- 因式分解教案 推薦度:
- 因式分解教案 推薦度:
- 因式分解教案 推薦度:
- 相關(guān)推薦
精選因式分解教案4篇
作為一位杰出的教職工,通常需要準(zhǔn)備好一份教案,編寫教案有利于我們科學(xué)、合理地支配課堂時間。怎樣寫教案才更能起到其作用呢?以下是小編精心整理的因式分解教案4篇,供大家參考借鑒,希望可以幫助到有需要的朋友。
因式分解教案 篇1
一、教材分析
1、教材的地位與作用
“整式的乘法”是整式的加減的后續(xù)學(xué)習(xí)從冪的運(yùn)算到各種整式的乘法,整章教材都突出了學(xué)生的自主探索過程,依據(jù)原有的知識基礎(chǔ),或運(yùn)用乘法的各種運(yùn)算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運(yùn)算的基本法則、兩個主要的乘法公式及因式分解的基本方法學(xué)生自己對知識內(nèi)容的探索、認(rèn)識與體驗(yàn),完全有利于學(xué)生形成合理的知識結(jié)構(gòu),提高數(shù)學(xué)思維能力.利用公式法進(jìn)行因式分解時,注意把握多項(xiàng)式的特點(diǎn),對比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。
因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項(xiàng)式乘法公式的逆向變形,它是將一個多項(xiàng)式變形為多項(xiàng)式與多項(xiàng)式的乘積。
2、教學(xué)目標(biāo)
。1)會推導(dǎo)乘法公式
(2)在應(yīng)用乘法公式進(jìn)行計(jì)算的基礎(chǔ)上,感受乘法公式的作用和價值。
(3)會用提公因式法、公式法進(jìn)行因式分解。
。4)了解因式分解的一般步驟。
。5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的`能力。
3、重點(diǎn)、難點(diǎn)和關(guān)鍵
重點(diǎn):乘法公式的意義、分式的由來和正確運(yùn)用;用提公因式法和公式法進(jìn)行因式分解。
難點(diǎn):正確運(yùn)用乘法公式;正確分解因式。
關(guān)鍵:正確理解乘法公式和因式分解的意義。
二、本單元教學(xué)的方法和策略:
1.注重知識形成的探索過程,讓學(xué)生在探索過程中領(lǐng)悟知識,在領(lǐng)悟過程中建構(gòu)體系,從而更好地實(shí)現(xiàn)知識體系的更新和知識的正向遷移.
2.知識內(nèi)容的呈現(xiàn)方式力求與學(xué)生已有的知識結(jié)構(gòu)相聯(lián)系,同時兼顧學(xué)生的思維水平和心理特征.
3.讓學(xué)生掌握基本的數(shù)學(xué)事實(shí)與數(shù)學(xué)活動經(jīng)驗(yàn),減輕不必要的記憶負(fù)擔(dān).
4.注意從生活中選取素材,給學(xué)生提供一些交流、討論的空間,讓學(xué)生從中體會數(shù)學(xué)的應(yīng)用價值,逐步養(yǎng)成談數(shù)學(xué)、想數(shù)學(xué)、做數(shù)學(xué)的良好習(xí)慣.
三、課時安排:
2.1平方差公式 1課時
2.2完全平方公式 2課時
2.3用提公因式法進(jìn)行因式分解 1課時
2.4用公式法進(jìn)行因式分解 2課時
因式分解教案 篇2
一、運(yùn)用平方差公式分解因式
教學(xué)目標(biāo)1、使學(xué)生了解運(yùn)用公式來分解因式的意義。
2、使學(xué)生理解平方差公式的意義,弄清平方差公式的形式和特點(diǎn);使學(xué)生知道把乘法公式反過來就可以得到相應(yīng)的因式分解。
3、掌握運(yùn)用平方差公式分解因式的'方法,能正確運(yùn)用平方差公式把多項(xiàng)式分解因式(直接用公式不超過兩次)
重點(diǎn)運(yùn)用平方差公式分解因式
難點(diǎn)靈活運(yùn)用平方差公式分解因式
教學(xué)方法對比發(fā)現(xiàn)法課型新授課教具投影儀
教師活動學(xué)生活動
情景設(shè)置:
同學(xué)們,你能很快知道992-1是100的倍數(shù)嗎?你是怎么想出來的?
(學(xué)生或許還有其他不同的解決方法,教師要給予充分的肯定)
新課講解:
從上面992-1=(99+1)(99-1),我們?nèi)菀卓闯?這種方法利用了我們剛學(xué)過的哪一個乘法公式?
