- 相關(guān)推薦
高中導(dǎo)數(shù)教案
作為一名優(yōu)秀的教育工作者,時常會需要準(zhǔn)備好教案,教案是教學(xué)活動的依據(jù),有著重要的地位。如何把教案做到重點(diǎn)突出呢?以下是小編整理的高中導(dǎo)數(shù)教案,歡迎大家借鑒與參考,希望對大家有所幫助。
高中導(dǎo)數(shù)教案1
導(dǎo)數(shù):導(dǎo)數(shù)的意義-導(dǎo)數(shù)公式-導(dǎo)數(shù)應(yīng)用(極值最值問題、曲線切線問題)
1、導(dǎo)數(shù)的定義:在點(diǎn)處的導(dǎo)數(shù)記作.
2.導(dǎo)數(shù)的幾何物理意義:曲線在點(diǎn)處切線的斜率
、賙=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。
3.常見函數(shù)的導(dǎo)數(shù)公式:①;②;③;
、;⑥;⑦;⑧。
4.導(dǎo)數(shù)的四則運(yùn)算法則:
5.導(dǎo)數(shù)的應(yīng)用:
(1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);
注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。
(2)求極值的步驟:
、偾髮(dǎo)數(shù);
、谇蠓匠痰母;
③列表:檢驗(yàn)在方程根的左右的符號,如果左正右負(fù),那么函數(shù)在這個根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個根處取得極小值;
(3)求可導(dǎo)函數(shù)最大值與最小值的步驟:
ⅰ求的根;ⅱ把根與區(qū)間端點(diǎn)函數(shù)值比較,最大的為最大值,最小的是最小值。
導(dǎo)數(shù)與物理,幾何,代數(shù)關(guān)系密切:在幾何中可求切線;在代數(shù)中可求瞬時變化率;在物理中可求速度、加速度。學(xué)好導(dǎo)數(shù)至關(guān)重要,一起來學(xué)習(xí)高二數(shù)學(xué)導(dǎo)數(shù)的定義知識點(diǎn)歸納吧!
導(dǎo)數(shù)是微積分中的重要基礎(chǔ)概念。當(dāng)函數(shù)y=f(x)的自變量x在一點(diǎn)x0上產(chǎn)生一個增量Δx時,函數(shù)輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時的極限a如果存在,a即為在x0處的導(dǎo)數(shù),記作f(x0)或df(x0)/dx。
導(dǎo)數(shù)是函數(shù)的局部性質(zhì)。一個函數(shù)在某一點(diǎn)的導(dǎo)數(shù)描述了這個函數(shù)在這一點(diǎn)附近的變化率。如果函數(shù)的`自變量和取值都是實(shí)數(shù)的話,函數(shù)在某一點(diǎn)的導(dǎo)數(shù)就是該函數(shù)所代表的曲線在這一點(diǎn)上的切線斜率。導(dǎo)數(shù)的本質(zhì)是通過極限的概念對函數(shù)進(jìn)行局部的線性逼近。例如在運(yùn)動學(xué)中,物體的位移對于時間的導(dǎo)數(shù)就是物體的瞬時速度。
不是所有的函數(shù)都有導(dǎo)數(shù),一個函數(shù)也不一定在所有的點(diǎn)上都有導(dǎo)數(shù)。若某函數(shù)在某一點(diǎn)導(dǎo)數(shù)存在,則稱其在這一點(diǎn)可導(dǎo),否則稱為不可導(dǎo)。然而,可導(dǎo)的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導(dǎo)。
對于可導(dǎo)的函數(shù)f(x),xf(x)也是一個函數(shù),稱作f(x)的導(dǎo)函數(shù)。尋找已知的函數(shù)在某點(diǎn)的導(dǎo)數(shù)或其導(dǎo)函數(shù)的過程稱為求導(dǎo)。實(shí)質(zhì)上,求導(dǎo)就是一個求極限的過程,導(dǎo)數(shù)的四則運(yùn)算法則也來源于極限的四則運(yùn)算法則。反之,已知導(dǎo)函數(shù)也可以倒過來求原來的函數(shù),即不定積分。微積分基本定理說明了求原函數(shù)與積分是等價的。求導(dǎo)和積分是一對互逆的操作,它們都是微積分學(xué)中最為基礎(chǔ)的概念。
