- 因式分解教案 推薦度:
- 因式分解教案 推薦度:
- 因式分解教案 推薦度:
- 相關(guān)推薦
因式分解教案15篇
作為一名教學(xué)工作者,常常要寫(xiě)一份優(yōu)秀的教案,教案是教學(xué)藍(lán)圖,可以有效提高教學(xué)效率。快來(lái)參考教案是怎么寫(xiě)的吧!下面是小編為大家整理的因式分解教案,僅供參考,大家一起來(lái)看看吧。
因式分解教案1
學(xué)習(xí)目標(biāo)
1、 學(xué)會(huì)用公式法因式法分解
2、綜合運(yùn)用提取公式法、公式法分解因式
學(xué)習(xí)重難點(diǎn) 重點(diǎn):
完全平方公式分解因式.
難點(diǎn):綜合運(yùn)用兩種公式法因式分解
自學(xué)過(guò)程設(shè)計(jì)
完全平方公式:
完全平方公式的逆運(yùn)用:
做一做:
1.(1)16x2-8x+_______=(4x-1)2;
(2)_______+6x+9=(x+3)2;
(3)16x2+_______+9y2=(4x+3y)2;
(4)(a-b)2-2(a-b)+1=(______-1)2.
2.在代數(shù)式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號(hào))
3.下列因式分解正確的'是( )
A.x2+y2=(x+y)2 B.x2-xy+x2=(x-y)2
C.1+4x-4x2=(1-2x)2 D.4-4x+x2=(x-2)2
4.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+1
5.計(jì)算:20062-40102006+20052=___________________.
6.若x+y=1,則 x2+xy+ y2的值是_________________.
想一想
你還有哪些地方不是很懂?請(qǐng)寫(xiě)出來(lái)。
____________________________________________________________________________________ 預(yù)習(xí)展示一:
1.判別下列各式是不是完全平方式.
2、把下列各式因式分解:
(1)-x2+4xy-4y2
(2)3ax2+6axy+3ay2
(3)(2x+y)2-6(2x+y)+9
應(yīng)用探究:
1、用簡(jiǎn)便方法計(jì)算
49.92+9.98 +0.12
拓展提高:
(1)( a2+b2)( a2+b2 10)+25=0 求a2+b2
(2)4x2+y2-4xy-12x+6y+9=0
求x、y關(guān)系
(3)分解因式:m4+4
教后反思 考察利用公式法因式分解的題目不會(huì)很難,但是需要學(xué)生記住公式的形式,之后利用公式把式子進(jìn)行變形,從而達(dá)到進(jìn)行因式分解的目的,但是這里有用到實(shí)際中去的例子,對(duì)學(xué)生來(lái)說(shuō)會(huì)難一些。
因式分解教案2
教學(xué)設(shè)計(jì)思想:
本小節(jié)依次介紹了平方差公式和完全平方公式,并結(jié)合公式講授如何運(yùn)用公式進(jìn)行多項(xiàng)式的因式分解。第一課時(shí)的內(nèi)容是用平方差公式對(duì)多項(xiàng)式進(jìn)行因式分解,首先提出新問(wèn)題:x2-4與y2-25怎樣進(jìn)行因式分解,讓學(xué)生自主探索,通過(guò)整式乘法的平方差公式,逆向得出用公式法分解因式的方法,發(fā)展學(xué)生的逆向思維和推理能力,然后讓學(xué)生獨(dú)立去做例題、練習(xí)中的題目,并對(duì)結(jié)果通過(guò)展示、解釋、相互點(diǎn)評(píng),達(dá)到能較好的運(yùn)用平方差公式進(jìn)行因式分解的'目的。第二課時(shí)利用完全平方公式進(jìn)行多項(xiàng)式的因式分解是在學(xué)生已經(jīng)學(xué)習(xí)了提取公因式法及利用平方差公式分解因式的基礎(chǔ)上進(jìn)行的,因此在教學(xué)設(shè)計(jì)中,重點(diǎn)放在判斷一個(gè)多項(xiàng)式是否為完全平方式上,采取啟發(fā)式的教學(xué)方法,引導(dǎo)學(xué)生積極思考問(wèn)題,從中培養(yǎng)學(xué)生的思維品質(zhì)。
教學(xué)目標(biāo)
知識(shí)與技能:
會(huì)用平方差公式對(duì)多項(xiàng)式進(jìn)行因式分解;
會(huì)用完全平方公式對(duì)多項(xiàng)式進(jìn)行因式分解;
能夠綜合運(yùn)用提公因式法、平方差公式、完全平方公式對(duì)多項(xiàng)式進(jìn)行因式分解;
提高全面地觀察問(wèn)題、分析問(wèn)題和逆向思維的能力。
過(guò)程與方法:
經(jīng)歷用公式法分解因式的探索過(guò)程,進(jìn)一步體會(huì)這兩個(gè)公式在因式分解和整式乘法中的不同方向,加深對(duì)整式乘法和因式分解這兩個(gè)相反變形的認(rèn)識(shí),體會(huì)從正逆兩方面認(rèn)識(shí)和研究事物的方法。
情感態(tài)度價(jià)值觀:
通過(guò)學(xué)習(xí)進(jìn)一步理解數(shù)學(xué)知識(shí)間有著密切的聯(lián)系。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):①運(yùn)用平方差公式分解因式;②運(yùn)用完全平方式分解因式。
難點(diǎn):①靈活運(yùn)用平方差公式分解因式,正確判斷因式分解的徹底性;②靈活運(yùn)用完全平方公式分解因式
關(guān)鍵:把握住因式分解的基本思路,觀察多項(xiàng)式的特征,靈活地運(yùn)用換元和劃歸思想。
因式分解教案3
學(xué)習(xí)目標(biāo):經(jīng)歷探索同底數(shù)冪的乘法運(yùn)算性質(zhì)的過(guò)程,能用代數(shù)式和文字正確地表述,并會(huì)熟練地進(jìn)行計(jì)算。通過(guò)由特殊到一般的猜想與說(shuō)理、驗(yàn)證,發(fā)展推理能力和有條理的表達(dá)能力.
學(xué)習(xí)重點(diǎn):同底數(shù)冪乘法運(yùn)算性質(zhì)的推導(dǎo)和應(yīng)用.
學(xué)習(xí)過(guò)程:
一、創(chuàng)設(shè)情境引入新課
復(fù)習(xí)乘方an的.意義:an表示個(gè)相乘,即an=.
乘方的結(jié)果叫a叫做,n是
問(wèn)題:一種電子計(jì)算機(jī)每秒可進(jìn)行1012次運(yùn)算,它工作103秒可進(jìn)行多少次運(yùn)算?
列式為,你能利用乘方的意義進(jìn)行計(jì)算嗎?
二、探究新知:
探一探:
1根據(jù)乘方的意義填空
(1)23×24=(2×2×2)×(2×2×2×2)=2();
(2)55×54=_________=5();
(3)(-3)3×(-3)2=_________________=(-3)();
(4)a6a7=________________=a().
(5)5m5n
猜一猜:aman=(m、n都是正整數(shù))你能證明你的猜想嗎?
說(shuō)一說(shuō):你能用語(yǔ)言敘述同底數(shù)冪的乘法法則嗎?
同理可得:amanap=(m、n、p都是正整數(shù))
三、范例學(xué)習(xí):
【例1】計(jì)算:(1)103×104;(2)aa3;(3)mm3m5;(4)xmx3m+1(5)xx2+x2x
1.填空:⑴10×109=;⑵b2×b5=;⑶x4x=;⑷x3x3=.
2.計(jì)算:
(1)a2a6;(2)(-x)(-x)3;(3)8m(-8)38n;(4)b3(-b2)(-b)4.
【例2】:把下列各式化成(x+y)n或(x-y)n的形式.
(1)(x+y)4(x+y)3(2)(x-y)3(x-y)(y-x)
(3)-8(x-y)2(x-y)(4)(x+y)2m(x+y)m+1
四、學(xué)以致用:
1.計(jì)算:⑴10n10m+1=⑵x7x5=⑶mm7m9=
、-4444=⑸22n22n+1=⑹y5y2y4y=
2.判斷題:判斷下列計(jì)算是否正確?并說(shuō)明理由
、臿2a3=a6();⑵a2a3=a5();⑶a2+a3=a5();
⑷aa7=a0+7=a7();⑸a5a5=2a10();⑹25×32=67()。
3.計(jì)算:
(1)xx2+x2x(2)x2xn+1+xn-2x4-xn-1x4
(3)-(-a)3(-a)2a5;(4)(a-b)3(b-a)2
(5)(x+y)(x+y)(x+y)2+(x+y)2(x+y)2
4.解答題:
(1)已知xm+nxm-n=x9,求m的值.
