiàn)勾股定理,這時教科書以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數(shù)學(xué)問題中的應(yīng)用,使學(xué)生對勾股定理的作用有一定的認識。
[教學(xué)目標]
一、知識與技能
1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。
2、應(yīng)用勾股定理解決簡單的實際問題
3、學(xué)會簡單的合情推理與數(shù)學(xué)說理
二、過程與方法
引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過動手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進一步發(fā)展合作交流能力和數(shù)學(xué)表達能力,并感受勾股定理的應(yīng)用知識。
三、情感與態(tài)度目標
通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動中,學(xué)生親自動手對勾股定理進行探索與驗證,培養(yǎng)學(xué)生的合作交流意識和探索精神,以及自主學(xué)習(xí)的能力。
四、重點與難點
1、探索和證明勾股定理
2、熟練運用勾股定理
[教學(xué)過程]
一、創(chuàng)設(shè)情景,揭示課題
1、教師展示圖片并介紹第一情景
以中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請教數(shù)學(xué)知識時的對話,為勾股定理的出現(xiàn)埋下伏筆。
周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度,夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤,得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也!
2、教師展示圖片并介紹第二情景
畢達哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
二、師生協(xié)作,探究問題
1、現(xiàn)在請你也動手數(shù)一下格子,你能有什么發(fā)現(xiàn)嗎?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點呢?
3、你能得到什么結(jié)論嗎?
三、得出命題
勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋: 由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。
四、勾股定理的證明
趙爽弦圖的證法
第一種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、,斜邊為 的直角三角形圍在外面形成的。因為邊長為 的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡得 。
第二種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、,斜邊為 的
角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為 的正方形“小洞”。
因為邊長為 的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡得 。
這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學(xué)家趙爽高超的證題思想和對數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。
五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。
勾股定理的靈活運用勾股定理在實際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。
例題:小明媽媽買了一部29英寸(74厘米)的電視機,小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘長和46厘米寬,他覺得一定是售貨員搞錯了,你同意他的想法嗎?你能解釋這是為什么嗎?
六、歸納總結(jié)
1、內(nèi)容總結(jié):探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實際問題
2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發(fā)現(xiàn)。
七、討論交流
讓學(xué)生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機會,通過提示性的引導(dǎo),讓學(xué)生對勾股定理的概念豁然開朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。
我們班的同學(xué)很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。
勾股定理教案 12
教學(xué)目標
1、知識與技能目標:探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,通過探究能夠發(fā)現(xiàn)直角三角形中兩個直角邊的平方和等于斜邊的平方和。
2、過程與方法目標:經(jīng)歷用測量和數(shù)格子的辦法探索勾股定理的過程,進一步發(fā)展學(xué)生的合情推理能力。
3、情感態(tài)度與價值觀目標:通過本節(jié)課的學(xué)習(xí),培養(yǎng)主動探究的習(xí)慣,并進一步體會數(shù)學(xué)與現(xiàn)實生活的緊密聯(lián)系。
教學(xué)重點
了解勾股定理的由來,并能用它來解決一些簡單的問題。
教學(xué)難點
勾股定理的探究以及推導(dǎo)過程。
教學(xué)過程
一、創(chuàng)設(shè)問題情景、導(dǎo)入新課
首先出示:投影1(章前的圖文)并介紹我國古代在勾股定理研究方面的貢獻,結(jié)合課本第六頁談一談我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數(shù)學(xué)家)在勾股定理方面的貢獻。
出示課件觀察后回答:
1、觀察圖1—2,正方形A中有_______個小方格,即A的面積為______個單位。
正方形B中有_______個小方格,即B的面積為______個單位。
正方形C中有_______個小方格,即C的面積為______個單位。
2、你是怎樣得出上面的結(jié)果的?
3、在學(xué)生交流回答的'基礎(chǔ)上教師進一步設(shè)問:圖1—2中,A,B,C面積之間有什么關(guān)系?學(xué)生交流后得到結(jié)論:A+B=C。
二、層層深入、探究新知
1、做一做
出示投影3(書中P3圖1—3)
提問:(1)圖1—3中,A,B,C之間有什么關(guān)系?(2)從圖1—2,1—3中你發(fā)現(xiàn)什么?