設(shè)函數(shù)y=f(x)在點(diǎn)x0的某個鄰域內(nèi)有定義,當(dāng)自變量x在x0處有增量Δx,(x0+Δx)也在該鄰域內(nèi)時,相應(yīng)地函數(shù)取得增量Δy=f(x0+Δx)-f(x0);如果Δy與Δx之比當(dāng)Δx→0時極限存在,則稱函數(shù)y=f(x)在點(diǎn)x0處可導(dǎo),并稱這個極限為函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f(x0),也記作y│x=x0或dy/dx│x=x0
高中導(dǎo)數(shù)教案2
單調(diào)性
、湃魧(dǎo)數(shù)大于零,則單調(diào)遞增;若導(dǎo)數(shù)小于零,則單調(diào)遞減;導(dǎo)數(shù)等于零為函數(shù)駐點(diǎn),不一定為極值點(diǎn)。需代入駐點(diǎn)左右兩邊的數(shù)值求導(dǎo)數(shù)正負(fù)判斷單調(diào)性。
⑵若已知函數(shù)為遞增函數(shù),則導(dǎo)數(shù)大于等于零;若已知函數(shù)為遞減函數(shù),則導(dǎo)數(shù)小于等于零。
根據(jù)微積分基本定理,對于可導(dǎo)的函數(shù),有:
如果函數(shù)的導(dǎo)函數(shù)在某一區(qū)間內(nèi)恒大于零(或恒小于零),那么函數(shù)在這一區(qū)間內(nèi)單調(diào)遞增(或單調(diào)遞減),這種區(qū)間也稱為函數(shù)的單調(diào)區(qū)間。導(dǎo)函數(shù)等于零的點(diǎn)稱為函數(shù)的駐點(diǎn),在這類點(diǎn)上函數(shù)可能會取得極大值或極小值(即極值可疑點(diǎn))。進(jìn)一步判斷則需要知道導(dǎo)函數(shù)在附近的符號。對于滿足的一點(diǎn),如果存在使得在之前區(qū)間上都大于等于零,而在之后區(qū)間上都小于等于零,那么是一個極大值點(diǎn),反之則為極小值點(diǎn)。
x變化時函數(shù)(藍(lán)色曲線)的切線變化。函數(shù)的導(dǎo)數(shù)值就是切線的.斜率,綠色代表其值為正,紅色代表其值為負(fù),黑色代表值為零。
凹凸性
可導(dǎo)函數(shù)的凹凸性與其導(dǎo)數(shù)的單調(diào)性有關(guān)。如果函數(shù)的導(dǎo)函數(shù)在某個區(qū)間上單調(diào)遞增,那么這個區(qū)間上函數(shù)是向下凹的,反之則是向上凸的。如果二階導(dǎo)函數(shù)存在,也可以用它的正負(fù)性判斷,如果在某個區(qū)間上恒大于零,則這個區(qū)間上函數(shù)是向下凹的,反之這個區(qū)間上函數(shù)是向上凸的。曲線的凹凸分界點(diǎn)稱為曲線的拐點(diǎn)。
高中導(dǎo)數(shù)教案3
教學(xué)目標(biāo):
1、理解并掌握曲線在某一點(diǎn)處的切線的概念;
2、理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法;
3、理解切線概念實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問題的能力和培養(yǎng)學(xué)生轉(zhuǎn)化
問題的能力及數(shù)形結(jié)合思想。
教學(xué)重點(diǎn):
理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法。
教學(xué)難點(diǎn):
用“無限逼近”、“局部以直代曲”的思想理解某一點(diǎn)處切線的斜率。
教學(xué)過程:
一、問題情境
1、問題情境。
如何精確地刻畫曲線上某一點(diǎn)處的變化趨勢呢?
如果將點(diǎn)P附近的曲線放大,那么就會發(fā)現(xiàn),曲線在點(diǎn)P附近看上去有點(diǎn)像是直線。
如果將點(diǎn)P附近的曲線再放大,那么就會發(fā)現(xiàn),曲線在點(diǎn)P附近看上去幾乎成了直線。事實(shí)上,如果繼續(xù)放大,那么曲線在點(diǎn)P附近將逼近一條確定的直線,該直線是經(jīng)過點(diǎn)P的所有直線中最逼近曲線的一條直線。
因此,在點(diǎn)P附近我們可以用這條直線來代替曲線,也就是說,點(diǎn)P附近,曲線可以看出直線(即在很小的范圍內(nèi)以直代曲)。
2、探究活動。
如圖所示,直線l1,l2為經(jīng)過曲線上一點(diǎn)P的兩條直線,
。1)試判斷哪一條直線在點(diǎn)P附近更加逼近曲線;
。2)在點(diǎn)P附近能作出一條比l1,l2更加逼近曲線的直線l3嗎?