(2)據(jù)不完全統(tǒng)計(jì),每個(gè)人每年最少要用去106立方米的水,1立方米的水中約含有3.34×1019個(gè)水分子,那么,每個(gè)人每年要用去多少個(gè)水分子?
因式分解教案4
因式分解
教材分析
因式分解是進(jìn)行代數(shù)式恒等變形的重要手段之一,因式分解是在學(xué)習(xí)整式四則運(yùn)算的基礎(chǔ)上進(jìn)行的,它不僅僅在多項(xiàng)式的除法、簡(jiǎn)便運(yùn)算中等有直接的應(yīng)用,也為以后學(xué)習(xí)分式的約分與通分、解方程(組)及三解函數(shù)式的恒等變形帶給了必要的基礎(chǔ),因此學(xué)好因式分解對(duì)于代數(shù)知識(shí)的后續(xù)學(xué)習(xí),具有相當(dāng)重要的好處。由于本節(jié)課后學(xué)習(xí)提取公因式法,運(yùn)用公式法,分組分解法來(lái)進(jìn)行因式分解,務(wù)必以理解因式分解的概念為前提,所以本節(jié)資料的重點(diǎn)是因式分解的概念。由整式乘法尋求因式分解的方法是一種逆向思維過(guò)程,而逆向思維對(duì)初一學(xué)生還比較生疏,理解起來(lái)有必須難度,再者本節(jié)還沒(méi)涉及因式分解的具體方法,所以理解因式分解與整式乘法的相互關(guān)系,并運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法是教學(xué)中的難點(diǎn)。
教學(xué)目標(biāo)
認(rèn)知目標(biāo):(1)理解因式分解的概念和好處
(2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——相反變形,并會(huì)運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。
潛力目標(biāo):由學(xué)生自行探求解題途徑,培養(yǎng)學(xué)生觀察、分析、決定潛力和創(chuàng)新潛力,發(fā)展學(xué)生智能,深化學(xué)生逆向思維潛力和綜合運(yùn)用潛力。
情感目標(biāo):培養(yǎng)學(xué)生理解矛盾的對(duì)立統(tǒng)一觀點(diǎn),獨(dú)立思考,勇于探索的`精神和實(shí)事求是的科學(xué)態(tài)度。
目標(biāo)制定的思想
1.目標(biāo)具體化、明確化,從學(xué)生實(shí)際出發(fā),具有針對(duì)性和可行性,同時(shí)便于上課操作,便于檢測(cè)和及時(shí)反饋。
2.課堂教學(xué)體現(xiàn)潛力立意。
3.寓德育教育于教學(xué)之中。
教學(xué)方法
1.采用以設(shè)疑探究的引課方式,激發(fā)學(xué)生的求知欲望,提高學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)用心性。
2.把因式分解概念及其與整式乘法的關(guān)系作為主線,訓(xùn)練學(xué)生思維,以設(shè)疑——感知——概括——運(yùn)用為教學(xué)程序,充分遵循學(xué)生的認(rèn)知規(guī)律,使學(xué)生能順利地掌握重點(diǎn),突破難點(diǎn),提高潛力。
3.在課堂教學(xué)中,引導(dǎo)學(xué)生體會(huì)知識(shí)的發(fā)生發(fā)展過(guò)程,堅(jiān)持啟發(fā)式,鼓勵(lì)學(xué)生充分地動(dòng)腦、動(dòng)口、動(dòng)手,用心參與到教學(xué)中來(lái),充分體現(xiàn)了學(xué)生的主動(dòng)性原則。
4.在充分尊重教材的前提下,融教材練習(xí)、想一想于教學(xué)過(guò)程中,增設(shè)了由淺入深、各不相同卻又緊密相關(guān)的訓(xùn)練題目,為學(xué)生順利掌握因式分解概念及其與整式乘法關(guān)系創(chuàng)造了有利條件。
5.改變傳統(tǒng)言傳身教的方式,利用計(jì)算機(jī)輔助教學(xué)手段進(jìn)行教學(xué),增大教學(xué)的容量和直觀性,提高教學(xué)效率和教學(xué)質(zhì)量。
教學(xué)過(guò)程安排
一、提出問(wèn)題,創(chuàng)設(shè)情境
問(wèn)題:看誰(shuí)算得快?(計(jì)算機(jī)出示問(wèn)題)
。1)若a=101,b=99,則a2—b2=(a+b)(a—b)=(101+99)(101—99)=400
。2)若a=99,b=—1,則a2—2ab+b2=(a—b)2=(99+1)2=10000
。3)若x=—3,則20x2+60x=20x(x+3)=20x(—3)(—3+3)=0
二、觀察分析,探究新知
。1)請(qǐng)每題想得最快的同學(xué)談思路,得出最佳解題方法(同時(shí)計(jì)算機(jī)出示答案)
。2)觀察:a2—b2=(a+b)(a—b)①的左邊是一個(gè)什么式子?右邊又是什么形式?
a2—2ab+b2=(a—b)2②
20x2+60x=20x(x+3)③
(3)類比小學(xué)學(xué)過(guò)的因數(shù)分解概念,(例42=2×3×7④)得出因式分解概念。
板書(shū)課題:§7。1因式分解
1.因式分解概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式叫做因式分解,也叫分解因式。
三、獨(dú)立練習(xí),鞏固新知
練習(xí)
1.下列由左邊到右邊的變形,哪些是因式分解?哪些不是?為什么?(計(jì)算機(jī)演示)
①(x+2)(x—2)=x2—4
、趚2—4=(x+2)(x—2)
、踑2—2ab+b2=(a—b)2
④3a(a+2)=3a2+6a
、3a2+6a=3a(a+2)
⑥x2—4+3x=(x—2)(x+2)+3x
、遦2++2=(k+)2
、鄕—2—1=(x—1+1)(x—1—1)
、18a3bc=3a2b·6ac
2.因式分解與整式乘法的關(guān)系:
因式分解
結(jié)合:a2—b2=========(a+b)(a—b)
整式乘法
說(shuō)明:從左到右是因式分解其特點(diǎn)是:由和差形式(多項(xiàng)式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點(diǎn)是:由整式積的形式轉(zhuǎn)化成和差形式(多項(xiàng)式)。
結(jié)論:因式分解與整式乘法正好相反。
問(wèn)題:你能利用因式分解與整式乘法正好相反這一關(guān)系,舉出幾個(gè)因式分解的例子嗎?