學(xué)生討論、交流后,得出結(jié)論:以三角形兩直角邊為邊的正方形的面積和,等于以斜邊為邊的正方形面積。
2、議一議
圖1—2、1—3中,你能用三角形的邊長表示正方形的面積嗎?
(1)你能發(fā)現(xiàn)直角三角形三邊長度之間的關(guān)系嗎?在同學(xué)交流的基礎(chǔ)上,共同探討得出:直角三角形兩直角邊的平方和等于斜邊的平方。這就是著名的“勾股定理”。也就是說如果直角三角形的兩直角邊為a,b,斜邊為c那么。我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。
。2)分別以5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學(xué)生測量后回答斜邊長為13)請大家想一想(2)中的規(guī)律,對這個三角形仍然成立嗎?
3、想一想
我們常見的電視的尺寸:29英寸(74厘米)的電視機,指的是屏幕的長嗎?還是指的是屏幕的寬?那他指什么呢?能否運用剛才所學(xué)的知識,檢驗一下電視劇的尺寸是否合格?
三、鞏固練習(xí)。
1、在圖1—1的問題中,折斷之前旗桿有多高?
2、錯例辨析:△ABC的兩邊為3和4,求第三邊
解:由于三角形的兩邊為3、4
所以它的第三邊的c應(yīng)滿足
=25即:c=5辨析:(1)要用勾股定理解題,首先應(yīng)具備直角三角形這個必不可少的條件,可本題三角形ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據(jù)。(2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并未交待C是斜邊。
綜上所述這個題目條件不足,第三邊無法求得
四、課堂小結(jié)
鼓勵學(xué)生自己總結(jié)、談?wù)勛约罕竟?jié)課的收獲,以及自己對勾股定理的理解,老師加以糾正和補充。
五、布置作業(yè)
勾股定理教案 13
一、教學(xué)目標
【知識與技能】
理解并掌握勾股定理的逆定理,會應(yīng)用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關(guān)系及二者真假性的關(guān)系。
【過程與方法】
經(jīng)歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。
【情感、態(tài)度與價值觀】
體會事物之間的聯(lián)系,感受幾何的魅力。
二、教學(xué)重難點
【重點】勾股定理的逆定理及其證明。
【難點】勾股定理的'逆定理的證明。
三、教學(xué)過程
(一)導(dǎo)入新課
復(fù)習(xí)勾股定理,分清其題設(shè)和結(jié)論。
提問學(xué)生畫直角三角形的方法(可用尺類工具),然后要求不能用繩子以外的工具。
出示古埃及人利用等長的3、4、5個繩結(jié)間距畫直角三角形的方法,以其中蘊含何道理為切入點引出課題。
(二)講解新知
請學(xué)生思考3,4,5之間的關(guān)系,結(jié)合勾股定理的學(xué)習(xí)經(jīng)驗明確
出示數(shù)據(jù)2.5cm,6cm,6.5cm,請學(xué)生計算驗證數(shù)據(jù)滿足上述平方和關(guān)系,并畫出相應(yīng)邊長的三角形檢驗是否為直角三角形。
學(xué)生活動:同桌兩人一組,將三邊換成其他滿足上述平方和關(guān)系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應(yīng)邊長的三角形檢驗是否為直角三角形。
勾股定理教案 14
【學(xué)習(xí)目標】
能運用勾股定理及直角三角形的判別條件解決簡單的實際問題。
【學(xué)習(xí)重點】
勾股定理及直角三角形的判別條件的運用。
【學(xué)習(xí)重點】
直角三角形模型的建立。
【學(xué)習(xí)過程】
一.課前復(fù)習(xí)
勾股定理及勾股定理逆定理的區(qū)別
二.新課學(xué)習(xí)
探究點一:螞蟻沿圓柱側(cè)面爬行的最短路徑問題
有一個圓柱,它的高等于12cm,底面圓的周長是18cm,在圓柱下底面的A點有一只螞蟻,它想吃到上底面上與A點相對的B點處的食物,沿圓柱側(cè)面爬行的最短路程是多少?
思考:
1.利用學(xué)具,嘗試從A點到B點沿圓柱側(cè)面畫出幾條線路,你認為這樣的線路有幾條?可分為幾類?