。3)在點(diǎn)P附近能作出一條比l1,l2,l3更加逼近曲線的直線嗎?
二、建構(gòu)數(shù)學(xué)
切線定義: 如圖,設(shè)Q為曲線C上不同于P的一點(diǎn),直線PQ稱為曲線的割線。 隨著點(diǎn)Q沿曲線C向點(diǎn)P運(yùn)動,割線PQ在點(diǎn)P附近逼近曲線C,當(dāng)點(diǎn)Q無限逼近點(diǎn)P時,直線PQ最終就成為經(jīng)過點(diǎn)P處最逼近曲線的直線l,這條直線l也稱為曲線在點(diǎn)P處的切線。這種方法叫割線逼近切線。
思考:如上圖,P為已知曲線C上的一點(diǎn),如何求出點(diǎn)P處的切線方程?
三、數(shù)學(xué)運(yùn)用
例1 試求在點(diǎn)(2,4)處的.切線斜率。
解法一 分析:設(shè)P(2,4),Q(xQ,f(xQ)),
則割線PQ的斜率為:
當(dāng)Q沿曲線逼近點(diǎn)P時,割線PQ逼近點(diǎn)P處的切線,從而割線斜率逼近切線斜率;
當(dāng)Q點(diǎn)橫坐標(biāo)無限趨近于P點(diǎn)橫坐標(biāo)時,即xQ無限趨近于2時,kPQ無限趨近于常數(shù)4。
從而曲線f(x)=x2在點(diǎn)(2,4)處的切線斜率為4。
解法二 設(shè)P(2,4),Q(xQ,xQ2),則割線PQ的斜率為:
當(dāng)?x無限趨近于0時,kPQ無限趨近于常數(shù)4,從而曲線f(x)=x2,在點(diǎn)(2,4)處的切線斜率為4。
練習(xí) 試求在x=1處的切線斜率。
解:設(shè)P(1,2),Q(1+Δx,(1+Δx)2+1),則割線PQ的斜率為:
當(dāng)?x無限趨近于0時,kPQ無限趨近于常數(shù)2,從而曲線f(x)=x2+1在x=1處的切線斜率為2。
小結(jié) 求曲線上一點(diǎn)處的切線斜率的一般步驟:
。1)找到定點(diǎn)P的坐標(biāo),設(shè)出動點(diǎn)Q的坐標(biāo);
(2)求出割線PQ的斜率;
。3)當(dāng)時,割線逼近切線,那么割線斜率逼近切線斜率。
思考 如上圖,P為已知曲線C上的一點(diǎn),如何求出點(diǎn)P處的切線方程?