(如:由(x+1)(x—1)=x2—1得x2—1=(x+1)(x—1)
由(x+2)(x—1)=x2+x—2得x2+x—2=(x+2)(x—1)等等)
四、例題教學(xué),運(yùn)用新知:
例:把下列各式分解因式:(計(jì)算機(jī)演示)
。1)am+bm(2)a2—9(3)a2+2ab+b2
。4)2ab—a2—b2(5)8a3+b6
練習(xí)2:填空:(計(jì)算機(jī)演示)
(1)∵2xy=2x2y—6xy2
∴2x2y—6xy2=2xy
。2)∵xy=2x2y—6xy2
∴2x2y—6xy2=xy
。3)∵2x=2x2y—6xy2
∴2x2y—6xy2=2x
五、強(qiáng)化訓(xùn)練,掌握新知:
練習(xí)3:把下列各式分解因式:(計(jì)算機(jī)演示)
。1)2ax+2ay(2)3mx—6nx(3)x2y+xy2
。4)x2+—x(5)x2—0。01(6)a3—1
。ㄗ寣W(xué)生上來(lái)板演)
六、變式訓(xùn)練,擴(kuò)展新知(計(jì)算機(jī)演示)
1。若x2+mx—n能分解成(x—2)(x—5),則m=,n=
2.機(jī)動(dòng)題:(填空)x2—8x+m=(x—4),且m=
七、整理知識(shí),構(gòu)成結(jié)構(gòu)(即課堂小結(jié))
1.因式分解的概念因式分解是整式中的一種恒等變形
2.因式分解與整式乘法是兩種相反的恒等變形,也是思維方向相反的兩種思維方式,因此,因式分解的思維過(guò)程實(shí)際也是整式乘法的逆向思維的過(guò)程。
3.利用2中關(guān)系,能夠從整式乘法探求因式分解的結(jié)果。
4.教學(xué)中滲透對(duì)立統(tǒng)一,以不變應(yīng)萬(wàn)變的辯證唯物主義的思想方法。
八、布置作業(yè)
1.作業(yè)本(一)中§7。1節(jié)
2.選做題:①x2+x—m=(x+3),且m=。
②x2—3x+k=(x—5),且k=。
評(píng)價(jià)與反饋
1.透過(guò)由學(xué)生自己得出因式分解概念及其與整式乘法的關(guān)系的結(jié)論,了解學(xué)生觀察、分析問(wèn)題的潛力和逆向思維潛力及創(chuàng)新潛力。發(fā)現(xiàn)問(wèn)題,及時(shí)反饋。
2.透過(guò)例題及練習(xí),了解學(xué)生對(duì)概念的理解程度和實(shí)際運(yùn)用潛力,最大限度地讓學(xué)生暴露問(wèn)題和認(rèn)知誤差,及時(shí)發(fā)現(xiàn)和彌補(bǔ)教與學(xué)中的遺漏和不足,從而及時(shí)調(diào)控教與學(xué)。
3.透過(guò)機(jī)動(dòng)題,了解學(xué)生對(duì)概念的熟練程度和思維的靈敏性、深刻性、廣闊性及探研創(chuàng)造潛力,及時(shí)評(píng)價(jià),及時(shí)矯正。
4.透過(guò)課后作業(yè),了解學(xué)生對(duì)知識(shí)的掌握狀況與綜合運(yùn)用知識(shí)及靈活運(yùn)用知識(shí)的潛力,教師及時(shí)批閱,及時(shí)反饋講評(píng),同時(shí)對(duì)個(gè)別學(xué)生面批作業(yè),能夠更及時(shí)、更準(zhǔn)確地了解學(xué)生思維發(fā)展的狀況,矯正的針對(duì)性更強(qiáng)。
5.透過(guò)課堂小結(jié),了解學(xué)生對(duì)概念的熟悉程度和歸納概括潛力、語(yǔ)言表達(dá)潛力、知識(shí)運(yùn)用潛力,教師恰當(dāng)?shù)亟o予引導(dǎo)和啟迪。
6.課堂上反饋信息除了語(yǔ)言和練習(xí)外,學(xué)生神情也是信息來(lái)源,而且這些信息更真實(shí)。學(xué)生神態(tài)、表情、坐姿都反映出學(xué)生對(duì)教師教學(xué)資料的理解和理解程度。教師應(yīng)用心捕捉學(xué)生在知識(shí)掌握、思維發(fā)展、潛力培養(yǎng)等各方面全方位的反饋信息,隨時(shí)評(píng)價(jià),及時(shí)矯正,隨時(shí)調(diào)節(jié)教學(xué)。
因式分解教案5
知識(shí)點(diǎn):
因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項(xiàng)式的因式(十字相乘法、求根)、因式分解一般步驟。
教學(xué)目標(biāo):
理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項(xiàng)式的方法,能把簡(jiǎn)單多項(xiàng)式分解因式。
考查重難點(diǎn)與常見(jiàn)題型:
考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點(diǎn)考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運(yùn)用。習(xí)題類型以填空題為多,也有選擇題和解答題。
教學(xué)過(guò)程:
因式分解知識(shí)點(diǎn)
多項(xiàng)式的因式分解,就是把一個(gè)多項(xiàng)式化為幾個(gè)整式的積。分解因式要進(jìn)行到每一個(gè)因式都不能再分解為止。分解因式的常用方法有:
。1)提公因式法
如多項(xiàng)式
其中m叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式, m既可以是一個(gè)單項(xiàng)式,也可以是一個(gè)多項(xiàng)式。
。2)運(yùn)用公式法,即用
寫(xiě)出結(jié)果。
。3)十字相乘法
對(duì)于二次項(xiàng)系數(shù)為l的二次三項(xiàng)式 尋找滿足ab=q,a+b=p的.a,b,如有,則對(duì)于一般的二次三項(xiàng)式尋找滿足
a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則
。4)分組分解法:把各項(xiàng)適當(dāng)分組,先使分解因式能分組進(jìn)行,再使分解因式在各組之間進(jìn)行。
分組時(shí)要用到添括號(hào):括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變符號(hào);括號(hào)前面是“-”號(hào),括到括號(hào)里的各項(xiàng)都改變符號(hào)。
。5)求根公式法:如果有兩個(gè)根X1,X2,那么
2、教學(xué)實(shí)例:學(xué)案示例
3、課堂練習(xí):學(xué)案作業(yè)
4、課堂:
5、板書(shū):
6、課堂作業(yè):學(xué)案作業(yè)
7、教學(xué)反思:
因式分解教案6
教學(xué)目標(biāo):
1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式綜合應(yīng)用;能利用平方差公式法解決實(shí)際問(wèn)題。
2、經(jīng)歷探究分解因式方法的過(guò)程,體會(huì)整式乘法與分解因式之間的聯(lián)系。
3、通過(guò)對(duì)公式的探究,深刻理解公式的應(yīng)用,并會(huì)熟練應(yīng)用公式解決問(wèn)題。
4、通過(guò)探究平方差公式特點(diǎn),學(xué)生根據(jù)公式自己取值設(shè)計(jì)問(wèn)題,并根據(jù)公式自己解決問(wèn)題的過(guò)程,讓學(xué)生獲得成功的體驗(yàn),培養(yǎng)合作交流意識(shí)。
教學(xué)重點(diǎn):
應(yīng)用平方差公式分解因式.
教學(xué)難點(diǎn):
靈活應(yīng)用公式和提公因式法分解因式,并理解因式分解的要求.
教學(xué)過(guò)程:
一、復(fù)習(xí)準(zhǔn)備 導(dǎo)入新課
1、什么是因式分解?判斷下列變形過(guò)程,哪個(gè)是因式分解?
①(x+2)(x-2)= ②
、
2、我們已經(jīng)學(xué)過(guò)的因式分解的方法有什么?將下列多項(xiàng)式分解因式。
x2+2x
a2b-ab
3、根據(jù)乘法公式進(jìn)行計(jì)算:
(1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=
二、合作探究 學(xué)習(xí)新知
(一) 猜一猜:你能將下面的多項(xiàng)式分解因式嗎?
。1)= (2)= (3)=
(二)想一想,議一議: 觀察下面的公式:
。剑╝+b)(a—b)(
這個(gè)公式左邊的.多項(xiàng)式有什么特征:_____________________________________
公式右邊是__________________________________________________________
這個(gè)公式你能用語(yǔ)言來(lái)描述嗎? _______________________________________
(三)練一練:
1、下列多項(xiàng)式能否用平方差公式來(lái)分解因式?為什么?
、 ② ③ ④
2、你能把下列的數(shù)或式寫(xiě)成冪的形式嗎?
(1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2
。ㄋ模┳鲆蛔觯
例3 分解因式:
(1) 4x2- 9 (2) (x+p)2- (x+q)2
。ㄎ澹┰囈辉嚕
例4 下面的式子你能用什么方法來(lái)分解因式呢?請(qǐng)你試一試。
(1) x4- y4 (2) a3b- ab
(六)想一想:
某學(xué)校有一個(gè)邊長(zhǎng)為85米的正方形場(chǎng)地,現(xiàn)在場(chǎng)地的四個(gè)角分別建一個(gè)邊長(zhǎng)為5米的正方形花壇,問(wèn)場(chǎng)地還剩余多大面積供學(xué)生課間活動(dòng)使用?
因式分解教案7
學(xué)習(xí)目標(biāo)
1、了解因式分解的意義以及它與正式乘法的關(guān)系。
2、能確定多項(xiàng)式各項(xiàng)的公因式,會(huì)用提公因式法分解因式。
學(xué)習(xí)重點(diǎn):能用提公因式法分解因式。
學(xué)習(xí)難點(diǎn):確定因式的公因式。
學(xué)習(xí)關(guān)鍵,在確定多項(xiàng)式各項(xiàng)公因式時(shí),應(yīng)抓住各項(xiàng)的公因式來(lái)提公因式。
學(xué)習(xí)過(guò)程
一.知識(shí)回顧
1、計(jì)算
(1)、n(n+1)(n-1)(2)、(a+1)(a-2)
(3)、m(a+b)(4)、2ab(x-2y+1)
二、自主學(xué)習(xí)
1、閱讀課文P72-73的內(nèi)容,并回答問(wèn)題:
(1)知識(shí)點(diǎn)一:把一個(gè)多項(xiàng)式化為幾個(gè)整式的__________的形式叫做____________,也叫做把這個(gè)多項(xiàng)式__________。
(2)、知識(shí)點(diǎn)二:由m(a+b+c)=ma+mb+mc可得
ma+mb+mc=m(a+b+c)
我們來(lái)分析一下多項(xiàng)式ma+mb+mc的特點(diǎn);它的每一項(xiàng)都含有一個(gè)相同的因式m,m叫做各項(xiàng)的_________。如果把這個(gè)_________提到括號(hào)外面,這樣
ma+mb+mc就分解成兩個(gè)因式的積m(a+b+c),即ma+mb+mc=m(a+b+c)。這種________的方法叫做________。
2、練一練。P73練習(xí)第1題。
三、合作探究
1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一種變形,左邊是幾個(gè)整式乘積形式,右邊是一個(gè)多項(xiàng)式。、
2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一種變形,左邊是_____________,右邊是_____________。
3、下列是由左到右的變形,哪些屬于整式乘法,哪些屬于因式分解?