2.將右圖的圓柱側(cè)面剪開展開成一個長方形,B點在什么位置?從A點到B點的最短路線是什么?你是如何畫的?
3.螞蟻從A點出發(fā),想吃到B點上的食物,它沿圓柱側(cè)面爬行的最短路程是多少?你是如何解答這個問題的?畫出圖形,寫出解答過程。
4.你是如何將這個實際問題轉(zhuǎn)化為數(shù)學(xué)問題的?
小結(jié):
你是如何解決圓柱體側(cè)面上兩點之間的最短距離問題的?
探究點二:利用勾股定理逆定理如何判斷兩線垂直?
李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直底邊AB,
但他隨身只帶了卷尺。(參看P13頁雕塑圖1-13)
。1)你能替他想辦法完成任務(wù)嗎?
。2)李叔叔量得AD的長是30cm,AB的.長是40cm,BD長是50cm,AD邊垂直于AB邊嗎?你是如何解決這個問題的?
(3)小明隨身只有一個長度為20cm的刻度尺,他能有辦法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?
小結(jié):通過本道例題的探索,判斷兩線垂直,你學(xué)會了什么方法?
探究點三:利用勾股定理的方程思想在實際問題中的應(yīng)用
例圖1-14是一個滑梯示意圖,若將滑道AC水平放置,則剛好與AB一樣長,已知滑梯的高度CE=3m,CD=1m,試求滑道AC的長。
思考:
1.求滑道AC的長的問題可以轉(zhuǎn)化為什么數(shù)學(xué)問題?
2.你是如何解決這個問題的?寫出解答過程。
小結(jié):
方程思想是勾股定理中的重要思想,勾股定理反應(yīng)的直角三角形三邊的關(guān)系正是構(gòu)建方程的基礎(chǔ)。
三.課堂小結(jié):本節(jié)課你學(xué)到了什么?
四.新知應(yīng)用
略
五.作業(yè)布置:習(xí)題1.41,3,4題
勾股定理教案 15
課題:
勾股定理
課型:
新授課
課時安排:
1課時
教學(xué)目的:
一、知識與技能目標理解和掌握勾股定理的內(nèi)容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。
二、過程與方法目標通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動手操作、合作交流、邏輯推理的能力。
三、情感、態(tài)度與價值觀目標了解中國古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛國熱情;學(xué)生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時體驗數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。
教學(xué)重點:
引導(dǎo)學(xué)生經(jīng)歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題
教學(xué)難點:
用面積法方法證明勾股定理
課前準備:
多媒體ppt,相關(guān)圖片
教學(xué)過程:
。ㄒ唬┣榫硨(dǎo)入
1、多媒體課件放映
圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀念郵票,美麗的勾股樹,2002年國際數(shù)學(xué)大會會標等。通過圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價值。
2、多媒體課件演示FLASH
小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?已知一直角三角形的兩邊,如何求第三邊?學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會有辦法解決了。
。ǘ⿲W(xué)習(xí)新課
問題一是等腰直角三角形的情形(通過多媒體給出圖形),判斷外圍三個正方形面積有何關(guān)系?相傳2500年前,畢達哥拉斯(古希臘著名的哲學(xué)家、數(shù)學(xué)家、天文學(xué)家)有一次在朋友家做客時,發(fā)現(xiàn)朋友家里用磚鋪成的地面中反映了直角三角形三邊的某種數(shù)量關(guān)系。你能觀察圖中的.地面,看看能發(fā)現(xiàn)什么?對于等腰直角三角形有這樣的性質(zhì):兩直邊的平方和等于斜邊的平方那么對于一般的直角三角形是否也有這樣的性質(zhì)呢?請大家畫一個任意的直角三角形,量一量,算一算。
問題二是一般直角三角形的情形,判斷這時外圍三個正方形的面積是否也存在這種關(guān)系?通過這個觀察和驗算這個直角三角形外圍的三個正方形面積之間的關(guān)系,同學(xué)們發(fā)現(xiàn)了什么規(guī)律嗎?通過前面對兩個問題的驗證,可以得到勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊為c,那么a2+b2=c2。
(三)鞏固練習(xí)
1、如果一個直角三角形的兩條邊長分別是6厘米和8厘米,那么這個三角形的周長是多少厘米?