解 設(shè)
所以,當(dāng)無限趨近于0時,無限趨近于點(diǎn)處的切線的斜率。
變式訓(xùn)練
1。已知,求曲線在處的切線斜率和切線方程;
2。已知,求曲線在處的切線斜率和切線方程;
3。已知,求曲線在處的切線斜率和切線方程。
課堂練習(xí)
已知,求曲線在處的切線斜率和切線方程。
四、回顧小結(jié)
1、曲線上一點(diǎn)P處的切線是過點(diǎn)P的所有直線中最接近P點(diǎn)附近曲線的直線,則P點(diǎn)處的變化趨勢可以由該點(diǎn)處的切線反映(局部以直代曲)。
2、根據(jù)定義,利用割線逼近切線的方法, 可以求出曲線在一點(diǎn)處的切線斜率和方程。
五、課外作業(yè)
高中導(dǎo)數(shù)教案4
一、專題綜述
導(dǎo)數(shù)是微積分的初步知識,是研究函數(shù),解決實(shí)際問題的有力工具。在高中階段對于導(dǎo)數(shù)的學(xué)習(xí),主要是以下幾個方面:
1.導(dǎo)數(shù)的常規(guī)問題:
(1)刻畫函數(shù)(比初等方法精確細(xì)微);(2)同幾何中切線聯(lián)系(導(dǎo)數(shù)方法可用于研究平面曲線的切線);(3)應(yīng)用問題(初等方法往往技巧性要求較高,而導(dǎo)數(shù)方法顯得簡便)等關(guān)于次多項(xiàng)式的導(dǎo)數(shù)問題屬于較難類型。
2.關(guān)于函數(shù)特征,最值問題較多,所以有必要專項(xiàng)討論,導(dǎo)數(shù)法求最值要比初等方法快捷簡便。
3.導(dǎo)數(shù)與解析幾何或函數(shù)圖象的混合問題是一種重要類型,也是高考中考察綜合能力的一個方向,應(yīng)引起注意。
二、知識整合
1.導(dǎo)數(shù)概念的理解。
2.利用導(dǎo)數(shù)判別可導(dǎo)函數(shù)的極值的方法及求一些實(shí)際問題的最大值與最小值。
復(fù)合函數(shù)的求導(dǎo)法則是微積分中的重點(diǎn)與難點(diǎn)內(nèi)容。課本中先通過實(shí)例,引出復(fù)合函數(shù)的求導(dǎo)法則,接下來對法則進(jìn)行了證明。
3.要能正確求導(dǎo),必須做到以下兩點(diǎn):
(1)熟練掌握各基本初等函數(shù)的求導(dǎo)公式以及和、差、積、商的求導(dǎo)法則,復(fù)合函數(shù)的求導(dǎo)法則。
(2)對于一個復(fù)合函數(shù),一定要理清中間的復(fù)合關(guān)系,弄清各分解函數(shù)中應(yīng)對哪個變量求導(dǎo)。
高三數(shù)學(xué)下冊《導(dǎo)數(shù)》知識點(diǎn)
高三數(shù)學(xué)下冊《導(dǎo)數(shù)》知識點(diǎn)
一、綜述
導(dǎo)數(shù)是微積分的初步知識,是研究函數(shù),解決實(shí)際問題的有力工具。在高中階段對于導(dǎo)數(shù)的學(xué)習(xí),主要是以下幾個方面:
1.導(dǎo)數(shù)的常規(guī)問題:
(1)刻畫函數(shù)(比初等方法精確細(xì)微);(2)同幾何中切線聯(lián)系(導(dǎo)數(shù)方法可用于研究平面曲線的`切線);(3)應(yīng)用問題(初等方法往往技巧性要求較高,而導(dǎo)數(shù)方法顯得簡便)等關(guān)于次多項(xiàng)式的導(dǎo)數(shù)問題屬于較難類型。
2.關(guān)于函數(shù)特征,最值問題較多,所以有必要專項(xiàng)討論,導(dǎo)數(shù)法求最值要比初等方法快捷簡便。
3.導(dǎo)數(shù)與解析幾何或函數(shù)圖象的混合問題是一種重要類型,也是高考中考察綜合能力的一個方向,應(yīng)引起注意。
二、知識整合
1.導(dǎo)數(shù)概念的理解。
2.利用導(dǎo)數(shù)判別可導(dǎo)函數(shù)的極值的方法及求一些實(shí)際問題的最大值與最小值。
復(fù)合函數(shù)的求導(dǎo)法則是微積分中的重點(diǎn)與難點(diǎn)內(nèi)容。課本中先通過實(shí)例,引出復(fù)合函數(shù)的求導(dǎo)法則,接下來對法則進(jìn)行了證明。
練習(xí)題:
1.已知某函數(shù)的導(dǎo)數(shù)為y′=12(x-1),則這個函數(shù)可能是()
A.y=ln1-x
B.y=ln11-x
C.y=ln(1-x)D.y=ln11-x
答案:A
解析:對選項(xiàng)求導(dǎo).
(ln1-x)′=11-x(1-x)′
=11-x12(1-x)-12(-1)
。12(x-1).故選A.
2.設(shè)函數(shù)f(x)=g(x)+x2,曲線y=g(x)在點(diǎn)(1,g(1))處的切線方程為y=2x+1,則曲線y=f(x)在點(diǎn)(1,f(1))處切線的斜率為()
A.4
B.-14
C.2
D.-12
答案:A
解析:f′(x)=g′(x)+2x.