(1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)
(3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-1
4、準(zhǔn)確地確定公因式時(shí)提公因式法分解因式的關(guān)鍵,確定公因式可分兩步進(jìn)行:
(1)確定公因式的數(shù)字因數(shù),當(dāng)各項(xiàng)系數(shù)都是整數(shù)時(shí),他們的最大公約數(shù)就是公因式的`數(shù)字因數(shù)。
例如:8a2b-72abc公因式的數(shù)字因數(shù)為8。
(2)確定公因式的字母及其指數(shù),公因式的字母應(yīng)是多項(xiàng)式各項(xiàng)都含有的字母,其指數(shù)取最低的。故8a2b-72abc的公因式是8ab
四、展示提升
1、填空(1)a2b-ab2=ab(________)
(2)-4a2b+8ab-4b分解因式為_(kāi)_________________
(3)分解因式4x2+12x3+4x=__________________
(4)__________________=-2a(a-2b+3c)
2、P73練習(xí)第2題和第3題
五、達(dá)標(biāo)測(cè)試。
1、下列各式從左到右的變形中,哪些是整式乘法?哪些是因式分解?哪些兩者都不是?
(1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)
(3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)
(5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-4
2.課本P77習(xí)題8.5第1題
學(xué)習(xí)反思
一、知識(shí)點(diǎn)
二、易錯(cuò)題
三、你的困惑
因式分解教案8
課型 復(fù)習(xí)課 教法 講練結(jié)合
教學(xué)目標(biāo)(知識(shí)、能力、教育)
1.了解分解因式的意義,會(huì)用提公因式法、 平方差公式和完全平方公式(直接用公式不超過(guò)兩次)分解因式(指數(shù)是正整數(shù)).
2.通過(guò)乘法公式 , 的逆向變形,進(jìn)一步發(fā)展學(xué)生觀察、歸納、類比、概括等能力,發(fā)展有條理的思考及語(yǔ)言表達(dá)能力
教學(xué)重點(diǎn) 掌握用提取公因式法、公式法分解因式
教學(xué)難點(diǎn) 根據(jù)題目的形式和特征 恰當(dāng)選擇方法進(jìn)行分解,以提高綜合解題能力。
教學(xué)媒體 學(xué)案
教學(xué)過(guò)程
一:【 課前預(yù)習(xí)】
(一):【知識(shí)梳理】
1.分解因式:把一個(gè)多項(xiàng)式化成 的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.
2.分解困式的方法:
、盘峁珗F(tuán)式法:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成兩個(gè)因式乘積的形式,這種分解因式的方法叫做提公因式法.
⑵運(yùn)用公式法:平方差公式: ;
完全平方公式: ;
3.分解因式的步驟:
(1)分解 因式時(shí),首先考慮是否有公因式,如果有公因式,一定先提取公團(tuán)式,然后再考慮是否能用公式法 分解.
(2)在用公式時(shí),若是兩項(xiàng),可考慮用平方差公式;若是三項(xiàng),可考慮用完全平方公式;若是三項(xiàng)以上,可先進(jìn)行適當(dāng)?shù)姆纸M,然后分解因式。
4.分解因式時(shí)常見(jiàn)的思維誤區(qū):
提公因式時(shí),其公因式應(yīng)找字母指數(shù)最低的,而不是以首項(xiàng)為準(zhǔn).若有一項(xiàng)被全部提出,括號(hào)內(nèi)的項(xiàng) 1易漏掉.分解不徹底,如保留中括號(hào)形式,還能繼續(xù)分解等
(二):【課前練習(xí)】
1.下列各組多項(xiàng)式中沒(méi)有公因式的.是( )
A.3x-2與 6x2-4x B.3(a-b)2與11(b-a)3
C.mxmy與 nynx D.aba c與 abbc
2. 下列各題中,分解因式錯(cuò)誤的是( )
3. 列多項(xiàng)式能用平方差公式分解因式的是()
4. 分解因式:x2+2xy+y2-4 =_____
5. 分解因式:(1) ;
(2) ;(3) ;
(4) ;(5)以上三題用了 公式
二:【經(jīng)典考題剖析】
1. 分解因式:
(1) ;(2) ;(3) ;(4)
分析:①因式分解時(shí),無(wú)論有幾項(xiàng),首先考慮提取公因式。提公因式時(shí),不僅注意數(shù),也要 注意字母,字母可能是單項(xiàng)式也可能是多項(xiàng)式,一次提盡。
②當(dāng)某項(xiàng)完全提出后,該項(xiàng)應(yīng)為1
、圩⒁ ,
、芊纸饨Y(jié)果(1)不帶中括號(hào);(2)數(shù)字因數(shù)在前,字母因數(shù)在后;單項(xiàng)式在前,多項(xiàng)式在后;(3)相同因式寫(xiě)成冪的形式;(4 )分解結(jié)果應(yīng)在指定范圍內(nèi)不能再分解為止;若無(wú)指定范圍,一般在有理數(shù)范圍內(nèi)分解。
2. 分解因式:(1) ;(2) ;(3)
分析:對(duì)于二次三項(xiàng)齊次式,將其中一個(gè)字母看作末知數(shù),另一個(gè)字母視為常數(shù)。首先考慮提公因式后,由余下因式的項(xiàng)數(shù)為3項(xiàng),可考慮完全平方式或十字相乘法繼續(xù)分解;如果項(xiàng)數(shù)為2,可考慮平方差、立方差、立方和公式。(3)題無(wú)公因式,項(xiàng)數(shù)為2項(xiàng),可考慮平方差公式先分解開(kāi),再由項(xiàng)數(shù)考慮選擇方法繼續(xù)分解。
3. 計(jì)算:(1)
(2)
分析:(1)此題先分解因式后約分,則余下首尾兩數(shù)。
(2)分解后,便有規(guī)可循,再求1到20xx的和。
4. 分解因式:(1) ;(2)
分析:對(duì)于四項(xiàng)或四項(xiàng)以上的多項(xiàng)式的因式分解,一般采用分組分解法,
5. (1)在實(shí)數(shù)范圍內(nèi)分解因式: ;
(2)已知 、 、 是△ABC的三邊,且滿足 ,
求證:△ABC為等邊三角形。
分析:此題給出的是三邊之間的關(guān)系,而要證等邊三角形,則須考慮證 ,
從已知給出的等式結(jié)構(gòu)看出,應(yīng)構(gòu)造出三個(gè)完全平方式 ,
即可得證,將原式兩邊同乘以2即可。略證:
即△ABC為等邊三角形。
三:【課后訓(xùn)練】
1. 若 是一個(gè)完全平方式,那么 的值是( )
A.24 B.12 C.12 D.24
2. 把多項(xiàng)式 因式分解的結(jié)果是( )