2、解決課程開始時提出的情境問題。
。ㄋ模┬〗Y(jié)
1、背景知識介紹
、佟吨荀滤銖健分,西周的商高在公元一千多年前發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律;
、诳滴鯏(shù)學(xué)專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是他的獨創(chuàng)。
2、通過這節(jié)課的學(xué)習(xí),你會寫方程了嗎?你有什么收獲和體會?
。ㄎ澹┳鳂I(yè)練習(xí)
18.1中的1、2、3題。板書設(shè)計:勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊為c,那么a2+b2=c2。
勾股定理教案 16
教學(xué)目標
1.靈活應(yīng)用勾股定理及逆定理解決實際問題。
2.進一步加深性質(zhì)定理與判定定理之間關(guān)系的認識。
重難點
1.重點:靈活應(yīng)用勾股定理及逆定理解決實際問題。
2.難點:靈活應(yīng)用勾股定理及逆定理解決實際問題。
教學(xué)過程
一、自主學(xué)習(xí)
略
二、交流展示
例1(P33例2)、某港口P位于東西方向的海岸線上,“遠航”號、“海天”號輪船同時離開港口,各自沿一固定方向航行,“遠航”號每小時航行16海里,“海天”號每小時航行12海里,它們離開港口一個半小時后分別位于Q、R處,并相距30海里,如果知道“遠航”號沿東北方向航行,能知道“海天”號沿哪個方向航行嗎?
分析:⑴了解方位角,及方位名詞;
、埔李}意畫出圖形;
、且李}意可求PR,PQ,QR;
、雀鶕(jù)勾股定理 的逆定理,求∠QPR;
、汕蟆蟁PN。
小結(jié):讓學(xué)生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識。
例2、一根30米長的細繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的形狀。
分析:
、湃襞袛嗳切蔚男螤睿惹笕切蔚娜呴L;
⑵設(shè)未知數(shù)列方程,求出三角形的三邊長;
、歉鶕(jù)勾股定理的逆定理,判斷三角形是否為直角三角形。
三、合作探究
略
四、達標測試
1.一根24米繩子,折成三邊為三個連續(xù)偶數(shù)的`三角形,則三邊長分別為,此三角形的形狀為。
2.小強在操場上向東走80m后,又走了60m,再走100m回到原地。小強在操場上向東走了80m后,又走60m的方向是。
3.一根12米的電線桿AB,用鐵絲AC、AD固定,現(xiàn)已知用去鐵絲AC=15米,AD=13米,又測得地面上B、C兩點之間距離是9米,B、D兩點之間距離是5米,則電線桿和地面是否垂直,為什么?
五、教學(xué)反思
略
勾股定理教案 17
一、教學(xué)目標
知識與技能:能進一步運用勾股定理解決簡單的實際問題。
過程與方法:在解決簡單的實際問題中,感受數(shù)學(xué)建模、轉(zhuǎn)化的思想方法。
情感態(tài)度與價值觀:讓學(xué)生主動參與解決問題的過程,體會數(shù)學(xué)的應(yīng)用價值。
二、教學(xué)重點和難點
重點:構(gòu)造直角三角形,運用勾股定理解決問題。
難點:根據(jù)已知和未知的關(guān)系,建構(gòu)方程,解決實際問題。
三、教學(xué)方法和手段
主要采用啟發(fā)引導(dǎo)、合作交流、演示反饋等教學(xué)方法,運用多媒體輔助教學(xué)。
四、教學(xué)過程
活動一:
1.情境引入
有一個圓柱狀的透明玻璃杯,由內(nèi)部測得其底部半徑為3 cm,高為8 cm,今有一支12 cm長的吸管隨意放在杯中。如果不考慮吸管的粗細,那么吸管露出杯口外的長度至少為 cm。
2.學(xué)生活動
用下面兩個問題引導(dǎo)學(xué)生活動:
。1)你是怎樣解決這個問題的?
(2)找出直角三角形后下一步應(yīng)怎么辦?