∵y=g(x)在點(diǎn)(1,g(1))處的切線方程為y=2x+1,∴g′(1)=2,∴f′(1)=g′(1)+2×1=2+2=4,∴y=f(x)在點(diǎn)(1,f(1))處切線斜率為4.
3.曲線y=xx-2在點(diǎn)(1,-1)處的切線方程為()
A.y=x-2B.y=-3x+2
C.y=2x-3D.y=-2x+1
答案:D
解析:y′=(xx-2)′=-2(x-2)2,∴k=y(tǒng)′|x=1=-2.
l:y+1=-2(x-1),則y=-2x+1.故選D.
高中導(dǎo)數(shù)教案5
教學(xué)目標(biāo):
1。通過生活中優(yōu)化問題的學(xué)習(xí),體會導(dǎo)數(shù)在解決實(shí)際問題中的作用,促進(jìn)
學(xué)生全面認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值。
2。通過實(shí)際問題的研究,促進(jìn)學(xué)生分析問題、解決問題以及數(shù)學(xué)建模能力的提高。
教學(xué)重點(diǎn):
如何建立實(shí)際問題的目標(biāo)函數(shù)是教學(xué)的重點(diǎn)與難點(diǎn)。
教學(xué)過程:
一、問題情境
問題1把長為60cm的鐵絲圍成矩形,長寬各為多少時面積最大?
問題2把長為100cm的鐵絲分成兩段,各圍成正方形,怎樣分法,能使兩個正方形面積之各最?
問題3做一個容積為256L的方底無蓋水箱,它的高為多少時材料最?
二、新課引入
導(dǎo)數(shù)在實(shí)際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實(shí)際生活中的某些最值問題。
1。幾何方面的應(yīng)用(面積和體積等的最值)。
2。物理方面的應(yīng)用(功和功率等最值)。
3。經(jīng)濟(jì)學(xué)方面的應(yīng)用(利潤方面最值)。
三、知識建構(gòu)
例1在邊長為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無蓋的方底箱子,箱底的.邊長是多少時,箱底的容積最大?最大容積是多少?
說明1解應(yīng)用題一般有四個要點(diǎn)步驟:設(shè)——列——解——答。
說明2用導(dǎo)數(shù)法求函數(shù)的最值,與求函數(shù)極值方法類似,加一步與幾個極
值及端點(diǎn)值比較即可。
例2圓柱形金屬飲料罐的容積一定時,它的高與底與半徑應(yīng)怎樣選取,才
能使所用的材料最省?
變式當(dāng)圓柱形金屬飲料罐的表面積為定值S時,它的高與底面半徑應(yīng)怎樣選取,才能使所用材料最?
說明1這種在定義域內(nèi)僅有一個極值的函數(shù)稱單峰函數(shù)。
說明2用導(dǎo)數(shù)法求單峰函數(shù)最值,可以對一般的求法加以簡化,其步驟為:
S1列:列出函數(shù)關(guān)系式。
S2求:求函數(shù)的導(dǎo)數(shù)。
S3述:說明函數(shù)在定義域內(nèi)僅有一個極大(。┲,從而斷定為函數(shù)的最大(。┲,必要時作答。
例3在如圖所示的電路中,已知電源的內(nèi)阻為,電動勢為。外電阻為
多大時,才能使電功率最大?最大電功率是多少?
說明求最值要注意驗(yàn)證等號成立的條件,也就是說取得這樣的值時對應(yīng)的自變量必須有解。
例4強(qiáng)度分別為a,b的兩個光源A,B,它們間的距離為d,試問:在連接這兩個光源的線段AB上,何處照度最。吭嚲蚢=8,b=1,d=3時回答上述問題(照度與光的強(qiáng)度成正比,與光源的距離的平方成反比)。
例5在經(jīng)濟(jì)學(xué)中,生產(chǎn)單位產(chǎn)品的成本稱為成本函數(shù),記為;出售單位產(chǎn)品的收益稱為收益函數(shù),記為;稱為利潤函數(shù),記為。
(1)設(shè),生產(chǎn)多少單位產(chǎn)品時,邊際成本最低?
。2)設(shè),產(chǎn)品的單價,怎樣的定價可使利潤最大?
