當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教案> 因式分解教案

因式分解教案

時(shí)間:2022-02-15 17:16:03 教案 我要投稿

【精華】因式分解教案三篇

  作為一位無(wú)私奉獻(xiàn)的人民教師,就難以避免地要準(zhǔn)備教案,教案有助于學(xué)生理解并掌握系統(tǒng)的知識(shí)。那么大家知道正規(guī)的教案是怎么寫的嗎?以下是小編精心整理的因式分解教案3篇,供大家參考借鑒,希望可以幫助到有需要的朋友。

【精華】因式分解教案三篇

因式分解教案 篇1

  學(xué)習(xí)目標(biāo)

  1、 學(xué)會(huì)用公式法因式法分解

  2、綜合運(yùn)用提取公式法、公式法分解因式

  學(xué)習(xí)重難點(diǎn) 重點(diǎn):

  完全平方公式分解因式.

  難點(diǎn):綜合運(yùn)用兩種公式法因式分解

  自學(xué)過程設(shè)計(jì)

  完全平方公式:

  完全平方公式的逆運(yùn)用:

  做一做:

  1.(1)16x2-8x+_______=(4x-1)2;

  (2)_______+6x+9=(x+3)2;

  (3)16x2+_______+9y2=(4x+3y)2;

  (4)(a-b)2-2(a-b)+1=(______-1)2.

  2.在代數(shù)式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號(hào))

  3.下列因式分解正確的是( )

  A.x2+y2=(x+y)2 B.x2-xy+x2=(x-y)2

  C.1+4x-4x2=(1-2x)2 D.4-4x+x2=(x-2)2

  4.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+1

  5.計(jì)算:20062-40102006+20052=___________________.

  6.若x+y=1,則 x2+xy+ y2的'值是_________________.

  想一想

  你還有哪些地方不是很懂?請(qǐng)寫出來(lái)。

  ____________________________________________________________________________________ 預(yù)習(xí)展示一:

  1.判別下列各式是不是完全平方式.

  2、把下列各式因式分解:

  (1)-x2+4xy-4y2

  (2)3ax2+6axy+3ay2

  (3)(2x+y)2-6(2x+y)+9

  應(yīng)用探究:

  1、用簡(jiǎn)便方法計(jì)算

  49.92+9.98 +0.12

  拓展提高:

  (1)( a2+b2)( a2+b2 10)+25=0 求a2+b2

  (2)4x2+y2-4xy-12x+6y+9=0

  求x、y關(guān)系

  (3)分解因式:m4+4

  教后反思 考察利用公式法因式分解的題目不會(huì)很難,但是需要學(xué)生記住公式的形式,之后利用公式把式子進(jìn)行變形,從而達(dá)到進(jìn)行因式分解的目的,但是這里有用到實(shí)際中去的例子,對(duì)學(xué)生來(lái)說(shuō)會(huì)難一些。

因式分解教案 篇2

  教學(xué)目標(biāo):

  1、進(jìn)一步鞏固因式分解的概念;

  2、鞏固因式分解常用的三種方法

  3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解4、應(yīng)用因式分解來(lái)解決一些實(shí)際問題

  5、體驗(yàn)應(yīng)用知識(shí)解決問題的樂趣

  教學(xué)重點(diǎn):靈活運(yùn)用因式分解解決問題

  教學(xué)難點(diǎn):靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒,拓展練?xí)2、3

  教學(xué)過程:

  一、創(chuàng)設(shè)情景:若a=101,b=99,求a2—b2的值

  利用因式分解往往能將一些復(fù)雜的運(yùn)算簡(jiǎn)單化,那么我們先來(lái)回顧一下什么是因式分解和怎樣來(lái)因式分解。

  二、知識(shí)回顧

  1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式。

  判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)

 。1)、x2—4y2=(x+2y)(x—2y)因式分解(2)。2x(x—3y)=2x2—6xy整式乘法

 。3)、(5a—1)2=25a2—10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解

 。5)、(a—3)(a+3)=a2—9整式乘法(6)。m2—4=(m+4)(m—4)因式分解

 。7)、2πR+2πr=2π(R+r)因式分解

  2、規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程。

  分解因式要注意以下幾點(diǎn):