3.數(shù)學(xué)建構(gòu)(初步)
。1)找出直角三角形;
(2)運用勾股定理求線段的長度。
設(shè)計意圖:從學(xué)生感興趣的情境入手,調(diào)動學(xué)生的積極性,讓學(xué)生初步感知本節(jié)課所要學(xué)習(xí)的內(nèi)容,從而引入課題。
活動二:
1.例題教學(xué)
略
2.建構(gòu)數(shù)學(xué)
。1)實際問題數(shù)學(xué)問題構(gòu)造直角三角形運用勾股定理解決線段長度計算問題解決數(shù)學(xué)問題解決實際問題。
(2)實際問題數(shù)學(xué)問題解決數(shù)學(xué)問題解決實際問題。
設(shè)計意圖:數(shù)學(xué)建模思想是數(shù)學(xué)中的一種重要思想方法,及時地歸納總結(jié),讓學(xué)生領(lǐng)會這種思想方法,對于自己數(shù)學(xué)學(xué)習(xí)是很有幫助的。
3.數(shù)學(xué)應(yīng)用
略
活動三:
1.拓展延伸
在一次地震中,一棵20米高的`大樹被折斷了,地震過后,測量了有關(guān)數(shù)據(jù),測得樹梢著地點到樹根的距離為6米。這棵大樹折斷處離地面有多高?
設(shè)計意圖:本題是把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,構(gòu)造出直角三角形。已知直角三角形的一邊和另外兩邊的和。引導(dǎo)學(xué)生通過設(shè)未知數(shù),根據(jù)勾股定理這個等量關(guān)系列出方程,滲透方程思想,進而求出未知線段的長度。
2.回顧反思
師生共同總結(jié)應(yīng)用勾股定理解決簡單實際問題的方法。
活動四:
1.當(dāng)堂反饋
。1)校園里有一塊長方形的草地,長4 m,寬3 m,草地旁有路,但有個別同學(xué)偶爾會走“近路”,從草地上走。經(jīng)過計算我們會發(fā)現(xiàn)這樣只是少走 步而已(假如兩步合1 m)。
設(shè)計意圖:此題的設(shè)計一方面是為了簡單地利用勾股定理,另一方面是為了讓學(xué)生有一個愛護花草樹木的習(xí)慣,注意自己的舉止文明,滲透德育教學(xué)。
。2)已知,在ABC中,∠C=90°,AC=5 cm,BC=10 cm,將ABC折疊,使點B與點A重合,折痕為DE。求CD的長度。
設(shè)計意圖:此題的設(shè)計是檢測折疊和利用勾股定理列方程的知識的運用。
2.布置作業(yè)
課本第68頁第4、5題,第7頁第14題。
設(shè)計意圖:作業(yè)主要是為了鞏固本節(jié)課所學(xué)知識,最后一題是為了讓學(xué)生探索研究在立體圖形中構(gòu)造出兩個直角三角形,利用勾股定理求出線段的長度。
[教學(xué)反思]
一、增強應(yīng)用意識,滲透數(shù)學(xué)建模思想
數(shù)學(xué)與現(xiàn)實生活密不可分,數(shù)學(xué)無時不在我們身邊,正如一位數(shù)學(xué)教育家所說:“數(shù)學(xué)是現(xiàn)實的,學(xué)生在現(xiàn)實生活中學(xué)習(xí)數(shù)學(xué),再把學(xué)習(xí)的數(shù)學(xué)應(yīng)用到現(xiàn)實中去!睆默F(xiàn)實中尋找學(xué)習(xí)的素材,增強應(yīng)用數(shù)學(xué)的意識,使學(xué)生感受數(shù)學(xué)就在我身邊。本節(jié)課所選取的問題背景都是學(xué)生熟悉的情景,讓學(xué)生體驗解決身邊問題的全過程,自己去研究探索,經(jīng)歷數(shù)學(xué)建模過程,提高應(yīng)用數(shù)學(xué)的意識和用數(shù)學(xué)解決實際問題的能力。
二、學(xué)會分析比只會解答更有效
《義務(wù)教育數(shù)學(xué)課程標準》要求:能通過觀察、實驗、類比等獲得數(shù)學(xué)猜想,進一步尋求證據(jù)、給出證明或舉出反例;能清晰、有條理地表達自己的思考過程,做到言之有據(jù);在與他人交流的過程中,能運用數(shù)學(xué)語言合乎邏輯地進行討論與質(zhì)疑。