A. B. C. D.
3. 如果二次三項(xiàng)式 可分解為 ,則 的 值為( )
A .-1 B.1 C. -2 D.2
4. 已知 可以被在60~70之間的兩個(gè)整數(shù)整除,則這兩個(gè)數(shù)是( )
A.61、63 B.61、65 C.61、67 D.63、65
5. 計(jì)算:19982002= , = 。
6. 若 ,那么 = 。
7. 、 滿足 ,分解因式 = 。
8. 因式分解:
(1) ;(2)
(3) ;(4)
9. 觀察下列等式:
想一想,等式左邊各項(xiàng)冪的底數(shù)與右邊冪的底數(shù)有何關(guān) 系?猜一猜可引出什么規(guī)律?用等式將其規(guī)律表示出來(lái): 。
10. 已知 是△ABC的三邊,且滿足 ,試判斷△ABC的形狀。閱讀下面解題過(guò)程:
解:由 得:
、
②
即 ③
△ABC為Rt△。 ④
試問(wèn):以上解題過(guò)程是否正確: ;若不正確,請(qǐng)指出錯(cuò)在哪一步?(填代號(hào)) ;錯(cuò)誤原因是 ;本題結(jié)論應(yīng)為 。
四:【課后小結(jié)】
布置作業(yè) 地綱
因式分解教案9
教學(xué)目標(biāo):
1、進(jìn)一步鞏固因式分解的概念;
2、鞏固因式分解常用的三種方法
3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解4、應(yīng)用因式分解來(lái)解決一些實(shí)際問(wèn)題
5、體驗(yàn)應(yīng)用知識(shí)解決問(wèn)題的樂(lè)趣
教學(xué)重點(diǎn):靈活運(yùn)用因式分解解決問(wèn)題
教學(xué)難點(diǎn):靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒,拓展練?xí)2、3
教學(xué)過(guò)程:
一、創(chuàng)設(shè)情景:若a=101,b=99,求a2—b2的值
利用因式分解往往能將一些復(fù)雜的運(yùn)算簡(jiǎn)單化,那么我們先來(lái)回顧一下什么是因式分解和怎樣來(lái)因式分解。
二、知識(shí)回顧
1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式。
判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問(wèn)講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)
。1)、x2—4y2=(x+2y)(x—2y)因式分解(2)。2x(x—3y)=2x2—6xy整式乘法
。3)、(5a—1)2=25a2—10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解
。5)、(a—3)(a+3)=a2—9整式乘法(6)。m2—4=(m+4)(m—4)因式分解
。7)、2πR+2πr=2π(R+r)因式分解
2、規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過(guò)程。
分解因式要注意以下幾點(diǎn):
。1)。分解的對(duì)象必須是多項(xiàng)式。
。2)。分解的結(jié)果一定是幾個(gè)整式的乘積的.形式。
。3)。要分解到不能分解為止。
3、因式分解的方法
提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法
公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2
4、強(qiáng)化訓(xùn)練
教學(xué)引入
師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個(gè)長(zhǎng)方形折疊就可以得到一個(gè)正方形,F(xiàn)在請(qǐng)同學(xué)們拿出一個(gè)長(zhǎng)方形紙條,按動(dòng)畫(huà)所示進(jìn)行折疊處理。
動(dòng)畫(huà)演示:
場(chǎng)景一:正方形折疊演示
師:這就是我們得到的正方形。下面請(qǐng)同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來(lái)研究正方形的幾何性質(zhì)—邊、角以及對(duì)角線之間的關(guān)系。請(qǐng)大家測(cè)量各邊的長(zhǎng)度、各角的大小、對(duì)角線的長(zhǎng)度以及對(duì)角線交點(diǎn)到各頂點(diǎn)的長(zhǎng)度。
[學(xué)生活動(dòng):各自測(cè)量。]
鼓勵(lì)學(xué)生將測(cè)量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。
講授新課
找一兩個(gè)學(xué)生表述其結(jié)論,表述是要注意糾正其語(yǔ)言的規(guī)范性。
動(dòng)畫(huà)演示:
場(chǎng)景二:正方形的性質(zhì)
師:這些性質(zhì)里那些是矩形的性質(zhì)?
[學(xué)生活動(dòng):尋找矩形性質(zhì)。]
動(dòng)畫(huà)演示:
場(chǎng)景三:矩形的性質(zhì)
師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。
[學(xué)生活動(dòng);尋找菱形性質(zhì)。]
動(dòng)畫(huà)演示:
場(chǎng)景四:菱形的性質(zhì)
師:這說(shuō)明正方形具有矩形和菱形的全部性質(zhì)。
及時(shí)提出問(wèn)題,引導(dǎo)學(xué)生進(jìn)行思考。
師:根據(jù)這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準(zhǔn)確的定義?
[學(xué)生活動(dòng):積極思考,有同學(xué)做躍躍欲試狀。]
師:請(qǐng)同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。
學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵(lì),把以下三種板書(shū):
“有一組鄰邊相等的矩形叫做正方形。”
“有一個(gè)角是直角的菱形叫做正方形!
“有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形!
[學(xué)生活動(dòng):討論這三個(gè)定義正確不正確?三個(gè)定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]
師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。
試一試把下列各式因式分解:
。1)。1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2
。3)。4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y)
三、例題講解
例1、分解因式
。1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x)
(3)(4)y2+y+
例2、分解因式
1、a3—ab2=2、(a—b)(x—y)—(b—a)(x+y)=3、(a+b)2+2(a+b)—15=
4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y=
例3、分解因式
1、72—2(13x—7)22、8a2b2—2a4b—8b3
四、知識(shí)應(yīng)用
1、(4x2—9y2)÷(2x+3y)2、(a2b—ab2)÷(b—a)
3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)2
4、。若x=—3,求20x2—60x的值。5、1993—199能被200整除嗎?還能被哪些整數(shù)整除?
五、拓展應(yīng)用
1。計(jì)算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235)
2、20042+20xx被20xx整除嗎?
3、若n是整數(shù),證明(2n+1)2—(2n—1)2是8的倍數(shù)。
五、課堂小結(jié)
今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?
因式分解教案10
教學(xué)目標(biāo):運(yùn)用平方差公式和完全平方公式分解因式,能說(shuō)出平方差公式和完全平方公式的特點(diǎn),會(huì)用提公因式法與公式法分解因式.培養(yǎng)學(xué)生的觀察、聯(lián)想能力,進(jìn)一步了解換元的思想方法.并能說(shuō)出提公因式在這類因式分解中的作用,能靈活應(yīng)用提公因式法、公式法分解因式以及因式分解的標(biāo)準(zhǔn).
教學(xué)重點(diǎn)和難點(diǎn):1.平方差公式;2.完全平方公式;3.靈活運(yùn)用3種方法.
教學(xué)過(guò)程:
一、提出問(wèn)題,得到新知
觀察下列多項(xiàng)式:x24和y225
學(xué)生思考,教師總結(jié):
(1)它們有兩項(xiàng),且都是兩個(gè)數(shù)的平方差;(2)會(huì)聯(lián)想到平方差公式.
公式逆向:a2b2=(a+b)(ab)
如果多項(xiàng)式是兩數(shù)差的`形式,并且這兩個(gè)數(shù)又都可以寫(xiě)成平方的形式,那么這個(gè)多項(xiàng)式可以運(yùn)用平方差公式分解因式.