首先我們來做下面兩題:(投影)
1.計(jì)算下列各式:
(1)(a+2)(a-2)=;
(2)(a+b)(a-b)=;
(3)(3a+2b)(3a-2b)=.
2.下面請你根據(jù)上面的算式填空:
(1)a2-4=;
(2)a2-b2=;
(3)9a2-4b2=;
請同學(xué)們對比以上兩題,你發(fā)現(xiàn)什么呢?
事實(shí)上,像上面第2題那樣,把一個多項(xiàng)式寫成幾個整式積的形式叫做多項(xiàng)式的因式分解。(投影)
比如:a2–16=a2–42=(a+4)(a–4)
例題1:把下列各式分解因式;(投影)
(1)36–25x2;(2)16a2–9b2;
(3)9(a+b)2–4(a–b)2.
(讓學(xué)生弄清平方差公式的形式和特點(diǎn)并會運(yùn)用)
例題2:如圖,求圓環(huán)形綠化區(qū)的面積
練習(xí):第87頁練一練第1、2、3題
小結(jié):
這節(jié)課你學(xué)到了什么知識,掌握什么方法?
教學(xué)素材:
A組題:
1.填空:81x2-=(9x+y)(9x-y);=
利用因式分解計(jì)算:=。
2、下列多項(xiàng)式中能用平方差公式分解因式的是()(A)(B)(C)(D)3.把下列各式分解因式
(1)1-16a2(2)9a2x2-b2y2
(3).49(a-b)2-16(a+b)2
B組題:
1分解因式81a4-b4=
2若a+b=1,a2+b2=1,則ab=;
3若26+28+2n是一個完全平方數(shù),則n=.
由學(xué)生自己先做(或互相討論),然后回答,若有答不全的,教師(或其他學(xué)生)補(bǔ)充.
學(xué)生回答1:
992-1=99×99-1=9801-1
=9800
學(xué)生回答2:992-1就是(99+1)(99-1)即100×98
學(xué)生回答:平方差公式
學(xué)生回答:
(1):a2-4
(2):a2-b2
(3):9a2-4b2
學(xué)生輕松口答
(a+2)(a-2)
(a+b)(a-b)
(3a+2b)(3a-2b)
學(xué)生回答:
把乘法公式
(a+b)(a-b)=a2-b2
反過來就得到
a2-b2=(a+b)(a-b)
學(xué)生上臺板演:
36–25x2=62–(5x)2
=(6+5x)(6–5x)
16a2–9b2=(4a)2–(3b)2
=(4a+3b)(4a–3b)
9(a+b)2–4(a–b)2
=[3(a+b)]2–[2(a–b)]2
=[3(a+b)+2(a–b)]
[3(a+b)–2(a–b)]
=(5a+b)(a+5b)
解:352π–152π
=π(352–152)
=(35+15)(35–15)π
=50×20π
=1000π(m2)
這個綠化區(qū)的面積是
1000πm2
學(xué)生歸納總結(jié)
因式分解教案 篇3
整式乘除與因式分解
一.回顧知識點(diǎn)
1、主要知識回顧:
冪的運(yùn)算性質(zhì):
aman=am+n(m、n為正整數(shù))
同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.
=amn(m、n為正整數(shù))
冪的乘方,底數(shù)不變,指數(shù)相乘.
(n為正整數(shù))
積的乘方等于各因式乘方的積.
=am-n(a≠0,m、n都是正整數(shù),且m>n)
同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.
零指數(shù)冪的概念:
a0=1(a≠0)
任何一個不等于零的數(shù)的零指數(shù)冪都等于l.
負(fù)指數(shù)冪的概念:
a-p=(a≠0,p是正整數(shù))
任何一個不等于零的數(shù)的-p(p是正整數(shù))指數(shù)冪,等于這個數(shù)的p指數(shù)冪的倒數(shù).
也可表示為:(m≠0,n≠0,p為正整數(shù))
單項(xiàng)式的乘法法則:
單項(xiàng)式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對于只在一個單項(xiàng)式里含有的字母,則連同它的指數(shù)作為積的一個因式.
單項(xiàng)式與多項(xiàng)式的乘法法則:
單項(xiàng)式與多項(xiàng)式相乘,用單項(xiàng)式和多項(xiàng)式的每一項(xiàng)分別相乘,再把所得的積相加.