畢達哥拉斯曾說過:在數(shù)學(xué)的天地里,重要的不是我們知道什么,而是我們怎么知道什么。可見分析問題能力的培養(yǎng)是多么重要。問題出示后,給學(xué)生足夠的思考時間,適當(dāng)采用合作交流的輔助方式,然后組織學(xué)生在課堂中交流自己的思考歷程,并安排其他學(xué)生質(zhì)疑與補充。這些措施的落實,能進一步拓寬學(xué)生分析問題能力的空間,提升學(xué)生的思維水平和思維層次。
三、恰當(dāng)評價,呵護學(xué)生的學(xué)習(xí)熱情
要徹底解決學(xué)生在教學(xué)中的主體地位。教師必須轉(zhuǎn)變觀念以學(xué)生的“學(xué)”為出發(fā)點,將“自主探究、合作交流”的學(xué)習(xí)方式貫穿于課的始終,并將評價與教師的教和學(xué)生的學(xué)有機地融為一體。教師以一個參與者的身份積極參與交流與評價,可以為學(xué)生大膽探索、積極交流,創(chuàng)設(shè)寬松的心理環(huán)境,營造民主、平等、和諧的課堂氣氛。在我的課堂上學(xué)生經(jīng)常是妙語連珠,積極發(fā)言,有時說錯了,只要加以引導(dǎo)都能開心坐下來。學(xué)生學(xué)習(xí)的熱情需要呵護。恰當(dāng)?shù)剡\用評價的激勵與促進作用,可以充分激發(fā)和調(diào)動學(xué)生學(xué)習(xí)的積極性和主動性,進而獲得理想的教學(xué)效果。
勾股定理教案 18
教學(xué)目標
1、知識與技能目標
用數(shù)格子(或割、補、拼等)的辦法體驗勾股定理的探索過程并理解勾股定理反映的直角三角形的三邊之間的數(shù)量關(guān)系,會初步運用勾股定理進行簡單的計算和實際運用。
2、過程與方法
讓學(xué)生經(jīng)歷“觀察—猜想—歸納—驗證”的數(shù)學(xué)思想,并體會數(shù)形結(jié)合和特殊到一般的思想方法,進一步發(fā)展學(xué)生的說理和簡單推理的意識及能力;進一步體會數(shù)學(xué)與現(xiàn)實生活的緊密聯(lián)系。
3、情感態(tài)度與價值觀
在探索勾股定理的過程中,體驗獲得成功的快 樂;通過介紹勾股定理在中國古代的研究,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久化的思想,激勵學(xué)生發(fā)奮學(xué)習(xí)。
教學(xué)重點:
了結(jié)勾股定理的由,并能用它解決一些簡單的問題。
教學(xué)難點:
勾股定理的'發(fā)現(xiàn)
教學(xué)準備:
多媒體
教學(xué)過程:
第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新(3分鐘,學(xué)生觀察、欣賞)
內(nèi)容:2002年世界數(shù)學(xué)家大會在我國北京召開,
投影顯示本屆世界數(shù)學(xué)家大會的會標:
會標中央的圖案是一個與“勾股定理”有關(guān)的圖形,數(shù)學(xué)家曾建議用“勾股定理”
的圖作為與“外星人”聯(lián)系的信號,今天我們就一同探索勾股定理。(板書 題)
第二環(huán)節(jié):探索發(fā)現(xiàn)勾股定理(15分鐘,學(xué)生獨立觀察,自主探究)
1.探究活動一:
內(nèi)容:
。1)投影顯示如下地板磚示意圖,讓學(xué)生初步觀察:
。2)引導(dǎo)學(xué)生從面積角度觀察圖形:
問:你能發(fā)現(xiàn)各圖中三個正 方形的面 積之間有何關(guān)系嗎?
學(xué)生通過觀察,歸納發(fā)現(xiàn):
以等腰直角三角形兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積.
2.探究活動二:
略
3.議一議:
略
第三環(huán)節(jié): 勾股定理的簡單應(yīng)用(7分鐘,學(xué)生合作探究)
略
第四環(huán)節(jié):鞏 固練習(xí)(10分鐘,學(xué)生先獨立完成,后全班交流)
略
第五環(huán)節(jié):堂小結(jié)(3分鐘,師生對答,共同總結(jié))
內(nèi)容:教師提問:
1.這一節(jié)我們一起學(xué)習(xí)了哪些知識和思想方法?