四、課堂練習(xí)
1。將正數(shù)a分成兩部分,使其立方和為最小,這兩部分應(yīng)分成____和___。
2。在半徑為R的圓內(nèi),作內(nèi)接等腰三角形,當(dāng)?shù)走吷细邽? 時,它的面積最大。
3。有一邊長分別為8與5的長方形,在各角剪去相同的小正方形,把四邊折起做成一個無蓋小盒,要使紙盒的容積最大,問剪去的小正方形邊長應(yīng)為多少?
4。一條水渠,斷面為等腰梯形,如圖所示,在確定斷面尺寸時,希望在斷面ABCD的面積為定值S時,使得濕周l=AB+BC+CD最小,這樣可使水流阻力小,滲透少,求此時的高h(yuǎn)和下底邊長b。
五、回顧反思
(1)解有關(guān)函數(shù)最大值、最小值的實(shí)際問題,需要分析問題中各個變量之間的關(guān)系,找出適當(dāng)?shù)暮瘮?shù)關(guān)系式,并確定函數(shù)的定義區(qū)間;所得結(jié)果要符合問題的實(shí)際意義。
。2)根據(jù)問題的實(shí)際意義來判斷函數(shù)最值時,如果函數(shù)在此區(qū)間上只有一個極值點(diǎn),那么這個極值就是所求最值,不必再與端點(diǎn)值比較。
。3)相當(dāng)多有關(guān)最值的實(shí)際問題用導(dǎo)數(shù)方法解決較簡單。
六、課外作業(yè)
課本第38頁第1,2,3,4題。
高中導(dǎo)數(shù)教案6
教學(xué)目標(biāo):
1。理解并掌握瞬時速度的定義;
2。會運(yùn)用瞬時速度的定義求物體在某一時刻的瞬時速度和瞬時加速度;
3。理解瞬時速度的實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問題的能力。
教學(xué)重點(diǎn):
會運(yùn)用瞬時速度的定義求物體在某一時刻的瞬時速度和瞬時加速度。
教學(xué)難點(diǎn):
理解瞬時速度和瞬時加速度的定義。
教學(xué)過程:
一、問題情境
1。問題情境。
平均速度:物體的運(yùn)動位移與所用時間的比稱為平均速度。
問題一平均速度反映物體在某一段時間段內(nèi)運(yùn)動的快慢程度。那么如何刻畫物體在某一時刻運(yùn)動的快慢程度?
問題二跳水運(yùn)動員從10m高跳臺騰空到入水的過程中,不同時刻的速度是不同的。假設(shè)t秒后運(yùn)動員相對于水面的高度為h(t)=-4.9t2+6.5t+10,試確定t=2s時運(yùn)動員的速度.
2。探究活動:
(1)計(jì)算運(yùn)動員在2s到2.1s(t∈)內(nèi)的平均速度。
(2)計(jì)算運(yùn)動員在2s到(2+?t)s(t∈)內(nèi)的平均速度。
(3)如何計(jì)算運(yùn)動員在更短時間內(nèi)的`平均速度。
探究結(jié)論:
時間區(qū)間
t
平均速度
0.1
-13.59
0.01
-13.149
0.001
-13.1049
0.0001
-13.10049
0.00001
-13.100049
0.000001
-13.1000049
當(dāng)?t?0時,?-13.1,
該常數(shù)可作為運(yùn)動員在2s時的瞬時速度。
即t=2s時,高度對于時間的瞬時變化率。
二、建構(gòu)數(shù)學(xué)
1。平均速度。
設(shè)物體作直線運(yùn)動所經(jīng)過的路程為,以為起始時刻,物體在?t時間內(nèi)的平均速度為。
可作為物體在時刻的速度的近似值,?t越小,近似的程度就越好。所以當(dāng)?t?0時,極限就是物體在時刻的瞬時速度。
三、數(shù)學(xué)運(yùn)用
例1物體作自由落體運(yùn)動,運(yùn)動方程為,其中位移單位是m,時
間單位是s,,求:
。1)物體在時間區(qū)間s上的平均速度;
。2)物體在時間區(qū)間上的平均速度;
。3)物體在t=2s時的瞬時速度。
分析
解
。1)將?t=0.1代入上式,得:=2.05g=20.5m/s。
。2)將?t=0.01代入上式,得:=2.005g=20.05m/s。
(3)當(dāng)?t?0,2+?t?2,從而平均速度的極限為:
例2設(shè)一輛轎車在公路上作直線運(yùn)動,假設(shè)時的速度為,
求當(dāng)時轎車的瞬時加速度。
解
∴當(dāng)?t無限趨于0時,無限趨于,即=。
練習(xí)
課本P12—1,2。
四、回顧小結(jié)
問題1本節(jié)課你學(xué)到了什么?