多項(xiàng)式與多項(xiàng)式的乘法法則:
多項(xiàng)式與多項(xiàng)式相乘,先用一個多項(xiàng)式的每一項(xiàng)與另一個多項(xiàng)式的每一項(xiàng)相乘,再把所得的積相加.
單項(xiàng)式的除法法則:
單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式:對于只在被除式里含有的'字母,則連同它的指數(shù)作為商的一個因式.
多項(xiàng)式除以單項(xiàng)式的法則:
多項(xiàng)式除以單項(xiàng)式,先把這個多項(xiàng)式的每一項(xiàng)除以這個單項(xiàng)式,再把所得的商相加.
2、乘法公式:
、倨椒讲罟剑(a+b)(a-b)=a2-b2
文字語言敘述:兩個數(shù)的和與這兩個數(shù)的差相乘,等于這兩個數(shù)的平方差.
②完全平方公式:(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
文字語言敘述:兩個數(shù)的和(或差)的平方等于這兩個數(shù)的平方和加上(或減去)這兩個數(shù)的積的2倍.
3、因式分解:
因式分解的定義.
把一個多項(xiàng)式化成幾個整式的乘積的形式,這種變形叫做把這個多項(xiàng)式因式分解.
掌握其定義應(yīng)注意以下幾點(diǎn):
(1)分解對象是多項(xiàng)式,分解結(jié)果必須是積的形式,且積的因式必須是整式,這三個要素缺一不可;
(2)因式分解必須是恒等變形;
(3)因式分解必須分解到每個因式都不能分解為止.
弄清因式分解與整式乘法的內(nèi)在的關(guān)系.
因式分解與整式乘法是互逆變形,因式分解是把和差化為積的形式,而整式乘法是把積化為和差的形式.
二、熟練掌握因式分解的常用方法.
1、提公因式法
(1)掌握提公因式法的概念;
(2)提公因式法的關(guān)鍵是找出公因式,公因式的構(gòu)成一般情況下有三部分:①系數(shù)一各項(xiàng)系數(shù)的最大公約數(shù);②字母——各項(xiàng)含有的相同字母;③指數(shù)——相同字母的最低次數(shù);
(3)提公因式法的步驟:第一步是找出公因式;第二步是提取公因式并確定另一因式.需注意的是,提取完公因式后,另一個因式的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)一致,這一點(diǎn)可用來檢驗(yàn)是否漏項(xiàng).
(4)注意點(diǎn):①提取公因式后各因式應(yīng)該是最簡形式,即分解到“底”;②如果多項(xiàng)式的第一項(xiàng)的系數(shù)是負(fù)的,一般要提出“-”號,使括號內(nèi)的第一項(xiàng)的系數(shù)是正的.
2、公式法
運(yùn)用公式法分解因式的實(shí)質(zhì)是把整式中的乘法公式反過來使用;
常用的公式:
、倨椒讲罟剑篴2-b2=(a+b)(a-b)
②完全平方公式:a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
因式分解教案 篇4
第十五章 整式的乘除與因式分解
根據(jù)定義,我們不難得出a+b+c、t-5、3x+5+2z、 ab-3.12r2、x2+2x+18都是多項(xiàng)式.請分別指出它們的項(xiàng)和次數(shù).
15.1.2 整式的加減
。3)x-(1-2x+x2)+(-1-x2) (4)(8x-3x2)-5x-2(3x-2x2)
四、提高練習(xí):
1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,問C是什么樣的'多項(xiàng)式?
2、設(shè)A=2x2-3x+2-x+2,B=4x2-6x+22-3x-,若│x-2a│+(+3)2=0,且B-2A=a,求A的值。
3、已知有理數(shù)a、b、c在數(shù)軸上(0為數(shù)軸原點(diǎn))的對應(yīng)點(diǎn)如圖:
試化簡:│a│-│a+b│+│c-a│+│b+c│
小 結(jié):要善于在圖形變化中發(fā)現(xiàn)規(guī)律,能熟練的對整式加減進(jìn)行運(yùn)算。
作 業(yè):課本P14習(xí)題1.3:1(2)、(3)、(6),2。
《課堂感悟與探究》
【因式分解教案】相關(guān)文章:
因式分解教案04-02
因式分解復(fù)習(xí)教案09-06
因式分解教案五篇01-23
因式分解教案四篇01-20
【精選】因式分解教案三篇02-17
初中數(shù)學(xué)因式分解教案12-13
因式分解教案三篇02-04
【精選】因式分解教案四篇02-03
精選因式分解教案三篇02-01