2.對這些內(nèi)容你有什么體會?請與你的同伴交流。
第六環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)
內(nèi)容:
作業(yè):
1.教科書習(xí)題1.1;
2.《讀一讀》——勾股世界;
3.觀察下圖,探究圖中三角形的三邊長是否滿足
要求:A組(學(xué)優(yōu)生):1、2、3
B組(中等生):1、2
C組(后三分之一生):1
勾股定理教案 19
一、教學(xué)目標
1、知識與技能目標:
理解并掌握勾股定理的基本內(nèi)容,即直角三角形中兩直角邊的平方和等于斜邊的平方(a+b=c)。
能運用勾股定理解決簡單的直角三角形問題。
2、過程與方法目標:
通過觀察、猜想、驗證等數(shù)學(xué)活動,經(jīng)歷勾股定理的探索過程,培養(yǎng)學(xué)生的數(shù)學(xué)思維和推理能力。
體會數(shù)形結(jié)合的思想,學(xué)會將實際問題轉(zhuǎn)化為數(shù)學(xué)問題來解決。
3、情感態(tài)度與價值觀目標:
激發(fā)學(xué)生對數(shù)學(xué)的興趣和熱愛,培養(yǎng)學(xué)生的探索精神和創(chuàng)新意識。
通過介紹勾股定理的'歷史和文化背景,增強學(xué)生的民族自豪感和文化自信。
二、教學(xué)重難點
教學(xué)重點:理解勾股定理的基本內(nèi)容,掌握其應(yīng)用方法。
教學(xué)難點:靈活運用勾股定理解決實際問題,特別是當(dāng)問題涉及多個直角三角形或需要構(gòu)建直角三角形時。
三、教學(xué)準備
教具準備:多媒體課件、直角三角形模型、方格紙等。
學(xué)具準備:學(xué)生自備直尺、鉛筆、練習(xí)本等。
四、教學(xué)過程
1、引入新課:
通過展示一些與勾股定理相關(guān)的實際問題或歷史典故,如畢達哥拉斯發(fā)現(xiàn)勾股定理的故事,激發(fā)學(xué)生的學(xué)習(xí)興趣和好奇心。
提出問題:在直角三角形中,三邊之間有什么關(guān)系?引導(dǎo)學(xué)生思考并嘗試回答。
2、講授新知:
講解勾股定理的基本內(nèi)容,并展示其數(shù)學(xué)表達式(a+b=c)。
通過多媒體演示或?qū)嵨锬P停瑤椭鷮W(xué)生直觀理解勾股定理的含義和應(yīng)用。
引導(dǎo)學(xué)生通過觀察和思考,發(fā)現(xiàn)勾股定理在直角三角形中的普遍性和規(guī)律性。
3、鞏固練習(xí):
設(shè)計一些簡單的練習(xí)題,讓學(xué)生運用勾股定理解決實際問題。例如,計算直角三角形的未知邊長、判斷三角形的形狀等。
鼓勵學(xué)生獨立思考和合作交流,共同探索解決問題的方法和途徑。
4、拓展提升:
引導(dǎo)學(xué)生將勾股定理應(yīng)用到更復(fù)雜的數(shù)學(xué)問題或?qū)嶋H問題中。例如,計算立體圖形中直角三角形的邊長、解決與勾股定理相關(guān)的幾何問題等。
通過討論和分享,讓學(xué)生展示自己的解題思路和成果,互相學(xué)習(xí)和借鑒。
5、課堂小結(jié):
總結(jié)本節(jié)課所學(xué)內(nèi)容,強調(diào)勾股定理的重要性和應(yīng)用價值。
鼓勵學(xué)生在日常生活中多觀察、多思考,運用數(shù)學(xué)知識解決實際問題。
五、作業(yè)布置
完成課后練習(xí)題,鞏固所學(xué)知識。
查找并了解勾股定理的歷史和文化背景,撰寫一篇小論文或制作一份手抄報。
六、教學(xué)反思
反思本節(jié)課的教學(xué)效果和學(xué)生的學(xué)習(xí)情況,總結(jié)經(jīng)驗教訓(xùn)。