1理解瞬時速度和瞬時加速度的定義;
2實(shí)際應(yīng)用問題中瞬時速度和瞬時加速度的求解;
問題2解決瞬時速度和瞬時加速度問題需要注意什么?
注意當(dāng)?t?0時,瞬時速度和瞬時加速度的極限值。
問題3本節(jié)課體現(xiàn)了哪些數(shù)學(xué)思想方法?
2極限的思想方法。
3特殊到一般、從具體到抽象的推理方法。
五、課外作業(yè)
高中導(dǎo)數(shù)教案7
導(dǎo)數(shù)是微積分中的重要基礎(chǔ)概念。當(dāng)函數(shù)y=f(x)的自變量x在一點(diǎn)x0上產(chǎn)生一個增量Δx時,函數(shù)輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時的極限a如果存在,a即為在x0處的導(dǎo)數(shù),記作f(x0)或df(x0)/dx。
導(dǎo)數(shù)是函數(shù)的局部性質(zhì)。一個函數(shù)在某一點(diǎn)的導(dǎo)數(shù)描述了這個函數(shù)在這一點(diǎn)附近的變化率。如果函數(shù)的自變量和取值都是實(shí)數(shù)的話,函數(shù)在某一點(diǎn)的導(dǎo)數(shù)就是該函數(shù)所代表的曲線在這一點(diǎn)上的切線斜率。導(dǎo)數(shù)的本質(zhì)是通過極限的概念對函數(shù)進(jìn)行局部的線性逼近。例如在運(yùn)動學(xué)中,物體的位移對于時間的導(dǎo)數(shù)就是物體的瞬時速度。
不是所有的函數(shù)都有導(dǎo)數(shù),一個函數(shù)也不一定在所有的點(diǎn)上都有導(dǎo)數(shù)。若某函數(shù)在某一點(diǎn)導(dǎo)數(shù)存在,則稱其在這一點(diǎn)可導(dǎo),否則稱為不可導(dǎo)。然而,可導(dǎo)的`函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導(dǎo)。
對于可導(dǎo)的函數(shù)f(x),x?f(x)也是一個函數(shù),稱作f(x)的導(dǎo)函數(shù)。尋找已知的函數(shù)在某點(diǎn)的導(dǎo)數(shù)或其導(dǎo)函數(shù)的過程稱為求導(dǎo)。實(shí)質(zhì)上,求導(dǎo)就是一個求極限的過程,導(dǎo)數(shù)的四則運(yùn)算法則也來源于極限的四則運(yùn)算法則。反之,已知導(dǎo)函數(shù)也可以倒過來求原來的函數(shù),即不定積分。微積分基本定理說明了求原函數(shù)與積分是等價的。求導(dǎo)和積分是一對互逆的操作,它們都是微積分學(xué)中最為基礎(chǔ)的概念。
設(shè)函數(shù)y=f(x)在點(diǎn)x0的某個鄰域內(nèi)有定義,當(dāng)自變量x在x0處有增量Δx,(x0+Δx)也在該鄰域內(nèi)時,相應(yīng)地函數(shù)取得增量Δy=f(x0+Δx)-f(x0);如果Δy與Δx之比當(dāng)Δx→0時極限存在,則稱函數(shù)y=f(x)在點(diǎn)x0處可導(dǎo),并稱這個極限為函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f(x0),也記作y│x=x0或dy/dx│x=x0
高中導(dǎo)數(shù)教案8
教學(xué)目標(biāo):
1.理解兩個函數(shù)的和(或差)的導(dǎo)數(shù)法則,學(xué)會用法則求一些函數(shù)的導(dǎo)數(shù);
2.理解兩個函數(shù)的積的導(dǎo)數(shù)法則,學(xué)會用法則求乘積形式的函數(shù)的導(dǎo)數(shù);
3.能夠綜合運(yùn)用各種法則求函數(shù)的導(dǎo)數(shù).
教學(xué)重點(diǎn):
函數(shù)的和、差、積、商的求導(dǎo)法則的推導(dǎo)與應(yīng)用.