 。1)。分解的對(duì)象必須是多項(xiàng)式。

  (2)。分解的結(jié)果一定是幾個(gè)整式的乘積的形式。

 。3)。要分解到不能分解為止。

  3、因式分解的方法

  提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法

  公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2

  4、強(qiáng)化訓(xùn)練

  教學(xué)引入

  師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個(gè)長(zhǎng)方形折疊就可以得到一個(gè)正方形,F(xiàn)在請(qǐng)同學(xué)們拿出一個(gè)長(zhǎng)方形紙條,按動(dòng)畫所示進(jìn)行折疊處理。

  動(dòng)畫演示:

  場(chǎng)景一:正方形折疊演示

  師:這就是我們得到的正方形。下面請(qǐng)同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來(lái)研究正方形的幾何性質(zhì)—邊、角以及對(duì)角線之間的關(guān)系。請(qǐng)大家測(cè)量各邊的長(zhǎng)度、各角的大小、對(duì)角線的長(zhǎng)度以及對(duì)角線交點(diǎn)到各頂點(diǎn)的長(zhǎng)度。

  [學(xué)生活動(dòng):各自測(cè)量。]

  鼓勵(lì)學(xué)生將測(cè)量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。

  講授新課

  找一兩個(gè)學(xué)生表述其結(jié)論,表述是要注意糾正其語(yǔ)言的規(guī)范性。

  動(dòng)畫演示:

  場(chǎng)景二:正方形的`性質(zhì)

  師:這些性質(zhì)里那些是矩形的性質(zhì)?

  [學(xué)生活動(dòng):尋找矩形性質(zhì)。]

  動(dòng)畫演示:

  場(chǎng)景三:矩形的性質(zhì)

  師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。

  [學(xué)生活動(dòng);尋找菱形性質(zhì)。]

  動(dòng)畫演示:

  場(chǎng)景四:菱形的性質(zhì)

  師:這說(shuō)明正方形具有矩形和菱形的全部性質(zhì)。

  及時(shí)提出問題,引導(dǎo)學(xué)生進(jìn)行思考。

  師:根據(jù)這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準(zhǔn)確的定義?

  [學(xué)生活動(dòng):積極思考,有同學(xué)做躍躍欲試狀。]

  師:請(qǐng)同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。

  學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵(lì),把以下三種板書:

  “有一組鄰邊相等的矩形叫做正方形!

  “有一個(gè)角是直角的菱形叫做正方形!

  “有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形!

  [學(xué)生活動(dòng):討論這三個(gè)定義正確不正確?三個(gè)定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]

  師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。

  試一試把下列各式因式分解:

 。1)。1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2

 。3)。4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y)

  三、例題講解

  例1、分解因式

 。1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x)

 。3)(4)y2+y+

  例2、分解因式

  1、a3—ab2=2、(a—b)(x—y)—(b—a)(x+y)=3、(a+b)2+2(a+b)—15=

  4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y=

  例3、分解因式

  1、72—2(13x—7)22、8a2b2—2a4b—8b3

  四、知識(shí)應(yīng)用

  1、(4x2—9y2)÷(2x+3y)2、(a2b—ab2)÷(b—a)

  3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)2

  4、。若x=—3,求20x2—60x的值。5、1993—199能被200整除嗎?還能被哪些整數(shù)整除?

  五、拓展應(yīng)用

  1。計(jì)算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235)

  2、20042+20xx被20xx整除嗎?

  3、若n是整數(shù),證明(2n+1)2—(2n—1)2是8的倍數(shù)。

  五、課堂小結(jié)

  今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?

因式分解教案 篇3

  教學(xué)目標(biāo)

  1、進(jìn)一步鞏固因式分解的概念;

  2、鞏固因式分解常用的三種方法

  3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解

  4、應(yīng)用因式分解來(lái)解決一些實(shí)際問題

  5、體驗(yàn)應(yīng)用知識(shí)解決問題的樂趣

  教學(xué)重點(diǎn)

  靈活運(yùn)用因式分解解決問題

  教學(xué)難點(diǎn):

  靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒,拓展練?xí)2、3

  教學(xué)過程

  一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值

  利用因式分解往往能將一些復(fù)雜的運(yùn)算簡(jiǎn)單化,那么我們先來(lái)回顧一下什么是因式分解和怎樣來(lái)因式分解。

  二、知識(shí)回顧

  1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.