二、運(yùn)用公式
例1:填空
①4a2=()2②b2=()2③0.16a4=()2
、1.21a2b2=()2⑤2x4=()2⑥5x4y2=()2
解答:①4a2=(2a)2;②b2=(b)2③0.16a4=(0.4a2)2
④1.21a2b2=(1.1ab)2⑤2x4=(x2)2⑥5x4y2=(x2y)2
例2:下列多項(xiàng)式能否用平方差公式進(jìn)行因式分解
、1.21a2+0.01b2②4a2+625b2③16x549y4④4x236y2
解答:①1.21a2+0.01b2能用
、4a2+625b2不能用
、16x549y4不能用
、4x236y2不能用
因式分解教案11
第6.4因式分解的簡(jiǎn)單應(yīng)用
背景材料:
因式分解是初中數(shù)學(xué)中的一個(gè)重點(diǎn)內(nèi)容,也是一項(xiàng)重要的基本技能和基礎(chǔ)知識(shí),更是一種數(shù)學(xué)的變形方法,在今后的學(xué)習(xí)中有著重要的作用。因此,除了單純的因式分解問(wèn)題外,因式分解在解某些數(shù)學(xué)問(wèn)題中有著廣泛的作用,因式分解在三角形中的應(yīng)用,因式分解可以用來(lái)證明代數(shù)問(wèn)題,用于代數(shù)式的求值,用于求不定方程,用于解應(yīng)用題解決有關(guān)復(fù)雜數(shù)值的計(jì)算,本節(jié)課的例題因式分解在數(shù)學(xué)題中的簡(jiǎn)單應(yīng)用。
教材分析:
本節(jié)課是本章的最后一節(jié),是學(xué)生學(xué)習(xí)因式分解初步應(yīng)用,首先要使學(xué)生體會(huì)到因式分解在數(shù)學(xué)中應(yīng)用,其次給學(xué)生提供更多機(jī)會(huì)體驗(yàn)主動(dòng)學(xué)習(xí)和探索的“過(guò)程”與“經(jīng)歷”,使多數(shù)學(xué)里擁有一定問(wèn)題解決的經(jīng)驗(yàn)。
教學(xué)目標(biāo):
1、在整除的情況下,會(huì)應(yīng)用因式分解,進(jìn)行多項(xiàng)式相除。
2、會(huì)應(yīng)用因式分解解簡(jiǎn)單的一元二次方程。
3、體驗(yàn)數(shù)學(xué)問(wèn)題中的矛盾轉(zhuǎn)化思想。
4、培養(yǎng)觀察和動(dòng)手能力,自主探索與合作交流能力。
教學(xué)重點(diǎn):
學(xué)會(huì)應(yīng)用因式分解進(jìn)行多項(xiàng)式除法和解簡(jiǎn)單一元二次方程。
教學(xué)難點(diǎn):
應(yīng)用因式分解解簡(jiǎn)單的一元二次方程。
設(shè)計(jì)理念:
根據(jù)本節(jié)課的內(nèi)容特點(diǎn),主要采用師生合作控討式課堂教學(xué)方法,以教師為主導(dǎo),學(xué)生為主體,動(dòng)手實(shí)踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標(biāo),引導(dǎo)學(xué)生自主探索,動(dòng)手實(shí)踐,合作交流。注重使學(xué)生經(jīng)辦觀察、操作、推理等探索過(guò)程。這種教學(xué)理念,反映了時(shí)代精神,有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),能有效地激發(fā)學(xué)生的思維積極性,學(xué)生在學(xué)習(xí)過(guò)程中調(diào)動(dòng)各種感官,進(jìn)行觀察與抽象、操作與思考、自主與交流等,進(jìn)而改進(jìn)學(xué)生的學(xué)習(xí)方法。
教學(xué)過(guò)程:
一、創(chuàng)設(shè)情境,復(fù)習(xí)提問(wèn)
1、將正式各式因式分解
(1)(a+b)2-10(a+b)+25 (2)-xy+2x2y+x3y
。3)2 a2b-8a2b (4)4x2-9
[四位同學(xué)到黑板上演板,本課時(shí)用復(fù)習(xí)“練習(xí)引入”也不失為一種好方法,既先復(fù)習(xí)因式分解的提取分因式和公式法,又為下面解決多項(xiàng)式除法運(yùn)算作鋪墊]
教師訂正
提出問(wèn)題:怎樣計(jì)算(2 a2b-8a2b)÷(4a-b)
二、導(dǎo)入新課,探索新知
。ㄏ茸寣W(xué)生思考上面所提出的問(wèn)題,教師從旁啟發(fā))
師:如果出現(xiàn)豎式計(jì)算,教師可以給予肯定;可能出現(xiàn)(2 a2b-8a2b)÷(4a-b)= ab-8a2追問(wèn)學(xué)生怎么得來(lái)的,運(yùn)算的依據(jù)是什么?這樣暴露學(xué)生的思維,讓學(xué)生自己發(fā)現(xiàn)錯(cuò)誤之處;觀察2 a2b-8a2b=2 ab(b-4a),其中一個(gè)因式正好是除式4a-b的相反數(shù),如果用“換元”思想,我們就可以把問(wèn)題轉(zhuǎn)化為單項(xiàng)式除以單項(xiàng)式。
。2 a2b-8a2b)÷(4a-b)
=-2ab(4a-b)÷(4a-b)
=-2ab
。ㄗ寣W(xué)生自己比較哪種方法好)
利用上面的數(shù)學(xué)解題思路,同學(xué)們嘗試計(jì)算
。4x2-9)÷(3-2x)
學(xué)生總結(jié)解題步驟:1、因式分解;2、約去公因式)
。ㄈw學(xué)生動(dòng)手動(dòng)腦,然后叫學(xué)生回答,及時(shí)表?yè)P(yáng),講練結(jié)合, [運(yùn)用多項(xiàng)式的因式分解和換元的思想,可以把兩個(gè)多項(xiàng)式相除,轉(zhuǎn)化為單項(xiàng)式的.除法]
練習(xí)計(jì)算
。1)(a2-4)÷(a+2)
。2)(x2+2xy+y2)÷(x+y)
。3)[(a-b)2+2(b-a)] ÷(a-b)
三、合作學(xué)習(xí)
1、以四人為一組討論下列問(wèn)題
若A?B=0,下面兩個(gè)結(jié)論對(duì)嗎?
。1)A和B同時(shí)都為零,即A=0且B=0
。2)A和B至少有一個(gè)為零即A=0或B=0
[合作學(xué)習(xí),四個(gè)小組討論,教師逐步引導(dǎo),讓學(xué)生講自己的想法,及解題步驟,培養(yǎng)語(yǔ)言表達(dá)能力,體會(huì)運(yùn)用因式分解的實(shí)際運(yùn)用作用,增加學(xué)習(xí)興趣]
2、你能用上面的結(jié)論解方程
。1)(2x+3)(2x-3)=0 (2)2x2+x=0
解:
∵(2x+3)(2x-3)=0
∴2x+3=0或2x-3=0
∴方程的解為x=-3/2或x=3/2
解:x(2x+1)=0
則x=0或2x+1=0
∴原方程的解是x1=0,x2=-1/2
[讓學(xué)生先獨(dú)立完成,再組織交流,最后教師針對(duì)性地講解,讓學(xué)生總結(jié)步驟:1、移項(xiàng),使方程一邊變形為零;2、等式左邊因式分解;3、轉(zhuǎn)化為解一元一次方程]
3、練習(xí),解下列方程
(1)x2-2x=0 4x2=(x-1)2
四、小結(jié)
。1)應(yīng)用因式分解和換元思想可以把某些多項(xiàng)式除法轉(zhuǎn)化為單項(xiàng)式除法。
(2)如果方程的等號(hào)一邊是零,另一邊含有未知數(shù)x的多項(xiàng)式可以分解成若干個(gè)x的一次式的積,那么就可以應(yīng)用因式分解把原方程轉(zhuǎn)化成幾個(gè)一元一次方程來(lái)解。
設(shè)計(jì)理念:
根據(jù)本節(jié)課的內(nèi)容特點(diǎn),主要采用師生合作討論式課堂教學(xué)方法,以教師為主導(dǎo),學(xué)生為主體,動(dòng)手實(shí)踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標(biāo),引導(dǎo)學(xué)生自主探索,動(dòng)手實(shí)踐,合作交流。注重使學(xué)生經(jīng)辦觀察、操作、推理等探索過(guò)程。這種教學(xué)理念,反映了時(shí)代精神,有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),能有效地激發(fā)學(xué)生的思維積極性,學(xué)生在學(xué)習(xí)過(guò)程中調(diào)動(dòng)各種感官,進(jìn)行觀察與抽象、操作與思考、自主與交流等,進(jìn)而改進(jìn)學(xué)生的學(xué)習(xí)方法。
因式分解教案12
學(xué)習(xí)目標(biāo)
1、學(xué)會(huì)用平方差公式進(jìn)行因式法分解
2、學(xué)會(huì)因式分解的而基本步驟.
學(xué)習(xí)重難點(diǎn)重點(diǎn):
用平方差公式進(jìn)行因式法分解.
難點(diǎn):
因式分解化簡(jiǎn)的過(guò)程
自學(xué)過(guò)程設(shè)計(jì)教學(xué)過(guò)程設(shè)計(jì)
看一看
平方差公式:
平方差公式的逆運(yùn)用:
做一做:
1.填空題.
(1)25a2-_______=(5a+2b)(5a-2b);(2)x2-=(x-)(________).
(3)-a2+b2=(b+a)(________);(4)36x2-81y2=9(_______)(_______).
2.把下列各式分解因式結(jié)果為-(x-2y)(x+2y)的多項(xiàng)式是()
A.x2-4yB.x2+4y2C.-x2+4y2D.-x2-4y2
3.多項(xiàng)式-1+0.04a2分解因式的結(jié)果是()
A.(-1+0.2a)2B.(1+0.2a)(1-0.2a)
C.(0.2a+1)(0.2a-1)D.(0.04a+1)(0.04a-1)
4.把下列各式分解因式:
(1)4x2-25y2;(2)0.81m2-n2;
(3)a3-9a;(4)8x3y3-2xy.
5.把下列各式分解因式:
(1)(3a+2b)2-(a-b)2;(2)4(x+2y)2-25(x-y)2.
6.用簡(jiǎn)便方法計(jì)算:3492-2512.