教學(xué)過程:
一、問題情境
1.問題情境.
。1)常見函數(shù)的導(dǎo)數(shù)公式:(默寫)
。2)求下列函數(shù)的導(dǎo)數(shù):; ; .
。3)由定義求導(dǎo)數(shù)的基本步驟(三步法).
2.探究活動.
例1 求的導(dǎo)數(shù).
思考 已知,怎樣求呢?
二、建構(gòu)數(shù)學(xué)
函數(shù)的和差積商的導(dǎo)數(shù)求導(dǎo)法則:
三、數(shù)學(xué)運(yùn)用
練習(xí) 課本P22練習(xí)1~5題.
點(diǎn)評:正確運(yùn)用函數(shù)的四則運(yùn)算的求導(dǎo)法則.
四、拓展探究
點(diǎn)評 求導(dǎo)數(shù)前的變形,目的在于簡化運(yùn)算;如遇求多個積的.導(dǎo)數(shù),可以逐層分組進(jìn)行;求導(dǎo)數(shù)后應(yīng)對結(jié)果進(jìn)行整理化簡.
五、回顧小結(jié)
函數(shù)的和差積商的導(dǎo)數(shù)求導(dǎo)法則.
六、課外作業(yè)
1.見課本P26習(xí)題1.2第1,2,5~7題.
2.補(bǔ)充:已知點(diǎn)P(-1,1),點(diǎn)Q(2,4)是曲線y=x2上的兩點(diǎn),求與直線PQ平行的曲線y=x2的切線方程.
高中導(dǎo)數(shù)教案9
一、教學(xué)目標(biāo):
了解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系.掌握利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的方法.
二、教學(xué)重點(diǎn):
利用導(dǎo)數(shù)判斷一個函數(shù)在其定義區(qū)間內(nèi)的單調(diào)性.
教學(xué)難點(diǎn):判斷復(fù)合函數(shù)的單調(diào)區(qū)間及應(yīng)用;利用導(dǎo)數(shù)的符號判斷函數(shù)的單調(diào)性.
三、教學(xué)過程
。ㄒ唬⿵(fù)習(xí)引入
1.增函數(shù)、減函數(shù)的定義
一般地,設(shè)函數(shù)f(x)的定義域?yàn)镮:如果對于屬于定義域I內(nèi)某個區(qū)間上的任意兩個自變量x1,x2,當(dāng)x1<x2時,都有f(x1)<f(x2),那么就說f(x)在這個區(qū)間上是增函數(shù).當(dāng)x1<x2時,都有f(x1)>f(x2),那么就說f(x)在這個區(qū)間上是減函數(shù).
2.函數(shù)的單調(diào)性
如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么就說函數(shù)y=f(x)在這一區(qū)間具有(嚴(yán)格的`)單調(diào)性,這一區(qū)間叫做y=f(x)的單調(diào)區(qū)間.
在單調(diào)區(qū)間上增函數(shù)的圖象是上升的,減函數(shù)的圖象是下降的.
例1討論函數(shù)y=x2-4x+3的單調(diào)性.
解:取x1<x2,x1、x2∈R,取值
f(x1)-f(x2)=(x12-4x1+3)-(x22-4x2+3)作差
。(x1-x2)(x1+x2-4)變形
當(dāng)x1<x2<2時,x1+x2-4<0,f(x1)>f(x2),定號
∴y=f(x)在(-∞, 2)單調(diào)遞減.判斷
當(dāng)2<x1<x2時,x1+x2-4>0,f(x1)<f(x2),
∴y=f(x)在(2,+∞)單調(diào)遞增.綜上所述y=f(x)在(-∞, 2)單調(diào)遞減,y=f(x)在(2,+∞)單調(diào)遞增。
能否利用導(dǎo)數(shù)的符號來判斷函數(shù)單調(diào)性?
【高中導(dǎo)數(shù)教案】相關(guān)文章:
高中數(shù)學(xué)導(dǎo)數(shù)知識點(diǎn)總結(jié)04-10
《導(dǎo)數(shù)的概念》說課稿12-14
導(dǎo)數(shù)說課稿01-19
高中教案教案03-05
高中籃球教案02-16
勸學(xué)高中教案04-01
高中氯氣的教案03-07
高中雷雨教案03-30
高中勸學(xué)教案04-01