  判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)

  (1).x2-4y2=(x+2y)(x-2y)因式分解(2).2x(x-3y)=2x2-6xy整式乘法

  (3).(5a-1)2=25a2-10a+1整式乘法(4).x2+4x+4=(x+2)2因式分解

  (5).(a-3)(a+3)=a2-9整式乘法(6).m2-4=(m+4)(m-4)因式分解

  (7).2πR+2πr=2π(R+r)因式分解

  2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程.

  分解因式要注意以下幾點(diǎn):(1).分解的對(duì)象必須是多項(xiàng)式.

  (2).分解的結(jié)果一定是幾個(gè)整式的乘積的形式.(3).要分解到不能分解為止.

  3、因式分解的`方法

  提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1)公因式的概念;公因式的求法

  公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)2

  4、強(qiáng)化訓(xùn)練

  教學(xué)引入

  師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個(gè)長(zhǎng)方形折疊就可以得到一個(gè)正方形。現(xiàn)在請(qǐng)同學(xué)們拿出一個(gè)長(zhǎng)方形紙條,按動(dòng)畫所示進(jìn)行折疊處理。

  動(dòng)畫演示:

  場(chǎng)景一:正方形折疊演示

  師:這就是我們得到的正方形。下面請(qǐng)同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來(lái)研究正方形的幾何性質(zhì)—邊、角以及對(duì)角線之間的關(guān)系。請(qǐng)大家測(cè)量各邊的長(zhǎng)度、各角的大小、對(duì)角線的長(zhǎng)度以及對(duì)角線交點(diǎn)到各頂點(diǎn)的長(zhǎng)度。

  [學(xué)生活動(dòng):各自測(cè)量。]

  鼓勵(lì)學(xué)生將測(cè)量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。

  講授新課

  找一兩個(gè)學(xué)生表述其結(jié)論,表述是要注意糾正其語(yǔ)言的規(guī)范性。

  動(dòng)畫演示:

  場(chǎng)景二:正方形的性質(zhì)

  師:這些性質(zhì)里那些是矩形的性質(zhì)?

  [學(xué)生活動(dòng):尋找矩形性質(zhì)。]

  動(dòng)畫演示:

  場(chǎng)景三:矩形的性質(zhì)

  師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。

  [學(xué)生活動(dòng);尋找菱形性質(zhì)。]

  動(dòng)畫演示:

  場(chǎng)景四:菱形的性質(zhì)

  師:這說(shuō)明正方形具有矩形和菱形的全部性質(zhì)。

  及時(shí)提出問題,引導(dǎo)學(xué)生進(jìn)行思考。

  師:根據(jù)這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準(zhǔn)確的定義?

  [學(xué)生活動(dòng):積極思考,有同學(xué)做躍躍欲試狀。]

  師:請(qǐng)同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。

  學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵(lì),把以下三種板書:

  “有一組鄰邊相等的矩形叫做正方形!

  “有一個(gè)角是直角的菱形叫做正方形!

  “有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形!

  [學(xué)生活動(dòng):討論這三個(gè)定義正確不正確?三個(gè)定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]

  師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。

  試一試把下列各式因式分解:

  (1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2

  (3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)

  三、例題講解

  例1、分解因式

  (1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)

  (3)(4)y2+y+

  例2、分解因式

  1、a3-ab2=2、(a-b)(x-y)-(b-a)(x+y)=3、(a+b)2+2(a+b)-15=

  4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=

  例3、分解因式

  1、72-2(13x-7)22、8a2b2-2a4b-8b3

  三、知識(shí)應(yīng)用

  1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)

  3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2

  4、.若x=-3,求20x2-60x的值.5、1993-199能被200整除嗎?還能被哪些整數(shù)整除?

  四、拓展應(yīng)用

  1.計(jì)算:7652×17-2352×17解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)

  2、20042+20xx被20xx整除嗎?

  3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).

  五、課堂小結(jié):今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?

【因式分解教案】相關(guān)文章:

因式分解教案04-02

因式分解復(fù)習(xí)教案09-06

精選因式分解教案四篇03-03

因式分解教案15篇04-26

精選因式分解教案3篇02-07

【精選】因式分解教案4篇02-09

精選因式分解教案三篇02-01

因式分解教案8篇01-03

初中數(shù)學(xué)因式分解教案12-13

因式分解教案(15篇)04-02