根據(jù)學(xué)生的反饋和作業(yè)情況,調(diào)整后續(xù)的教學(xué)計劃和教學(xué)方法。
勾股定理教案 20
一、教學(xué)目標
1、知識與技能目標:
使學(xué)生理解并掌握勾股定理的基本內(nèi)容,即直角三角形中,直角邊的平方和等于斜邊的平方(a+b=c)。
培養(yǎng)學(xué)生運用勾股定理解決實際問題的能力。
2、過程與方法目標:
通過觀察、猜想、驗證等數(shù)學(xué)活動,使學(xué)生經(jīng)歷勾股定理的探索過程,體驗數(shù)學(xué)發(fā)現(xiàn)的樂趣。
培養(yǎng)學(xué)生的合情推理能力和主動探究的習(xí)慣。
3、情感態(tài)度與價值觀目標:
激發(fā)學(xué)生對數(shù)學(xué)的興趣和熱愛,培養(yǎng)學(xué)生的數(shù)學(xué)素養(yǎng)。
通過介紹勾股定理的歷史背景,增強學(xué)生的文化自信和民族自豪感。
二、教學(xué)重難點
教學(xué)重點:掌握勾股定理的基本內(nèi)容,并能運用勾股定理解決簡單的實際問題。
教學(xué)難點:理解勾股定理的證明過程,以及靈活運用勾股定理解決實際問題。
三、教學(xué)準備
教具準備:多媒體課件、直角三角形模型、正方形網(wǎng)格紙等。
學(xué)生準備:預(yù)習(xí)勾股定理的基本內(nèi)容,準備紙筆進行課堂練習(xí)。
四、教學(xué)過程
1、引入新課:
通過多媒體展示一些與勾股定理相關(guān)的圖片或視頻,如畢達哥拉斯發(fā)現(xiàn)勾股定理的故事、趙爽弦圖等,激發(fā)學(xué)生的學(xué)習(xí)興趣。
提出問題:你知道直角三角形的三邊之間有什么關(guān)系嗎?引出勾股定理的主題。
2、新課講授:
講解勾股定理的基本內(nèi)容,并板書公式:a+b=c。
通過多媒體展示勾股定理的證明過程,如面積法、割補法等,使學(xué)生理解勾股定理的正確性。
引導(dǎo)學(xué)生觀察直角三角形模型,加深對勾股定理的理解。
3、課堂練習(xí):
給出一些簡單的實際問題,讓學(xué)生運用勾股定理進行計算。
鼓勵學(xué)生上臺板演,其他同學(xué)進行點評和補充。
教師對學(xué)生的練習(xí)情況進行總結(jié)和點評,指出存在的問題和需要注意的事項。
4、拓展延伸:
介紹勾股定理在現(xiàn)實生活中的應(yīng)用,如建筑、測量、導(dǎo)航等領(lǐng)域。
引導(dǎo)學(xué)生思考:如果直角三角形的`兩條直角邊分別增加1倍,斜邊會發(fā)生什么變化?通過討論和交流,培養(yǎng)學(xué)生的數(shù)學(xué)思維和探究能力。
5、課堂小結(jié):
總結(jié)本節(jié)課所學(xué)的內(nèi)容,強調(diào)勾股定理的重要性和應(yīng)用價值。
鼓勵學(xué)生課后繼續(xù)探索勾股定理的相關(guān)知識,如勾股定理的逆定理等。
五、作業(yè)布置
完成課后習(xí)題,鞏固勾股定理的基本內(nèi)容和應(yīng)用方法。
查找資料,了解勾股定理的歷史背景和現(xiàn)代應(yīng)用,撰寫一篇小論文或制作一份手抄報。
【勾股定理教案】相關(guān)文章:
勾股定理教案05-30
勾股定理的教案12-11
勾股定理教案[合集]05-30
(集合)勾股定理教案07-14
勾股定理教案優(yōu)選【15篇】07-14
勾股定理的說課稿,勾股定理說課稿范文05-06
《勾股定理》說課稿12-16
《勾股定理》說課稿06-20
探索《勾股定理》說課稿01-04