想一想
你還有哪些地方不是很懂?請(qǐng)寫(xiě)出來(lái)。
____________________________________________________________________________________
Xkb1.com預(yù)習(xí)展示一:
1、下列多項(xiàng)式能否用平方差公式分解因式?
說(shuō)說(shuō)你的理由。
4x2+y2
4x2-(-y)2
-4x2-y2-4x2+y2
a2-4a2+3
2.把下列各式分解因式:
(1)16-a2
(2)0.01s2-t2
(4)-1+9x2
(5)(a-b)2-(c-b)2
(6)-(x+y)2+(x-2y)2
應(yīng)用探究:
1、分解因式
4x3y-9xy3
變式:把下列各式分解因式
、賦4-81y4
、2a-8a
2、從前有一位張老漢向地主租了一塊“十字型”土地(尺寸如圖)。為便于種植,他想換一塊相同面積的長(zhǎng)方形土地。同學(xué)們,你能幫助張老漢算出這塊長(zhǎng)方形土地的長(zhǎng)和寬嗎?w
3、在日常生活中如上網(wǎng)等都需要密碼.有一種因式分解法產(chǎn)生的密碼方便記憶又不易破譯.
例如用多項(xiàng)式x4-y4因式分解的結(jié)果來(lái)設(shè)置密碼,當(dāng)取x=9,y=9時(shí),可得一個(gè)六位數(shù)的密碼“018162”.你想知道這是怎么來(lái)的嗎?
小明選用多項(xiàng)式4x3-xy2,取x=10,y=10時(shí)。用上述方法產(chǎn)生的密碼是什么?(寫(xiě)出一個(gè)即可)
拓展提高:
若n為整數(shù),則(2n+1)2-(2n-1)2能被8整除嗎?請(qǐng)說(shuō)明理由.
教后反思考察利用公式法因式分解的`題目不會(huì)很難,但是需要學(xué)生記住公式的形式,之后利用公式把式子進(jìn)行變形,從而達(dá)到進(jìn)行因式分解的目的。
因式分解教案13
教學(xué)目標(biāo):
1、 理解運(yùn)用平方差公式分解因式的方法。
2、 掌握提公因式法和平方差公式分解因式的綜合運(yùn)用。
3、 進(jìn)一步培養(yǎng)學(xué)生綜合、分析數(shù)學(xué)問(wèn)題的能力。
教學(xué)重點(diǎn):
運(yùn)用平方差公式分解因式。
教學(xué)難點(diǎn):
高次指數(shù)的轉(zhuǎn)化,提公因式法,平方差公式的靈活運(yùn)用。
教學(xué)案例:
我們數(shù)學(xué)組的觀課議課主題:
1、關(guān)注學(xué)生的合作交流
2、如何使學(xué)困生能積極參與課堂交流。
在精心備課過(guò)程中,我設(shè)計(jì)了這樣的自學(xué)提示:
1、整式乘法中的平方差公式是___,如何用語(yǔ)言描述?把上述公式反過(guò)來(lái)就得到_____,如何用語(yǔ)言描述?
2、下列多項(xiàng)式能用平方差公式分解因式嗎?若能,請(qǐng)寫(xiě)出分解過(guò)程,若不能,說(shuō)出為什么?
、-x2+y2 ②-x2-y2 ③4-9x2
、 (x+y)2-(x-y)2 ⑤ a4-b4
3、試總結(jié)運(yùn)用平方差公式因式分解的條件是什么?
4、仿照例4的.分析及旁白你能把x3y-xy因式分解嗎?
5、試總結(jié)因式分解的步驟是什么?
師巡回指導(dǎo),生自主探究后交流合作。
生交流熱情很高,但把全部問(wèn)題分析完已用了30分鐘。
生展示自學(xué)成果。
生1: -x2+y2能用平方差公式分解,可分解為(y+x)(y-x)
生2: -x2+y2=-(x2-y2)=-(x+y)(x-y)
師:這兩種方法都可以,但第二種方法提出負(fù)號(hào)后,一定要注意括號(hào)里的各項(xiàng)要變號(hào)。
生3:4-9x2 也能用平方差公式分解,可分解為(2+9x)(2-9x)
生4:不對(duì),應(yīng)分解為(2+3x)(2-3x),要運(yùn)用平方差公式必須化為兩個(gè)數(shù)或整式的平方差的形式。
生5: a4-b4可分解為(a2+b2)(a2-b2)
生6:不對(duì),a2-b2 還能繼續(xù)分解為a+b)(a-b)
師:大家爭(zhēng)論的很好,運(yùn)用平方差公式分解因式,必須化為兩個(gè)數(shù)或兩個(gè)整式的平方的差的形式,另因式分解必須分解到不能再分解為止!
反思:這節(jié)課我備課比較認(rèn)真,自學(xué)提示的設(shè)計(jì)也動(dòng)了一番腦筋,為讓學(xué)生順利得出運(yùn)用平方差公式因式分解的條件,我設(shè)計(jì)了問(wèn)題2,為讓學(xué)生能更容易總結(jié)因式分解的步驟,我又設(shè)計(jì)了問(wèn)題4,自認(rèn)為,本節(jié)課一定會(huì)上的非常成功,學(xué)生的交流、合作,自學(xué)展示一定會(huì)很精彩,結(jié)果卻出乎我的意料,本節(jié)課沒(méi)有按計(jì)劃完成教學(xué)任務(wù),學(xué)生練習(xí)很少,作業(yè)有很大一部分同學(xué)不能獨(dú)立完成,反思這節(jié)課主要有以下幾個(gè)問(wèn)題:
(1) 我在備課時(shí),過(guò)高估計(jì)了學(xué)生的能力,問(wèn)題2中的③、④、⑤ 多數(shù)學(xué)生剛預(yù)習(xí)后不能熟練解答,導(dǎo)致在小組交流時(shí),多數(shù)學(xué)生都在交流這幾題該怎樣分解,耽誤了寶貴的時(shí)間,也分散了學(xué)生的注意力,導(dǎo)致難點(diǎn)、重點(diǎn)不突出,若能把問(wèn)題2改為:
下列多項(xiàng)式能用平方差公式因式分解嗎?為什么?可能效果會(huì)更好。
(2) 教師備課時(shí),要考慮學(xué)生的知識(shí)層次,能力水平,真正把學(xué)生放在第一位,要考慮學(xué)生的接受能力,安排習(xí)題要循序漸進(jìn),切莫過(guò)于心急,過(guò)分追求課堂容量、習(xí)題類型全等等,例如在問(wèn)題2的設(shè)計(jì)時(shí)可寫(xiě)一些簡(jiǎn)單的,像④、⑤ 可到練習(xí)時(shí)再出現(xiàn),發(fā)現(xiàn)問(wèn)題后再?gòu)?qiáng)調(diào)、歸納,效果也可能會(huì)更好。
我及時(shí)調(diào)整了自學(xué)提示的內(nèi)容,在另一個(gè)班也上了這節(jié)課。果然,學(xué)生的討論有了重點(diǎn),很快(大約10分鐘)便合作得出了結(jié)論,課堂氣氛非;钴S,練習(xí)量大,準(zhǔn)確率高,但隨之我又發(fā)現(xiàn)我在處理課后練習(xí)時(shí)有點(diǎn)不能應(yīng)對(duì)自如。例如:師:下面我們把課后練習(xí)做一下,話音剛落,大家紛紛拿著本到我面前批改。師:都完了?生:全完了。我很興奮。來(lái):“我們?cè)僮鰩最}試試!鄙珠_(kāi)始緊張地練習(xí)……下課后,無(wú)意間發(fā)現(xiàn)竟還有好幾個(gè)同學(xué)課后題沒(méi)做。原因是預(yù)習(xí)時(shí)不會(huì),上課又沒(méi)時(shí)間,還有幾位同學(xué)練習(xí)題竟然有誤,也沒(méi)改正,原因是上課慌著展示自己,沒(méi)顧上改……?磥(lái),以后上課不能單聽(tīng)學(xué)生的齊答,要發(fā)揮組長(zhǎng)的職責(zé),注重過(guò)關(guān)落實(shí)。給學(xué)生一點(diǎn)機(jī)動(dòng)時(shí)間,讓學(xué)習(xí)有困難的學(xué)生有機(jī)會(huì)釋疑,練習(xí)不在于多,要注意融會(huì)貫通,會(huì)舉一反三。
確實(shí),“學(xué)海無(wú)涯,教海無(wú)邊”。我們備課再認(rèn)真,預(yù)設(shè)再周全,面對(duì)不同的學(xué)生,不同的學(xué)情,仍然會(huì)產(chǎn)生新的問(wèn)題,“沒(méi)有最好,只有更好!”我會(huì)一直探索、努力,不斷完善教學(xué)設(shè)計(jì),更新教育觀念,直到永遠(yuǎn)……
因式分解教案14
一、教材分析
1、教材的地位與作用
“整式的乘法”是整式的加減的后續(xù)學(xué)習(xí)從冪的運(yùn)算到各種整式的乘法,整章教材都突出了學(xué)生的自主探索過(guò)程,依據(jù)原有的知識(shí)基礎(chǔ),或運(yùn)用乘法的各種運(yùn)算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運(yùn)算的基本法則、兩個(gè)主要的乘法公式及因式分解的基本方法學(xué)生自己對(duì)知識(shí)內(nèi)容的探索、認(rèn)識(shí)與體驗(yàn),完全有利于學(xué)生形成合理的知識(shí)結(jié)構(gòu),提高數(shù)學(xué)思維能力.利用公式法進(jìn)行因式分解時(shí),注意把握多項(xiàng)式的特點(diǎn),對(duì)比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。
因式分解是一種常用的代數(shù)式的'恒等變形,因式分解是多項(xiàng)式乘法公式的逆向變形,它是將一個(gè)多項(xiàng)式變形為多項(xiàng)式與多項(xiàng)式的乘積。
2、教學(xué)目標(biāo)
。1)會(huì)推導(dǎo)乘法公式
(2)在應(yīng)用乘法公式進(jìn)行計(jì)算的基礎(chǔ)上,感受乘法公式的作用和價(jià)值。
。3)會(huì)用提公因式法、公式法進(jìn)行因式分解。
(4)了解因式分解的一般步驟。
(5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過(guò)程,提高分析問(wèn)題和解決問(wèn)題的能力。
3、重點(diǎn)、難點(diǎn)和關(guān)鍵
重點(diǎn):乘法公式的意義、分式的由來(lái)和正確運(yùn)用;用提公因式法和公式法進(jìn)行因式分解。
難點(diǎn):正確運(yùn)用乘法公式;正確分解因式。
關(guān)鍵:正確理解乘法公式和因式分解的意義。
二、本單元教學(xué)的方法和策略:
1.注重知識(shí)形成的探索過(guò)程,讓學(xué)生在探索過(guò)程中領(lǐng)悟知識(shí),在領(lǐng)悟過(guò)程中建構(gòu)體系,從而更好地實(shí)現(xiàn)知識(shí)體系的更新和知識(shí)的正向遷移.
2.知識(shí)內(nèi)容的呈現(xiàn)方式力求與學(xué)生已有的知識(shí)結(jié)構(gòu)相聯(lián)系,同時(shí)兼顧學(xué)生的思維水平和心理特征.
3.讓學(xué)生掌握基本的數(shù)學(xué)事實(shí)與數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),減輕不必要的記憶負(fù)擔(dān).
4.注意從生活中選取素材,給學(xué)生提供一些交流、討論的空間,讓學(xué)生從中體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,逐步養(yǎng)成談數(shù)學(xué)、想數(shù)學(xué)、做數(shù)學(xué)的良好習(xí)慣.
三、課時(shí)安排:
2.1平方差公式 1課時(shí)
2.2完全平方公式 2課時(shí)
2.3用提公因式法進(jìn)行因式分解 1課時(shí)
2.4用公式法進(jìn)行因式分解 2課時(shí)
因式分解教案15
教學(xué)目標(biāo):
1、進(jìn)一步鞏固因式分解的概念;
2、鞏固因式分解常用的三種方法
3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解
4、應(yīng)用因式分解來(lái)解決一些實(shí)際問(wèn)題
5、體驗(yàn)應(yīng)用知識(shí)解決問(wèn)題的樂(lè)趣
教學(xué)重點(diǎn):
靈活運(yùn)用因式分解解決問(wèn)題
教學(xué)難點(diǎn):
靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒,拓展練?xí)2、3
教學(xué)過(guò)程:
一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值
利用因式分解往往能將一些復(fù)雜的運(yùn)算簡(jiǎn)單化,那么我們先來(lái)回顧一下什么是因式分解和怎樣來(lái)因式分解。
二、知識(shí)回顧
1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.
判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問(wèn)講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)
(1).x2-4y2=(x+2y)(x-2y)因式分解(2).2x(x-3y)=2x2-6xy整式乘法
(3).(5a-1)2=25a2-10a+1整式乘法(4).x2+4x+4=(x+2)2因式分解
(5).(a-3)(a+3)=a2-9整式乘法(6).m2-4=(m+4)(m-4)因式分解
(7).2πR+2πr=2π(R+r)因式分解
2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過(guò)程.
分解因式要注意以下幾點(diǎn):(1).分解的對(duì)象必須是多項(xiàng)式.
(2).分解的結(jié)果一定是幾個(gè)整式的乘積的形式.(3).要分解到不能分解為止.
3、因式分解的方法
提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1)公因式的概念;公因式的求法
公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)2
4、強(qiáng)化訓(xùn)練
教學(xué)引入
師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個(gè)長(zhǎng)方形折疊就可以得到一個(gè)正方形,F(xiàn)在請(qǐng)同學(xué)們拿出一個(gè)長(zhǎng)方形紙條,按動(dòng)畫(huà)所示進(jìn)行折疊處理。
動(dòng)畫(huà)演示:
場(chǎng)景一:正方形折疊演示
師:這就是我們得到的正方形。下面請(qǐng)同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來(lái)研究正方形的幾何性質(zhì)—邊、角以及對(duì)角線之間的關(guān)系。請(qǐng)大家測(cè)量各邊的長(zhǎng)度、各角的大小、對(duì)角線的長(zhǎng)度以及對(duì)角線交點(diǎn)到各頂點(diǎn)的長(zhǎng)度。
[學(xué)生活動(dòng):各自測(cè)量。]
鼓勵(lì)學(xué)生將測(cè)量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。
講授新課
找一兩個(gè)學(xué)生表述其結(jié)論,表述是要注意糾正其語(yǔ)言的.規(guī)范性。
動(dòng)畫(huà)演示:
場(chǎng)景二:正方形的性質(zhì)
師:這些性質(zhì)里那些是矩形的性質(zhì)?
[學(xué)生活動(dòng):尋找矩形性質(zhì)。]
動(dòng)畫(huà)演示:
場(chǎng)景三:矩形的性質(zhì)
師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。
[學(xué)生活動(dòng);尋找菱形性質(zhì)。]
動(dòng)畫(huà)演示:
場(chǎng)景四:菱形的性質(zhì)
師:這說(shuō)明正方形具有矩形和菱形的全部性質(zhì)。
及時(shí)提出問(wèn)題,引導(dǎo)學(xué)生進(jìn)行思考。
師:根據(jù)這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準(zhǔn)確的定義?
[學(xué)生活動(dòng):積極思考,有同學(xué)做躍躍欲試狀。]
師:請(qǐng)同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。
學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵(lì),把以下三種板書(shū):
“有一組鄰邊相等的矩形叫做正方形!
“有一個(gè)角是直角的菱形叫做正方形。”
“有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形!
[學(xué)生活動(dòng):討論這三個(gè)定義正確不正確?三個(gè)定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]
師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。
試一試把下列各式因式分解:
(1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2
(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)
三、例題講解
例1、分解因式
(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)
(3)(4)y2+y+
例2、分解因式
1、a3-ab2=2、(a-b)(x-y)-(b-a)(x+y)=3、(a+b)2+2(a+b)-15=
4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=
例3、分解因式
1、72-2(13x-7)22、8a2b2-2a4b-8b3
三、知識(shí)應(yīng)用
1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)
3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2
4、.若x=-3,求20x2-60x的值.5、1993-199能被200整除嗎?還能被哪些整數(shù)整除?
四、拓展應(yīng)用
1.計(jì)算:7652×17-2352×17解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)
2、20042+20xx被20xx整除嗎?
3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).
五、課堂小結(jié):今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?
【因式分解教案】相關(guān)文章:
因式分解教案05-07
因式分解教案04-02
因式分解復(fù)習(xí)教案09-06
因式分解教案三篇02-04
【精選】因式分解教案三篇02-17
精選因式分解教案4篇02-06
因式分解教案五篇01-23
【精選】因式分解教案四篇02-03
因式分解教案九篇04-29
因式分解教案5篇04-29